Search results for: wind energy loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11805

Search results for: wind energy loss

1785 Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. Benyamina, P. Boulet

Abstract:

Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature.

Keywords: multiprocessor system on chip, MPSoC, network on chip, NoC, heterogeneous architectures, run-time mapping heuristics, routing algorithm

Procedia PDF Downloads 484
1784 Determination of Direct Solar Radiation Using Atmospheric Physics Models

Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote

Abstract:

This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.

Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition

Procedia PDF Downloads 402
1783 The Effect of Power of Isolation Transformer on the Lamps in Airfield Ground Lighting Systems

Authors: Hossein Edrisi

Abstract:

To study the impact of the amount and volume of power of isolation transformer on the lamps in airfield Ground Lighting Systems. A test was conducted in Persian Gulf International Airport, This airport is situated in the south of Iran and it is one of the most cutting-edge airports, the same one that owns modern devices. Iran uses materials and auxiliary equipment which are made by ADB Company from Belgium. Airfield ground lighting (AGL) systems are responsible for providing visual issue to aircrafts and helicopters in the runways. In an AGL system a great deal of lamps are connected in serial circuits to each other and each ring has its individual constant current regulators (CCR), which through that provide energy to the lamps. Control of lamps is crucial for maintenance and operation in the AGL systems. Thanks to the Programmable Logic Controller (PLC) that is a cutting-edge technology can help the system to connect the elements from substations and ATC (TOWER). For this purpose, a test in real conditions of the airport done for all element that used in the airport such as isolation transformer in different power capacity and different consuming power and brightness of the lamps. The data were analyzed with Lux meter and Multimeter. The results had shown that the increase in the power of transformer caused a significant increase in brightness. According to the Ohm’s law and voltage division, without changing the characteristics of the light bulb, it is not possible to change the voltage, just need to change the amount of transformer with which it connects to the lamps. When the voltage is increased, the current through the bulb has to increase as well, because of Ohm's law: I=V/R and I=V/R which means that if V increases, so do I increase. The output voltage on the constant current regulator emerges between the lamps and the transformers.

Keywords: AGL, CCR, lamps, transformer, Ohm’s law

Procedia PDF Downloads 243
1782 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids

Procedia PDF Downloads 127
1781 Policies Promoting the Development of Green Buildings in Sub-Saharan Africa: A South African Case-Study

Authors: Peter Adekunle, Clinton Aigbavboa, Matthew Ikuabe, Opeoluwa Akinradewo

Abstract:

Contemporary building methods typically pay little attention to the built environment's greater economic, environmental, or social impacts or energy efficiency. Green construction aims to sever ties with these conventions. In order to provide better living and working conditions and lessen environmental consequences, green building today combines numerous building design, construction, and operation and maintenance approaches. As one of Sub-Saharan Africa's most industrialized nations, South Africa has a good number of green building projects. Therefore, this study examines the elements impacting the adoption of green buildings and regulations created to encourage the growth of green buildings using South Africa as a case study. The study has a survey-style design. A total of one hundred fifty (150) questionnaires were distributed to professionals in the construction industry in South Africa, of which one hundred and twenty-four (128) were returned and judged appropriate for investigation. The gathered data was examined using percentage, mean item scores, standard deviation, and Kruskal-Wallis. The findings show that cost and market circumstances are the two main elements impacting the adoption of green construction, while leadership advice is the most important policy. The study concluded that in order to encourage the construction of green buildings, additional Sub-Saharan nations should adopt these suggested policies.

Keywords: green building, Sub-Saharan Africa, building design, environmental conditions

Procedia PDF Downloads 104
1780 ZnO / TiO2 Nanoparticles for Degradation of Cyanide Ion

Authors: Masoumeh Tabatabaee, Zahra Shahryarzadeh, Masoud R. Shishebor

Abstract:

Advanced oxidation process (AOPs) is alternative method for the complete degradation many organic pollutants. When a photocatalyst absorbs radiation whose energy hν > Eg an ē from its filled valance band (VB) is promoted to its conduction band (CB) and valance band holes h+ are formed. Electron would reduce any available species, including O2, water and hydroxide ion to form hydroxyl radicals. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. TiO2 can only absorb a small portion of solar spectrum in the UV region and many methods such as dye sensitization, doping of other metals and using TiO2 with another semiconductor have been used to improve the photocatalytic activity of TiO2 under solar irradiation. Studies have shown that the use of metal oxides or sulfide such as WO3, MoO3, SiO2, MgO, ZnO, and CdS with TiO2 can significantly enhance the photocatalytic activity of TiO2. Due to similarity of photodegradation mechanism of ZnO with TiO2, it is a suitable semiconductor using with TiO2 and recently nanosized bicomponent TiO2-ZnO photocatalysts were prepared and used for degradation of some pollutants. In this study, Nano-sized ZnO/TiO2 composite was synthesized. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the structure and morphology of it. The effect of photocatalytic activity of prepared ZnO/TiO2 on the degradation of cyanide ion under UV was investigated. The effect of various parameters such as ZnO/TiO2 concentration, amount of photocatalyst, amount of H2O2, initial dye or cyanide ion concentration, pH and irradiation time on were investigated. Results show that more than 95% of 4 mgL-1 cyanide ion degraded after 60-min reaction time and under UV irradiation.

Keywords: photodegradation, ZnO/TiO2, nanoparticle, cyanide ion

Procedia PDF Downloads 388
1779 FTIR Spectroscopy for in vitro Screening in Microbial Biotechnology

Authors: V. Shapaval, N. K. Afseth, D. Tzimorotas, A. Kohler

Abstract:

Globally there is a dramatic increase in the demand for food, energy, materials and clean water since natural resources are limited. As a result, industries are looking for ways to reduce rest materials and to improve resource efficiency. Microorganisms have a high potential to be used as bio factories for the production of primary and secondary metabolites that represent high-value bio-products (enzymes, polyunsaturated fatty acids, bio-plastics, glucans, etc.). In order to find good microbial producers, to design suitable substrates from food rest materials and to optimize fermentation conditions, rapid analytical techniques for quantifying target bio products in microbial cells are needed. In the EU project FUST (R4SME, Fp7), we have developed a fully automated high-throughput FUST system based on micro-cultivation and FTIR spectroscopy that facilitates the screening of microorganisms, substrates and fermentation conditions for the optimization of the production of different high-value metabolites (single cell oils, bio plastics). The automated system allows the preparation of 100 samples per hour. Currently, The FUST system is in use for screening of filamentous fungi in order to find oleaginous strains with the ability to produce polyunsaturated fatty acids, and the optimization of cheap substrates, derived from food rest materials, and the optimization of fermentation conditions for the high yield of single cell oil.

Keywords: FTIR spectroscopy, FUST system, screening, biotechnology

Procedia PDF Downloads 438
1778 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor

Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh

Abstract:

Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.

Keywords: acoustic, aptasensor, detection, nonlinear

Procedia PDF Downloads 556
1777 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices

Procedia PDF Downloads 180
1776 Haematological Responses on Amateur Cycling Stages Race

Authors: Renato André S. Silva, Nana L. F. Sampaio, Carlos J. G. Cruz, Bruno Vianna, Flávio O. Pires

Abstract:

multiple stage bicycle races require high physiological loads from professional cyclists. Such demands can lead to immunosuppression and health problems. However, in this type of competition, little is known about its physiological effects on amateur athletes, who generally receive less medical support. Thus, this study analyzes the hematological effects of a multiple stage bicycle race on amateur cyclists. Seven Brazilian national amateur cyclists (34 ± 4.21 years) underwent a laboratory test to evaluate VO2Max (69.89 ± 7.43 ml⋅kg-1⋅min-1). Six days later, these volunteers raced in the Tour of Goiás, participating in five races in four days (435 km) of competition. Arterial blood samples were collected one day before and one day after the competition. The Kolmogorov-Smirnov tests were used to evaluate the data distribution and Wilcoxon to compare the two moments (p <0.05) of data collection. The results show: Red cells ↓ 7.8% (5.1 ± 0.28 vs 4.7 ± 0.37 106 / mm 3, p = 0.01); Hemoglobin ↓ 7.9% (15.1 ± 0.31 vs 13.9 ± 0.27 g / dL, p = 0.01); Leukocytes ↑ 9.5% (4946 ± 553 versus 5416 ± 1075 / mm 3, p = 0.17); Platelets ↓ 7.0% (200.2 ± 51.5 vs 186.1 ± 39.5 / mm 3, p = 0.01); LDH ↑ 11% (164.4 ± 28.5 vs 182.5 ± 20.5 U / L, p = 0.17); CK ↑ 13.5% (290.7 ± 206.1 vs 330.1 ± 90.5 U / L, p = 0.39); CK-MB ↑ 2% (15.7 ± 3.9 vs. 20.1 ± 2.9 U / L, p = 0.06); Cortizol ↓ 13.5% (12.1 ± 2.4 vs 9.9 ± 1.9 μg / dL, p = 0.01); Total testosterone ↓ 7% (453.6 ± 120.1 vs 421.7 ± 74.3 ng / dL, p = 0.12); IGF-1 ↓ 15.1% (213.8 ± 18.8 vs 181.5 ± 34.7 ng / mL, p = 0.04). This means that there was significant reductions in O2 allocation / transport capacities, vascular injury disruption, and a fortuitous reduction of muscle skeletal anabolism along with maintenance and / or slight elevation of immune function, glucose and lipid energy and myocardial damage. Therefore, the results suggest that no abnormal health effect was identified among the athletes after participating in the Tour de Goiás.

Keywords: cycling, health effects, cycling stages races, haematology

Procedia PDF Downloads 195
1775 A Glycerol-Free Process of Biodiesel Production through Chemical Interesterification of Jatropha Oil

Authors: Ratna Dewi Kusumaningtyas, Riris Pristiyani, Heny Dewajani

Abstract:

Biodiesel is commonly produced via the two main routes, i.e. the transesterification of triglycerides and the esterification of free fatty acid (FFA) using short-chain alcohols. Both the two routes have drawback in term of the side product yielded during the reaction. Transesterification reaction of triglyceride results in glycerol as side product. On the other hand, FFA esterification brings in water as side product. Both glycerol and water in the biodiesel production are managed as waste. Hence, a separation process is necessary to obtain a high purity biodiesel. Meanwhile, separation processes is generally the most capital and energy intensive part in industrial process. Therefore, to reduce the separation process, it is essential to produce biodiesel via an alternative route eliminating glycerol or water side-products. In this work, biodiesel synthesis was performed using a glycerol-free process through chemical interesterification of jatropha oil with ethyl acetate in the presence on sodium acetate catalyst. By using this method, triacetine, which is known as fuel bio-additive, is yielded instead of glycerol. This research studied the effects of catalyst concentration on the jatropha oil interesterification process in the range of 0.5 – 1.25% w/w oil. The reaction temperature and molar ratio of oil to ethyl acetate were varied at 50, 60, and 70°C, and 1:6, 1:9, 1:15, 1:30, and 1:60, respectively. The reaction time was evaluated from 0 to 8 hours. It was revealed that the best yield was obtained with the catalyst concentration of 0.5%, reaction temperature of 70 °C, molar ratio of oil to ethyl acetate at 1:60, at 6 hours reaction time.

Keywords: biodiesel, interesterification, glycerol-free, triacetine, jatropha oil

Procedia PDF Downloads 414
1774 Evaluation of the Impact of Infill Wall Layout in Plan and/or Elevation on the Seismic Behavior of 3D Reinforced Concrete Structures

Authors: Salah Guettala, nesreddine.djafarhenni, Akram Khelaifia, Rachid Chebili

Abstract:

This study assesses the impact of infill walls' layout in both plan and elevation on the seismic behavior of a 3D reinforced concrete structure situated in a high seismic zone. A pushover analysis is conducted to evaluate the structure's seismic performance with various infill wall layouts, considering capacity curves, absorbed energy, inter-story drift, and performance levels. Additionally, torsional effects on the structure are examined through linear dynamic analysis. Fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings indicate that the presence of infill walls enhances lateral stiffness and alters structural behavior. Moreover, the study highlights the importance of considering the effects of infill wall layout, as non-uniform layouts can degrade building performance post-earthquake, increasing inter-story drift and risk of damage or collapse. To mitigate such risks, buildings should adopt a uniform infill wall layout. Furthermore, asymmetrical placement of masonry infill walls introduces additional torsional forces, particularly when there's a lack of such walls on the first story, potentially leading to irregular stiffness and soft-story phenomena.

Keywords: RC structures, infll walls’ layout, pushover analysis, macro-model, fiber plastic hinge, torsion

Procedia PDF Downloads 48
1773 Antimicrobial and Aroma Finishing of Organic Cotton Knits Using Vetiver Oil Microcapsules for Health Care Textiles

Authors: K. J. Sannapapamma, H. Malligawad Lokanath, Sakeena Naikwadi

Abstract:

Eco-friendly textiles are gaining importance among the consumers and textile manufacturers in the healthcare sector due to increased environmental pollution which leads to several health and environmental hazards. Hence, the research was designed to cultivate and develop the organic cotton knit, to prepare and characterize the Vetiver oil microcapsules for textile finishing and to access the wash durability of finished knits. The cotton SAHANA variety grown under organic production systems was processed and spun into 30 single yarn dyed with four natural colorants (Arecanut slurry, Eucalyptus leaves, Pomegranate rind and Indigo) and eco dyed yarn was further used for development of single jersy knitted fabric. Vetiveria zizanioides is an aromatic grass which is being traditionally used in medicine and perfumery. Vetiver essential oil was used for preparation of microcapsules by interfacial polymerization technique subjected to Gas Chromatography Mass Spectrometry (GCMS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analyzer (TGA) and Scanning Electron Microscope (SEM) for characterization of microcapsules. The knitted fabric was finished with vetiver oil microcapsules by exhaust and pad dry cure methods. The finished organic knit was assessed for laundering on antimicrobial efficiency and aroma intensity. GCMS spectral analysis showed that, diethyl phthalate (28%) was the major compound found in vetiver oil followed by isoaromadendrene epoxide (7.72%), beta-vetivenene (6.92%), solavetivone (5.58%), aromadenderene, azulene and khusimol. Bioassay explained that, the vetiver oil and diluted vetiver oil possessed greater zone of inhibition against S. aureus and E. coli than the coconut oil. FTRI spectra of vetiver oil and microcapsules possessed similar peaks viz., C-H, C=C & C꞊O stretching and additionally oil microcapsules possessed the peak of 3331.24 cm-1 at 91.14 transmittance was attributed to N-H stretches. TGA of oil microcapsules revealed that, there was a minimum weight loss (5.835%) recorded at 467.09°C compared to vetiver oil i.e., -3.026% at the temperature of 396.24°C. The shape of the microcapsules was regular and round, some were spherical in shape and few were rounded by small aggregates. Irrespective of methods of application, organic cotton knits finished with microcapsules by pad dry cure method showed maximum zone of inhibition compared to knits finished by exhaust method against S. aureus and E. coli. The antimicrobial activity of the finished samples was subjected to multiple washing which indicated that knits finished with pad dry cure method showed a zone of inhibition even after 20th wash and better aroma retention compared to knits finished with the exhaust method of application. Further, the group of respondents rated that the 5th washed samples had the greater aroma intensity in both the methods than the other samples. Thus, the vetiver microencapsulated organic cotton knits are free from hazardous chemicals and have multi-functional properties that can be suitable for medical and healthcare textiles.

Keywords: exhaust and pad dry cure finishing, interfacial polymerization, organic cotton knits, vetiver oil microcapsules

Procedia PDF Downloads 275
1772 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation

Procedia PDF Downloads 389
1771 Design of RF Generator and Its Testing in Heating of Nickel Ferrite Nanoparticles

Authors: D. Suman, M. Venkateshwara Rao

Abstract:

Cancer is a disease caused by an uncontrolled division of abnormal cells in a part of the body, which is affecting millions of people leading to death. Even though there have been tremendous developments taken place over the last few decades the effective therapy for cancer is still not a reality. The existing techniques of cancer therapy are chemotherapy and radio therapy which are having their limitations in terms of the side effects, patient discomfort, radiation hazards and the localization of treatment. This paper describes a novel method for cancer therapy by using RF-hyperthermia application of nanoparticles. We have synthesized ferromagnetic nanoparticles and characterized by using XRD and TEM. These nanoparticles after the biocompatibility studies will be injected in to the body with a suitable tracer element having affinity to the specific tumor site. When RF energy is applied to the nanoparticles at the tumor site it produces heat of excess room temperature and nearly 41-45°C is sufficient to kill the tumor cells. We have designed a RF source generator provided with a temperature feedback controller to control the radiation induced temperature of the tumor site. The temperature control is achieved through a negative feedback mechanism of the thermocouple and a relay connected to the power source of the RF generator. This method has advantages in terms of its effect like localized therapy, less radiation, and no side effects. It has several challenges in designing the RF source provided with coils suitable for the tumour site, biocompatibility of the nanomaterials, cooling system design for the RF coil. If we can overcome these challenges this method will be a huge benefit for the society.

Keywords: hyperthermia, cancer therapy, RF source generator, nanoparticles

Procedia PDF Downloads 453
1770 An Interoperability Concept for Detect and Avoid and Collision Avoidance Systems: Results from a Human-In-The-Loop Simulation

Authors: Robert Rorie, Lisa Fern

Abstract:

The integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS) poses a variety of technical challenges to UAS developers and aviation regulators. In response to growing demand for access to civil airspace in the United States, the Federal Aviation Administration (FAA) has produced a roadmap identifying key areas requiring further research and development. One such technical challenge is the development of a ‘detect and avoid’ system (DAA; previously referred to as ‘sense and avoid’) to replace the ‘see and avoid’ requirement in manned aviation. The purpose of the DAA system is to support the pilot, situated at a ground control station (GCS) rather than in the cockpit of the aircraft, in maintaining ‘well clear’ of nearby aircraft through the use of GCS displays and alerts. In addition to its primary function of aiding the pilot in maintaining well clear, the DAA system must also safely interoperate with existing NAS systems and operations, such as the airspace management procedures of air traffic controllers (ATC) and collision avoidance (CA) systems currently in use by manned aircraft, namely the Traffic alert and Collision Avoidance System (TCAS) II. It is anticipated that many UAS architectures will integrate both a DAA system and a TCAS II. It is therefore necessary to explicitly study the integration of DAA and TCAS II alerting structures and maneuver guidance formats to ensure that pilots understand the appropriate type and urgency of their response to the various alerts. This paper presents a concept of interoperability for the two systems. The concept was developed with the goal of avoiding any negative impact on the performance level of TCAS II (understanding that TCAS II must largely be left as-is) while retaining a DAA system that still effectively enables pilots to maintain well clear, and, as a result, successfully reduces the frequency of collision hazards. The interoperability concept described in the paper focuses primarily on facilitating the transition from a late-stage DAA encounter (where a loss of well clear is imminent) to a TCAS II corrective Resolution Advisory (RA), which requires pilot compliance with the directive RA guidance (e.g., climb, descend) within five seconds of its issuance. The interoperability concept was presented to 10 participants (6 active UAS pilots and 4 active commercial pilots) in a medium-fidelity, human-in-the-loop simulation designed to stress different aspects of the DAA and TCAS II systems. Pilot response times, compliance rates and subjective assessments were recorded. Results indicated that pilots exhibited comprehension of, and appropriate prioritization within, the DAA-TCAS II combined alert structure. Pilots demonstrated a high rate of compliance with TCAS II RAs and were also seen to respond to corrective RAs within the five second requirement established for manned aircraft. The DAA system presented under test was also shown to be effective in supporting pilots’ ability to maintain well clear in the overwhelming majority of cases in which pilots had sufficient time to respond. The paper ends with a discussion of next steps for research on integrating UAS into civil airspace.

Keywords: detect and avoid, interoperability, traffic alert and collision avoidance system (TCAS II), unmanned aircraft systems

Procedia PDF Downloads 266
1769 Biofuel Potential and Invasive Species Control: Exploring Prosopis Juliflora Pod Mash for Sustainable Energy Production

Authors: Mebrahtu Haile

Abstract:

Fuels obtained from renewable resources have garnered significant enthusiasm in recent decades due to concerns about fossil fuel depletion and climate change. This study aimed to investigate the potential of Prosopis juliflora pods mash for bio-ethanol production and its hydrolysis solid waste for solid fuel. Various parameters, such as acid concentration, hydrolysis times, fermentation times, fermentation temperature, and pH, were evaluated for their impact on bio-ethanol production using Saccharomyces cerevisiae yeast. The results showed that increasing acid concentration (up to 1 molar H₂SO₄) led to an increase in sugar content, reaching a maximum of 96.13%v/v. Optimal conditions for bio-ethanol production were found at 1 molar H₂SO₄ concentration (4.2%v/v), 48 hours fermentation time (5.1%v/v), 20 minutes hydrolysis time (5.57%v/v), 30°C fermentation temperature (5.57%v/v), and pH 5 (6.01%v/v), resulting in a maximum bio-ethanol yield of 6.01%v/v. The solid waste remaining after bio-ethanol production exhibited potential for use as a solid fuel, with a calorific value of 18.22 MJ/kg. These findings demonstrate the promising potential of Prosopis juliflora pods mash for bio-ethanol production and suggest a viable solution for addressing disposal challenges associated with solid waste, contributing to the exploration of renewable fuel sources in the face of fossil fuel depletion and climate change.

Keywords: prosopis juliflora, pods mash, invasive species, bio-ethanol, fermentation, Saccharomyces cerevisiae, solid fuel

Procedia PDF Downloads 23
1768 Fresh State Properties of Steel Fiber Reinforced Self Compacting Concrete

Authors: Anil Nis, Nilufer Ozyurt Zihnioglu

Abstract:

The object of the study is to investigate fresh state properties of the steel fiber reinforced self-compacting concrete (SFR-SCC). Three different steel fibers; straight (Vf:0.5%), hooked-end long (Vf:0.5% and 1%) and hybrid fibers (0.5%short+0.5%long) were used in the research aiming to obtain flow properties of non-fibrous self-compacting concrete. Fly ash was used as a supplementary with an optimum dosage of 30% of the total cementitious materials. Polycarboxylic ether based high-performance concrete superplasticizer was used to get high flowability with percentages ranging from 0.81% (non-fibrous SCC) to 1.07% (hybrid SF-SCC) of the cement weight. The flowability properties of SCCs were measured via slump flow and V-funnel tests; passing ability properties of SCCs were measured with J-Ring, L-Box, and U-Box tests. Workability results indicate that small increase on the superplasticizer dosages compensate the adverse effects of steel fibers on flowability properties of SSC. However, higher dosage fiber addition has a negative effect on passing ability properties, causing blocking of the mixes. In addition, compressive strength, tensile strength, and four point bending results were given. Results indicate that SCCs including steel fibers have superior performances on tensile and bending strength of concrete. Crack bridging capability of steel fibers prevents concrete from splitting, yields higher deformation and energy absorption capacities than non-fibrous SCCs.

Keywords: fiber reinforced self-compacting concrete, fly ash, fresh state properties, steel fiber

Procedia PDF Downloads 216
1767 Productive Performance of Lactating Sows Feed with Cull Chickpea

Authors: J. M. Uriarte, H. R. Guemez, J. A. Romo, R. Barajas, J. M. Romo

Abstract:

This research was carried out with the objective of knowing the productive performance of sows in lactation when fed with diets containing cull chickpea instead of corn and soybean meal. Thirty-six (Landrace x Yorkshire) lactating sows were divided into three treatments with 12 sows per treatment. On day 107 of gestation, sows were moved into farrowing crates in an environmentally regulated (2.2 × 0.6 m) contained an area (2.2 × 0.5 m) for newborn pigs on each side, all diets were provided as a dry powder, and the sows received free access to water throughout the experimental period. After farrowing, daily feed allowance increased gradually, and sows had ad libitum access to feed by day four. They were fed diets containing 0 (CONT), cull chickpeas 15 % (CHP15), or cull chickpeas 30% (CHP30) for 28 days. The diets contained the same calculated levels of crude protein and metabolizable energy, and contained vitamins and minerals that exceeded the National Research Council (1998) recommendations; sows were fed three times daily. On day 28, piglets were weaned and performances of lactating sows and nursery piglets were recorded. All data in this experiment were analyzed in accordance with a completely randomized design. Results indicated that average daily feed intake (5.61, 5.59 and 5.46 kg for CONT, CHP15, and CHP30 respectively) of sows were not affected (P > 0.05) by different dietary. There was no difference (P > 0.05) in average body weight of piglets on the day of birth (1.35 vs. 1.30, and 1.32 kg) and day 28 (7.10, 6.80 and 6.92 kg) between treatments. The numbers of weaned piglets (10.65 on average) were not affected by treatments. It is concluded that the use of cull chickpea at 30% of the diet does not affect the productive performance of lactating sows.

Keywords: cull chickpea, lactating sow, performance, pigs

Procedia PDF Downloads 133
1766 The Applications of Four Fingers Theory: The Proof of 66 Acupoints under the Human Elbow and Knee

Authors: Chih-I. Tsai, Yu-Chien. Lin

Abstract:

Through experiences of clinical practices, it is discovered that locations on the body at a level of four fingerbreadth above and below the joints are the points at which muscles connect to tendons, and since the muscles and tendons possess opposite characteristics, muscles are full of blood but lack qi, while tendons are full of qi but lack blood, these points on our body become easily blocked. It is proposed that through doing acupuncture or creating localized pressure to the areas four fingerbreadths above and below our joints, with an elastic bandage, we could help the energy, also known as qi, to flow smoothly in our body and further improve our health. Based on the Four Fingers Theory, we understand that human height is 22 four fingerbreadths. In addition, qi and blood travel through 24 meridians, 50 times each day, and they flow through 6 cun with every human breath. We can also understand the average number of human heartbeats is 75 times per minute. And the function of qi-blood circulation system in Traditional Chinese Medicine is the same as the blood circulation in Western Medical Science. Informed by Four Fingers Theory, this study further examined its applications in acupuncture practices. The research question is how Four Fingers Theory proves what has been mentioned in Nei Jing that there are 66 acupoints under a human’s elbow and knee. In responding to the research question, there are 66 acupoints under a human’s elbow and knee. Four Fingers Theory facilitated the creation of the acupuncture naming and teaching system. It is expected to serve as an approachable and effective way to deliver knowledge of acupuncture to the public worldwide.

Keywords: four fingers theory, meridians circulation, 66 acupoints under human elbow and knee, acupuncture

Procedia PDF Downloads 286
1765 Ergonomics Sallow Recharge Well for Sustainable Ground Water Resources

Authors: Lilik Sudiajeng, Wiraga Wayan, Lanang Parwita I Gusti

Abstract:

This is the ongoing research started in 2013 with the final aim is to design the recharge wells both for housing and industry for ground water conservation in Bali - Indonesia. The research started in Denpasar Regency, one of the strategic areas in Bali. The research showed that there is some critical area of ground water resources, especially in north and west part of Denpasar Regency. It driven by the rapid increase of the tourism industry which is followed by the high rate of population, change of land use that leads to the decreasing of rain water catchment areas, and less awareness on preserve natural resources, including ground water. Focus Group Discussion concluded that in order to solve the problem of groundwater crisis, requires the contribution of all parties, started from making simple recharge well for housing. Because of the availability of land is limited and expensive, it is necessary to present an ergonomic shallow recharge well in accordance with the ability of the family or community. The ergonomics shallow recharge well is designed based on the data of hydrology and the characteristics of soil. The design is very flexible depending on the availability of land, environmentally friendly, energy efficient, culture-based, and affordable. To meet the recommended standard of ground water quality, then it equipped with a filtration and sedimentation ponds. Before design recharge wells is disseminated to the public, it is necessary to analyze the effectiveness of the wells to harvest and absorb rainwater into the ground.

Keywords: ergonomics, ground water resources, recharge well, sustainable

Procedia PDF Downloads 248
1764 Analysis of Accurate Direct-Estimation of the Maximum Power Point and Thermal Characteristics of High Concentration Photovoltaic Modules

Authors: Yan-Wen Wang, Chu-Yang Chou, Jen-Cheng Wang, Min-Sheng Liao, Hsuan-Hsiang Hsu, Cheng-Ying Chou, Chen-Kang Huang, Kun-Chang Kuo, Joe-Air Jiang

Abstract:

Performance-related parameters of high concentration photovoltaic (HCPV) modules (e.g. current and voltage) are required when estimating the maximum power point using numerical and approximation methods. The maximum power point on the characteristic curve for a photovoltaic module varies when temperature or solar radiation is different. It is also difficult to estimate the output performance and maximum power point (MPP) due to the special characteristics of HCPV modules. Based on the p-n junction semiconductor theory, a brand new and simple method is presented in this study to directly evaluate the MPP of HCPV modules. The MPP of HCPV modules can be determined from an irradiated I-V characteristic curve, because there is a non-linear relationship between the temperature of a solar cell and solar radiation. Numerical simulations and field tests are conducted to examine the characteristics of HCPV modules during maximum output power tracking. The performance of the presented method is evaluated by examining the dependence of temperature and irradiation intensity on the MPP characteristics of HCPV modules. These results show that the presented method allows HCPV modules to achieve their maximum power and perform power tracking under various operation conditions. A 0.1% error is found between the estimated and the real maximum power point.

Keywords: energy performance, high concentrated photovoltaic, maximum power point, p-n junction semiconductor

Procedia PDF Downloads 575
1763 Preparation of Ni, Mg, and Fe Ions Doped Carbon-Based Catalyst with Ordered Mesoporous Configuration for Catalyzing the Production of Green Diesel from Fatty Acid and Waste Cooking Oil

Authors: Ya-Ting Liao, Chien-Chang Huang

Abstract:

Green diesel is a renewable biofuel obtained from plant oil or fatty acid deoxygenation. Because the molecular structure of green diesel is similar to that of fossil fuel, green diesel can be directly used in present vehicle engines without blending with fossil fuel. In this study, mesoporous carbon-based catalysts with doped metal ions, such as Mg, Ni, or Fe, were prepared using co-polymers and gallic acid as molecular templates and carbon sources, respectively. The prepared catalysts were then applied to carry out the deoxygenation of fatty acid and waste cooking oil. To obtain the highest net energy from the produced green diesel, the catalyzed deoxygenation reaction and catalyst preparation processes were carried out under ambient conditions, respectively, to avoid using H₂ as a reagent and reducing agent. XRD, BET, SEM, EDS, FT-IR, and pyridine-IR characterized the composition and configuration of the prepared catalyst. The results display that the doped metal ions were well-dispersed in the carbon-based catalyst and the surface of the catalysts was rich in Lewis acid sites after the catalysts were calcined at the proper temperature. The pore size present on the catalyst was 9-11 nm. To catalyze the deoxygenation of fatty acid by the prepared catalysts at 320℃ under H₂-free conditions, high fatty acid conversion (99%) and high selectivity for hydrocarbons (78%) were obtained when the ratio of doped Ni to doped Mg was optimized.

Keywords: ordered mesoporous carbon, catalysts, hydrocarbons, deoxygenation

Procedia PDF Downloads 71
1762 Analysis of Pathogen Populations Occurring in Oilseed Rape Using DNA Sequencing Techniques

Authors: Elizabeth Starzycka-Korbas, Michal Starzycki, Wojciech Rybinski, Mirosława Dabert

Abstract:

For a few years, the populations of pathogenic fungi occurring in winter oilseed rape in Malyszyn were analyzed. Brassica napus L. in Poland and in the world is a source of energy for both the men (oil), and animals, as post-extraction middling, as well as a motor fuel (oil, biofuel) therefore studies of this type are very important. The species composition of pathogenic fungi can be an indicator of seed yield. The occurrence of oilseed rape pathogens during several years were analyzed using the sequencing method DNA ITS. The results were compared in the gene bank using the program NCBI / BLAST. In field conditions before harvest of oilseed rape presence of pathogens infesting B. napus has been assessed. For example, in 2015, 150 samples have been isolated and applied to PDA medium for the identification of belonging species. From all population has been selected mycelium of 83 isolates which were sequenced. Others (67 isolates) were pathogenic fungi of the genus Alternaria which are easily to recognize. The population of pathogenic species on oilseed rape have been identified after analyzing the DNA ITS and include: Leptosphaeria sp. 38 (L. maculans 25, L. biglobosa 13), Alternaria sp. 29, Fusarium sp. 3, Sclerotinia sclerotiorum 7, heterogeneous 6, total of 83 isolates. The genus Alternaria sp. fungi wear the largest share of B. napus pathogens in particular years. Another dangerous species for oilseed rape was Leptosphaeria sp. Populations of pathogens in each year were different. The number of pathogens occurring in the field and their composition is very important for breeders and farmers because of the possible selection of the most resistant genotypes for sowing in the next growing season.

Keywords: B. napus, DNA ITS Sequencing, pathogenic fungi, population

Procedia PDF Downloads 282
1761 A Five-Year Experience of Intensity Modulated Radiotherapy in Nasopharyngeal Carcinomas in Tunisia

Authors: Omar Nouri, Wafa Mnejja, Fatma Dhouib, Syrine Zouari, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Leila Farhat, Nejla Fourati, Jamel Daoud

Abstract:

Purpose and Objective: Intensity modulated radiation (IMRT) technique, associated with induction chemotherapy (IC) and/or concomitant chemotherapy (CC), is actually the recommended treatment modality for nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the therapeutic results and the patterns of relapse with this treatment protocol. Material and methods: A retrospective monocentric study of 145 patients with NPC treated between June 2016 and July 2021. All patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. The high-risk volume dose was 66.5 Gy in children. Survival analysis was performed according to the Kaplan-Meier method, and the Log-rank test was used to compare factors that may influence survival. Results: Median age was 48 years (11-80) with a sex ratio of 2.9. One hundred-twenty tumors (82.7%) were classified as stages III-IV according to the 2017 UICC TNM classification. Ten patients (6.9%) were metastatic at diagnosis. One hundred-thirty-five patient (93.1%) received IC, 104 of which (77%) were TPF-based (taxanes, cisplatin and 5 fluoro-uracil). One hundred-thirty-eight patient (95.2%) received CC, mostly cisplatin in 134 cases (97%). After a median follow-up of 50 months [22-82], 46 patients (31.7%) had a relapse: 12 (8.2%) experienced local and/or regional relapse after a median of 18 months [6-43], 29 (20%) experienced distant relapse after a median of 9 months [2-24] and 5 patients (3.4%) had both. Thirty-five patients (24.1%) died, including 5 (3.4%) from a cause other than their cancer. Three-year overall survival (OS), cancer specific survival, disease free survival, metastasis free survival and loco-regional free survival were respectively 78.1%, 81.3%, 67.8%, 74.5% and 88.1%. Anatomo-clinic factors predicting OS were age > 50 years (88.7 vs. 70.5%; p=0.004), diabetes history (81.2 vs. 66.7%; p=0.027), UICC N classification (100 vs. 95 vs. 77.5 vs. 68.8% respectively for N0, N1, N2 and N3; p=0.008), the practice of a lymph node biopsy (84.2 vs. 57%; p=0.05), and UICC TNM stages III-IV (93.8 vs. 73.6% respectively for stage I-II vs. III-IV; p=0.044). Therapeutic factors predicting OS were a number of CC courses (less than 4 courses: 65.8 vs. 86%; p=0.03, less than 5 courses: 71.5 vs. 89%; p=0.041), a weight loss > 10% during treatment (84.1 vs. 60.9%; p=0.021) and a total cumulative cisplatin dose, including IC and CC, < 380 mg/m² (64.4 vs. 87.6%; p=0.003). Radiotherapy delay and total duration did not significantly affect OS. No grade 3-4 late side effects were noted in the evaluable 127 patients (87.6%). The most common toxicity was dry mouth which was grade 2 in 47 cases (37%) and grade 1 in 55 cases (43.3%).Conclusion: IMRT for nasopharyngeal carcinoma granted a high loco-regional control rate for patients during the last five years. However, distant relapses remain frequent and conditionate the prognosis. We identified many anatomo-clinic and therapeutic prognosis factors. Therefore, high-risk patients require a more aggressive therapeutic approach, such as radiotherapy dose escalation or adding adjuvant chemotherapy.

Keywords: therapeutic results, prognostic factors, intensity-modulated radiotherapy, nasopharyngeal carcinoma

Procedia PDF Downloads 57
1760 High-Temperature Behavior of Boiler Steel by Friction Stir Processing

Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar

Abstract:

High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.

Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing

Procedia PDF Downloads 231
1759 Comparison of Nutritional Status and Tendency of Depression and Orthorexia Nervosa in Vegan Vegetarian and Omnivorous

Authors: E. Yeşil, M. Özgök, M. Özdemir, B. Köse

Abstract:

The aim of the present study was to compare nutritional status, tendency of depression and orthorexia nervosa in vegan, vegetarian and omnivorous. The sample consisted of 150 individuals (126 women, 24 men) who agreed to participate in the study between February and May of the year 2018. Fifty vegan, fifty vegetarian and fifty omnivore diet pattern were compared. In the first part, each participant was interviewed using a structured questionnaire to obtain demographic information about education, occupation and health conditions. In the second part Beck Depression Inventory (BDI) was used. In the third part ORTO-11 was used. In the fourth part, 24 Hours Dietary Record was used in order to determine the nutritional status of individuals. The vegans and vegetarians were interviewed about their diets. The mean body mass index of the vegan, vegetarian and omnivore were, 21,24 ± 3,25; 22,2 ± 4,1 and 22,8 ± 4,3 respectively (p > 0,05). The daily energy intakes of the vegan, vegetarian and omnivore diet were 1792,57 ± 784,8 kcal; 1691,9 ± 742,2 kcal and 1697,9 ± 695,6 kcal (p > 0.05). The mean BDI of the vegan, vegetarian and omnivore diet were 6,2 ± 6,2, 9,8 ± 10,1 and 8,8 ± 8,1, respectively (p > 0,05). The mean ORTO-11 of the vegan, vegetarian and omnivore diet were 25,9 ± 4,2, 27,2 ± 5,9 and 26,4 ± 5,3 (p > 0,05). There was a statistically significant correlation between BDI and ORTO-11 in vegan diet group (p: 0,01 r: 0,333). There was a positive correlation between BMI and BDI in the vegetarian group (p: 0,01 r: 0,363). Also in the vegetarian group; there was a negative correlation between age and ORTO-11 (p: 0,01 r: -0,316). A statistically significant negative correlation was found between waist circumference and ORTO-11 (p: 0,05 r: -0,316) in the omnivore diet group. Also there was a negative correlation between age and BDI (p: 0,05 r: -0,338) in this group. As a conclusion, positive correlation was found between BDI and ORTO-11 score of vegan participants. There were no differences between three groups in BDI or ORTO-11 score.

Keywords: depression, orthorexia nervosa, vegan, vegetarian

Procedia PDF Downloads 138
1758 Case Report: Ocular Helminth – In Unusual Site (Lens)

Authors: Chandra Shekhar Majumder, Shamsul Haque, Khondaker Anower Hossain, Rafiqul Islam

Abstract:

Introduction: Ocular helminths are parasites that infect the eye or its adnexa. They can be either motile worms or sessile worms that form cysts. These parasites require two hosts for their life cycle, a definite host (usually a human) and an intermediate host (usually an insect). While there have been reports of ocular helminths infecting various structures of the eye, including the anterior chamber and subconjunctival space, there is no previous record of such a case involving the lens. Research Aim: The aim of this case report is to present a rare case of ocular helminth infection in the lens and to contribute to the understanding of this unusual site of infection. Methodology: This study is a case report, presenting the details and findings of an 80-year-old retired policeman who presented with severe pain, redness, and vision loss in the left eye. The examination revealed the presence of a thread-like helminth in the lens. The data for this case report were collected through clinical examination and medical records of the patient. The findings were described and presented in a descriptive manner. No statistical analysis was conducted. Case report: An 80-year-old retired policeman attended the OPD, Faridpur Medical College Hospital with the complaints of severe pain, redness and gross dimness of vision of the left eye for 5 days. He had a history of diabetes mellitus and hypertension for 3 years. On examination, L/E visual acuity was PL only, moderate ciliary congestion, KP 2+, cells 2+ and posterior synechia from 5 to 7 O’clock position was found. Lens was opaque. A thread like helminth was found under the anterior of the lens. The worm was moving and changing its position during examination. On examination of R/E, visual acuity was 6/36 unaided, 6/18 with pinhole. There was lental opacity. Slit-lamp and fundus examination were within normal limit. Patient was admitted in Faridpur Medical College Hospital. Diabetes mellitus was controlled with insulin. ICCE with PI was done on the same day of admission under depomedrol coverage. The helminth was recovered from the lens. It was thread like, about 5 to 6 mm in length, 1 mm in width and pinkish in colour. The patient followed up after 7 days, VA was HM, mild ciliary congestion, few KPs and cells were present. Media was hazy due to vitreous opacity. The worm was sent to the department of Parasitology, NIPSOM, Dhaka for identification. Theoretical Importance: This case report contributes to the existing literature on ocular helminth infections by reporting a unique case involving the lens. It highlights the need for further research to understand the mechanism of entry of helminths in the lens. Conclusion: To the best of our knowledge, this is the first reported case of ocular helminth infection in the lens. The presence of the helminth in the lens raises interesting questions regarding its pathogenesis and entry mechanism. Further study and research are needed to explore these aspects. Ophthalmologists and parasitologists should be aware of the possibility of ocular helminth infections in unusual sites like the lens.

Keywords: helminth, lens, ocular, unusual

Procedia PDF Downloads 37
1757 The Effect of Non-Surgical Periodontal Therapy on Metabolic Control in Children

Authors: Areej Al-Khabbaz, Swapna Goerge, Majedah Abdul-Rasoul

Abstract:

Introduction: The most prevalent periodontal disease among children is gingivitis, and it usually becomes more severe in adolescence. A number of intervention studies suggested that resolution of periodontal inflammation can improve metabolic control in patients diagnosed with diabetes mellitus. Aim: to assess the effect of non-surgical periodontal therapy on glycemic control of children diagnosed with diabetes mellitus. Method: Twenty-eight children diagnosed with diabetes mellitus were recruited with established diagnosis diabetes for at least 1 year. Informed consent and child assent form were obtained from children and parents prior to enrolment. The dental examination for the participants was performed on the same week directly following their annual medical assessment. All patients had their glycosylated hemoglobin (HbA1c%) test one week prior to their annual medical and dental visit and 3 months following non-surgical periodontal therapy. All patients received a comprehensive periodontal examination The periodontal assessment included clinical attachment loss, bleeding on probing, plaque score, plaque index and gingival index. All patients were referred for non-surgical periodontal therapy, which included oral hygiene instruction and motivation followed by supra-gingival and subg-ingival scaling using ultrasonic and hand instruments. Statistical Analysis: Data were entered and analyzed using the Statistical Package for Social Science software (SPSS, Chicago, USA), version 18. Statistical analysis of clinical findings was performed to detect differences between the two groups in term of periodontal findings and HbA1c%. Binary logistic regression analysis was performed in order to examine which factors were significant in multivariate analysis after adjusting for confounding between effects. The regression model used the dependent variable ‘Improved glycemic control’, and the independent variables entered in the model were plaque index, gingival index, bleeding %, plaque Statistical significance was set at p < 0.05. Result: A total of 28 children. The mean age of the participants was 13.3±1.92 years. The study participants were divided into two groups; Compliant group (received dental scaling) and non-complaints group (received oral hygiene instructions only). No statistical difference was found between compliant and non-compliant group in age, gender distribution, oral hygiene practice and the level of diabetes control. There was a significant difference between compliant and non-compliant group in term of improvement of HBa1c before and after periodontal therapy. Mean gingival index was the only significant variable associated with improved glycemic control level. In conclusion, this study has demonstrated that non-surgical mechanical periodontal therapy can improve HbA1c% control. The result of this study confirmed that children with diabetes mellitus who are compliant to dental care and have routine professional scaling may have better metabolic control compared to diabetic children who are erratic with dental care.

Keywords: children, diabetes, metabolic control, periodontal therapy

Procedia PDF Downloads 153
1756 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 123