Search results for: solid waste disposal
3725 Nonparametric Path Analysis with a Truncated Spline Approach in Modeling Waste Management Behavior Patterns
Authors: Adji Achmad Rinaldo Fernandes, Usriatur Rohma
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best truncated spline nonparametric path function between linear and quadratic polynomial degrees with 1, 2, and 3 knot points and to determine the significance of estimating the best truncated spline nonparametric path function in the model of the effect of perceived benefits and perceived convenience on behavior to convert waste into economic value through the intention variable of changing people's mindset about waste using the t test statistic at the jackknife resampling stage. The data used in this study are primary data obtained from research grants. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3 knot points. In addition, the significance of the best truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, kuadratic, behavior to turn waste into economic value, jackknife resampling
Procedia PDF Downloads 523724 The Lean Manufacturing Practices in an Automotive Company Using Value Stream Mapping Technique
Authors: Seher Arslankaya, Merve Si̇mge Usuk
Abstract:
Lean manufacturing, which is based on the Toyota Production System, has focused on increasing the performance in various fields by eliminating the waste. By waste elimination, the lead time is reduced significantly and lean manufacturing provides companies with an important privilege under today's competitive conditions. The initial point of lean thinking is the value. This notion create of a specific product with specific properties for which the customer is ready to pay and which satisfies his needs within a specific time frame and at a specific price. Considering this, the final customer determines the value but the manufacturer creates this value of the product. The value stream is the whole set of activities required for each product. These activities may or may not be essential for the value. Through value stream mapping, all employees can see the sources of waste and develop future cases to eliminate it. This study focused on manufacturing to eliminate the waste which created a cost but did not create any value. The study was carried out at the Department of Assembly/Logistics at Toyota Motor Manufacturing Turkey from the automotive industry with a high product mix and variable demands. As a result of the value stream analysis, improvements are planned for the future cases. The process was improved by applying these suggestions.Keywords: lead time, lean manufacturing, performance improvement, value stream papping
Procedia PDF Downloads 3123723 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.Keywords: adsorption, dyes, fiber, valorization, wastewater
Procedia PDF Downloads 2903722 Implementation of Lean Manufacturing in Some Companies in Colombia: A Case Study
Authors: Natalia Marulanda, Henry González, Gonzalo León, Alejandro Hincapié
Abstract:
Continuous improvement tools are the result of a set of studies that developed theories and methodologies. These methodologies enable organizations to increase their levels of efficiency, effectiveness, and productivity. Based on these methodologies, lean manufacturing philosophy, which is based on the optimization of resources, waste disposal, and generation of value to products and services, was developed. Lean application has been massive globally, but Colombian companies have been made it incipiently. Therefore, the purpose of this article is to identify the impacts generated by the implementation of lean manufacturing tools in five companies located in Colombia and Medellín metropolitan area. It also seeks to make a comparison of the results obtained from the implementation of lean philosophy and Theory of Constraints. The methodology is qualitative and quantitative, is based on the case study interview from dialogue with the leaders of the processes that used lean tools. The most used tools by research companies are 5's with 100% and TPM with 80%. The less used tool is the synchronous production with 20%. The main reason for the implementation of lean was supply chain management with 83.3%. For the application of lean and TOC, we did not find significant differences between the impact, in terms of methodology, areas of application, staff initiatives, supply chain management, planning, and training.Keywords: business strategy, lean manufacturing, theory of constraints, supply chain
Procedia PDF Downloads 3553721 Sulfamethaxozole (SMX) Removal by Microwave-Assisted Heterogenous Fenton Reaction Involving Synthetic Clay (LDHS)
Authors: Chebli Derradji, Abdallah Bouguettoucha, Zoubir Manaa, S. Nacef, A. Amrane
Abstract:
Antibiotics are major pollutants of wastewater not only due to their stability in biological systems, but also due to their impact on public health. Their degradation by means of hydroxyl radicals generated through the application of microwave in the presence of hydrogen peroxide and two solid catalysts, iron-based synthetic clay (LDHs) and goethite (FeOOH) have been examined. A drastic reduction of the degradation yield was observed above pH 4, and hence the optimal conditions were found to be a pH of 3, 0.1 g/L of clay, a somewhat low amount of H2O2 (1.74 mmol/L) and a microwave intensity of 850 W. It should be observed that to maintain an almost constant temperature, a cooling with cold water was always applied between two microwaves running; and hence the ratio between microwave heating time and cooling time was 1. The obtained SMX degradation was 98.8 ± 0.2% after 30 minutes of microwave treatment. It should be observed that in the absence of the solid catalyst, LDHs, no SMX degradation was observed. From this, the use of microwave in the presence of a solid source of iron (LDHs) appears to be an efficient solution for the treatment of wastewater containing SMX.Keywords: microwave, fenton, heterogenous fenton, degradation, oxidation, antibiotics
Procedia PDF Downloads 2813720 "Gurza Incinerator" : Biomass Incinerator Powered by Empty Bunch of Palm Oil Fruits as Electrical Biomass Base Development
Authors: Andi Ismanto
Abstract:
Indonesia is the largest palm oil producer in the world. The increasing number of palm oil extensification in Indonesia started on 2000-2011. Based on preliminary figures from the Directorate General of Plantation, palm oil area in Indonesia until 2011 is about 8.91 million hectares.On 2011 production of palm oil CPO reaches 22.51 million tons. In the other hands, the increasing palm oil production has impact to environment. The Empty Bunch of Palm Oil (EBPO)waste was increased to 20 million tons in 2009. Utilization of waste EBPO currently only used as an organic fertilizer for plants. But, it was not a good solution, because TKKS that used as organic compost has high content of carbon and hydrogen compound. The EBPO waste has potential used as fuel by gasification because it has short time of decomposition. So, the process will be more efficient in time. Utilization of urban wastehas been created using an incinerator used as a source of electrical energy for household.Usually, waste burning process by incinerator is using diesel fuel and kerosene. It is certainly less effective and not environment friendly, considering the waste incineration process using Incinerator tools are continuously. Considering biomass is a renewable source of energy and the world's energy system must be switch from an energy based on fossil resources into the energy based on renewable resources, the "Gurza Incinerator": Design Build Powerful Biomass Incinerator Empty Bunch of Palm Oil (EBPO) as Elecrical Biomass Base Development, a renewable future technology. The tools is using EBPO waste as source of burning to burn garbage inside the Incinerator hopper. EBPO waste will be processed by means of gasification. Gasification isa process to produce gases that can be used as fuel for electrical power. Hopefully, this technology could be a renewable future energy and also as starting point of electrical biomass base development.Keywords: incinerator, biomass, empty bunch palm oil, electrical energy
Procedia PDF Downloads 4853719 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes
Authors: Omolola A. Tajelawi, Hari L. Garbharran
Abstract:
Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses
Procedia PDF Downloads 3373718 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions
Authors: Walid M. Adel, Liang Guo-Zhu
Abstract:
To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, strain rate
Procedia PDF Downloads 2333717 Re-Use of Waste Marble in Producing Green Concrete
Authors: Hasan Şahan Arel
Abstract:
In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO3 and SiO2 present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO2 emissions by 12% and also lowering the costs from US$40/m3 to US$33/m3.Keywords: cement production, concrete, CO2 emission, marble, mechanical properties
Procedia PDF Downloads 3163716 Exploring the Factors Affecting the Dependability of Mobile Devices in the Current World
Authors: Mayowa A. Sofowora, Seraphim D. Eyono Obono
Abstract:
In recent times the level of advancement in electronics and manufacturing technologies for portable electronic devices, especially for mobile devices such as cell phones, smartphones, personal digital assistants and tablet computers is unprecedented. Mobile devices have become indispensable to individuals, and businesses all over the world. The high level of manufacturing and production of mobile devices has led to the rapid release of newer and sleeker models with new features and capabilities. However, these newer models therefore render older models obsolete, and this pushes people to frequently replace their devices. The drawback of such frequent replacements is that a large number of devices are disposed and they end up as e-waste. The fact that e-waste constitutes a major hazard to human health and to the environment is the motivation behind this study whose aim is to develop a model of possible factors that affects the dependability of mobile devices which in turn leads to the obsolescence of these devices.Keywords: dependability, mobile devices, obsolescence, e-waste
Procedia PDF Downloads 3153715 Assessment of the Potential of Fuel-derived Rice Husk Ash as Pozzolanic Material
Authors: Jesha Faye T. Librea, Leslie Joy L. Diaz
Abstract:
Fuel-derived rice husk ash (fRHA) is a waste material from industries employing rice husk as a biomass fuel which, on the downside, causes disposal and environmental problems. To mitigate this, the fRHA was evaluated for use in other applications such as a pozzolanic material for the construction industry. In this study, the assessment of the potential of fRHA as pozzolanic supplementary cementitious material was conducted by determining the chemical and physical properties of fRHA according to ASTM C618, evaluating the fineness of the material according to ASTM C430, and determining its pozzolanic activity using Luxan Method. The material was found to have a high amorphous silica content of around 95.82 % with traces of alkaline and carbon impurities. The retained carbon residue is 7.18 %, which is within the limit of the specifications for natural pozzolans indicated in ASTM C618. The fineness of the fRHA is at 88.88 % retained at a 45-micron sieve, which, however, exceeded the limit of 34 %. This large particle size distribution was found to affect the pozzolanic activity of the fRHA. This was shown in the Luxan test, where the fRHA was identified as non-pozzolan due to its low pozzolanic activity index of 0.262. Thus, further processing must be done to the fRHA to pass the required ASTM fineness, have a higher pozzolanic activity index, and fully qualify as a pozzolanic material.Keywords: rice husk ash, pozzolanic, fuel-derived ash, supplementary cementitious material
Procedia PDF Downloads 693714 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair
Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro
Abstract:
The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear
Procedia PDF Downloads 5033713 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation
Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo
Abstract:
Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.Keywords: particle size, RESS, solid oil particle, supercritical carbon dioxide,
Procedia PDF Downloads 3353712 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique
Authors: Stefano Iannello, Massimiliano Materazzi
Abstract:
Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray
Procedia PDF Downloads 1723711 Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector.Keywords: alternative fuels, CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), gas value chain
Procedia PDF Downloads 2013710 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines
Authors: Soumyadip Banerjee, Tanmoy Maity
Abstract:
The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.Keywords: waste to energy, wind power generation, exhaust air, power recovery
Procedia PDF Downloads 363709 Performance and Emissions Analysis of Diesel Engine with Bio-Diesel of Waste Cooking Oils
Authors: Mukesh Kumar, Onkar Singh, Naveen Kumar, Amar Deep
Abstract:
The waste cooking oil is taken as feedstock for biodiesel production. For this research, waste cooking oil is collected from many hotels and restaurants, and then biodiesel is prepared for experimentation purpose. The prepared biodiesel is mixed with mineral diesel in the proportion of 10%, 20%, and 30% to perform tests on a diesel engine. The experimental analysis is carried out at different load conditions to analyze the impact of the blending ratio on the performance and emission parameters. When the blending proportion of biodiesel is increased, then the highest pressure reduces due to the fall in the calorific value of the blended mixture. Experimental analysis shows a promising decrease in nitrogen oxides (NOx). A mixture of 20% biodiesel and mineral diesel is the best negotiation, mixing ratio, and beyond that, a remarkable reduction in the outcome of the performance has been observed.Keywords: alternative sources, diesel engine, emissions, performance
Procedia PDF Downloads 1803708 Si Doped HfO₂ Anti-Ferroelectric Thin Films for Energy Storage and Solid State Cooling Applications
Authors: Faizan Ali, Dayu Zhou, Xiaohua Liu, Tony Schenk, Johannes Muller, Uwe Schroeder
Abstract:
Recently, the ferroelectricity (FE) and anti-ferroelectricity (AFE) introduced in so-called 'high-k dielectric' HfO₂ material incorporated with various dopants (Si, Gd, Y, Sr, Gd, Al, and La, etc.), HfO₂-ZrO₂ solid-solution, Al or Si-doped Hf₀.₅Zr₀.₅O₂ and even undoped HfO₂ thin films. The origin of FE property was attributed to the formation of a non-centrosymmetric orthorhombic (o) phase of space group Pbc2₁. To the author’s best knowledge, AFE property was observed only in HfO₂ doped with a certain amount of Si, Al, HfₓZr₁₋ₓO₂ (0 ≤ x < 0.5), and in Si or Al-doped Hf₀.₅Zr₀.₅O₂. The origin of the anti-ferroelectric behavior is an electric field induced phase transition between the non-polar tetragonal (t) and the polar ferroelectric orthorhombic (o) phase. Compared with the significant amount of studies for the FE properties in the context of non-volatile memories, AFE properties of HfO₂-based and HfₓZr₁₋ₓO₂ (HZO) thin films have just received attention recently for energy-related applications such as electrocaloric cooling, pyroelectric energy harvesting, and electrostatic energy storage. In this work, energy storage and solid state cooling properties of Si-doped HfO₂ AFE thin films are investigated. Owing to the high field-induced polarization and slim double hysteresis, an extremely large Energy storage density (ESD) value of 61.2 J cm⁻³ is achieved at 4.5 MV cm⁻¹ with high efficiency of ~65%. In addition, the ESD and efficiency exhibit robust thermal stability in 210-400 K temperature range and excellent endurance up to 10⁹ times of charge/discharge cycling at a very high electric field of 4.0 MV cm⁻¹. Similarly, for solid-state cooling, the maximum adiabatic temperature change (Keywords: thin films, energy storage, endurance, solid state cooling, anti-ferroelectric
Procedia PDF Downloads 1293707 Simulation and Design of an Aerospace Mission Powered by “Candy” Type Fuel Engines
Authors: N. Hernández Huertas, F. Rojas Mora
Abstract:
Sounding rockets are aerospace vehicles that were developed in the mid-20th century, and since then numerous investigations have been executed with the aim of innovate in this type of technology. However, the costs associated to the production of this type of technology are usually quite high, and therefore the challenge that exists today is to be able to reduce them. In this way, the main objective of this document is to present the design process of a Colombian aerospace mission capable to reach the thermosphere using low-cost “Candy” type solid fuel engines. This mission is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), which is an undergraduate and postgraduate research group at Universidad de los Andes (Bogotá, Colombia), dedicated to incurring in this type of technology. In this way, the investigations that have been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, have allowed the production of engines powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry. In this way, following the engineering iterative design methodology was possible to design a 2-stage sounding rocket with 1 solid fuel engine in each one, which was then simulated in RockSim V9.0 software and reached an apogee of approximately 150 km above sea level. Similarly, a speed equal to 5 Mach was obtained, which after performing a finite element analysis, it was shown that the rocket is strong enough to be able to withstand such speeds. Under these premises, it was demonstrated that it is possible to build a high-power aerospace mission at low cost, using Candy-type solid fuel engines. For this reason, the feasibility of carrying out similar missions clearly depends on the ability to replicate the engines in the best way, since as mentioned above, the design of the rocket is adequate to reach supersonic speeds and reach space. Consequently, with a team of at least 3 members, the mission can be obtained in less than 3 months. Therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry.Keywords: aerospace missions, Candy type solid propellant engines, design of solid rockets, experimental rocketry, low costs missions
Procedia PDF Downloads 1113706 Potential of Irish Orientated Strand Board in Bending Active Structures
Authors: Matt Collins, Bernadette O'Regan, Tom Cosgrove
Abstract:
To determine the potential of a low cost Irish engineered timber product to replace high cost solid timber for use in bending active structures such as gridshells a single Irish engineered timber product in the form of orientated strand board (OSB) was selected. A comparative study of OSB and solid timber was carried out to determine the optimum properties that make a material suitable for use in gridshells. Three parameters were identified to be relevant in the selection of a material for gridshells. These three parameters are the strength to stiffness ratio, the flexural stiffness of commercially available sections, and the variability of material and section properties. It is shown that when comparing OSB against solid timber, OSB is a more suitable material for use in gridshells that are at the smaller end of the scale and that have tight radii of curvature. Typically, for solid timber materials, stiffness is used as an indicator for strength and engineered timber is no different. Thus, low flexural stiffness would mean low flexural strength. However, when it comes to bending active gridshells, OSB offers a significant advantage. By the addition of multiple layers, an increased section size is created, thus endowing the structure with higher stiffness and higher strength from initial low stiffness and low strength materials while still maintaining tight radii of curvature. This allows OSB to compete with solid timber on large scale gridshells. Additionally, a preliminary sustainability study using a set of sustainability indicators was carried out to determine the relative sustainability of building a large-scale gridshell in Ireland with a primary focus on economic viability but a mention is also given to social and environmental aspects. For this, the Savill garden gridshell in the UK was used as the functional unit with the sustainability of the structural roof skeleton constructed from UK larch solid timber being compared with the same structure using Irish OSB. Albeit that the advantages of using commercially available OSB in a bending active gridshell are marginal and limited to specific gridshell applications, further study into an optimised engineered timber product is merited.Keywords: bending active gridshells, high end timber structures, low cost material, sustainability
Procedia PDF Downloads 3823705 Microstructure and Mechanical Properties of Mg-Zn Alloys
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hardness
Procedia PDF Downloads 2793704 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles
Authors: Siamack A. Shirazi, Farzin Darihaki
Abstract:
Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid
Procedia PDF Downloads 1693703 Working Towards More Sustainable Food Waste: A Circularity Perspective
Authors: Rocío González-Sánchez, Sara Alonso-Muñoz
Abstract:
Food waste implies an inefficient management of the final stages in the food supply chain. Referring to Sustainable Development Goals (SDGs) by United Nations, the SDG 12.3 proposes to halve per capita food waste at the retail and consumer level and to reduce food losses. In the linear system, food waste is disposed and, to a lesser extent, recovery or reused after consumption. With the negative effect on stocks, the current food consumption system is based on ‘produce, take and dispose’ which put huge pressure on raw materials and energy resources. Therefore, greater focus on the circular management of food waste will mitigate the environmental, economic, and social impact, following a Triple Bottom Line (TBL) approach and consequently the SDGs fulfilment. A mixed methodology is used. A total sample of 311 publications from Web of Science database were retrieved. Firstly, it is performed a bibliometric analysis by SciMat and VOSviewer software to visualise scientific maps about co-occurrence analysis of keywords and co-citation analysis of journals. This allows for the understanding of the knowledge structure about this field, and to detect research issues. Secondly, a systematic literature review is conducted regarding the most influential articles in years 2020 and 2021, coinciding with the most representative period under study. Thirdly, to support the development of this field it is proposed an agenda according to the research gaps identified about circular economy and food waste management. Results reveal that the main topics are related to waste valorisation, the application of waste-to-energy circular model and the anaerobic digestion process towards fossil fuels replacement. It is underlined that the use of food as a source of clean energy is receiving greater attention in the literature. There is a lack of studies about stakeholders’ awareness and training. In addition, available data would facilitate the implementation of circular principles for food waste recovery, management, and valorisation. The research agenda suggests that circularity networks with suppliers and customers need to be deepened. Technological tools for the implementation of sustainable business models, and greater emphasis on social aspects through educational campaigns are also required. This paper contributes on the application of circularity to food waste management by abandoning inefficient linear models. Shedding light about trending topics in the field guiding to scholars for future research opportunities.Keywords: bibliometric analysis, circular economy, food waste management, future research lines
Procedia PDF Downloads 1133702 Production of Friendly Environmental Material as Building Element from Plastic Waste
Authors: Dheyaa Wajid Abbood, Mohanad Salih Farhan, Awadh E. Ajeel
Abstract:
The basic goal of this study is the production of cheap building elements from plastic waste. environmentally friendly and of good thermal insulation. The study depends on the addition of plastic waste as aggregates to the mixes of concrete at different percentages by weight (12 percentages) to produce lightweight aggregate concrete the density (1095 - 1892) kg/m3.The experimental work includes 120 specimens of concrete 72 cubes (150*150*150)mm, 48 cylinder (150*300) mm. The results obtained for concrete were for local raw materials without any additional materials or treatment. The mechanical and thermal properties determined were (compressive strength, static modulus of elasticity, density, thermal conductivity (k), specific heat capacity (Cp), thermal expansion (α) after (7) days of curing at 20 0C. The increase in amount of plastic waste decreases the density of concrete which leads to decrease in the mechanical and to improvement in thermal properties. The average measured static modulus of elasticity are found less than the predicted static modulus of elasticity and splitting tensile strength (ACI 318-2008 and ACI 213R-2003). All cubes specimens when exposed to heat at (200, 400, 600 0C), the compressive strength of all mixes decreases gradually at 600 0C, the strength of lightweight aggregate concrete were disintegrated. Lightweight aggregate concrete is about 25% lighter than normal concrete in dead load, and to the improve the properties of thermal insulation of building blocks.Keywords: LWAC, plastic waste, thermal property, thermal insulation
Procedia PDF Downloads 4293701 Studies on Pre-ignition Chamber Dynamics of Solid Rockets with Different Port Geometries
Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar
Abstract:
In this paper numerical studies have been carried out to examine the starting transient flow features of high-performance solid propellant rocket motors with different port geometries but with same propellant loading density. Numerical computations have been carried out using a 3D SST k-ω turbulence model. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations are employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create pre-ignition thrust oscillations due to flow unsteadiness and recirculation. Under these conditions the convective flux to the surface of the propellant will be enhanced, which will create reattachment point far downstream of the transition region and it will create a situation for secondary ignition and formation of multiple-flame fronts. As a result the effective time required for the complete burning surface area to be ignited comes down drastically giving rise to a high pressurization rate (dp/dt) in the second phase of starting transient. This in effect could lead to starting thrust oscillations and eventually a hard start of the solid rocket motor. We have also observed that the igniter temperature fluctuations will be diminished rapidly and will reach the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the thrust oscillations and unexpected thrust spike often observed in solid rockets with non-uniform ports are presumably contributed due to the joint effects of the geometry dependent driving forces, transient burning and the chamber gas dynamics forces. We also concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or pressure/thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.Keywords: ignition transient, solid rockets, starting transient, thrust transient
Procedia PDF Downloads 4513700 Challenges in Adopting 3R Concept in the Heritage Building Restoration
Authors: H. H. Goh, K. C. Goh, T. W. Seow, N. S. Said, S. E. P. Ang
Abstract:
Malaysia is rich with historic buildings, particularly in Penang and Malacca states. Restoration activities are increasingly important as these states are recognized under UNESCO World Heritage Sites. Restoration activities help to maintain the uniqueness and value of a heritage building. However, increasing in restoration activities has resulted in large quantities of waste. To cope with this problem, the 3R concept (reduce, reuse and recycle) is introduced. The 3R concept is one of the waste management hierarchies. This concept is still yet to apply in the building restoration industry compared to the construction industry. Therefore, this study aims to promote the 3R concept in the heritage building restoration industry. This study aims to examine the importance of 3R concept and to identify challenges in applying the 3R concept in the heritage building restoration industry. This study focused on contractors and consultants who are involved in heritage restoration projects in Penang. Literature review and interviews helps to reach the research objective. Data that obtained is analyzed by using content analysis. For the research, application of 3R concept is important to conserve natural resources and reduce pollution problems. However, limited space to organise waste is the obstruction during the implementation of this concept. In conclusion, the 3R concept plays an important role in promoting environmental conservation and helping in reducing the construction wasteKeywords: 3R Concept, heritage building, restoration activities, building science
Procedia PDF Downloads 3143699 Multi-Tooled Robotic Hand for Tele-Operation of Explosive Devices
Authors: Faik Derya Ince, Ugur Topgul, Alp Gunay, Can Bayoglu, Dante J. Dorantes-Gonzalez
Abstract:
Explosive attacks are arguably the most lethal threat that may occur in terrorist attacks. In order to counteract this issue, explosive ordnance disposal operators put their lives on the line to dispose of a possible improvised explosive device. Robots can make the disposal process more accurately and saving human lives. For this purpose, there is a demand for more accurate and dexterous manipulating robotic hands that can be teleoperated from a distance. The aim of this project is to design a robotic hand that contains two active and two passive DOF for each finger, as well as a minimum set of tools for mechanical cutting and screw driving within the same robotic hand. Both hand and toolset, are teleoperated from a distance from a haptic robotic glove in order to manipulate dangerous objects such as improvised explosive devices. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the robotic hand and toolset design. Novel, dexterous and robust solutions for the fingers were obtained, and six servo motors are used in total to remotely control the multi-tooled robotic hand. This project is still undergoing and presents currents results. Future research steps are also presented.Keywords: Explosive Manipulation, Robotic Hand, Tele-Operation, Tool Integration
Procedia PDF Downloads 1433698 Viscoelastic Properties of Sn-15%Pb Measured in an Oscillation Test
Authors: Gerardo Sanjuan Sanjuan, Ángel Enrique Chavéz Castellanos
Abstract:
The knowledge of the rheological behavior of partially solidified metal alloy is an important issue when modeling and simulation of die filling in semisolid processes. Many experiments for like steady state, the step change in shear rate tests, shear stress ramps have been carried out leading that semi-solid alloys exhibit shear thinning, thixotropic behavior and yield stress. More advanced investigation gives evidence some viscoelastic features can be observed. The viscoelastic properties of materials are determinate by transient or dynamic methods; unfortunately, sparse information exists about oscillation experiments. The aim of this present work is to use small amplitude oscillatory tests for knowledge properties such as G´ and G´´. These properties allow providing information about materials structure. For this purpose, we investigated tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. The experiments were performed with parallel plates rheometer AR-G2. Initially, the liquid alloy is cooled down to the semisolid range, a specific temperature to guarantee a constant fraction solid. Oscillation was performed within the linear viscoelastic regime with a strain sweep. So, the loss modulus G´´, the storage modulus G´ and the loss angle (δ) was monitored. In addition a frequency sweep at a strain below the critical strain for characterized its structure. This provides more information about the interactions among solid particles on a liquid matrix. After testing, the sample was removed then cooled, sectioned and examined metallographically. These experiments demonstrate that the viscoelasticity is sensitive to the solid fraction, and is strongly influenced by the shape and size of particles solid.Keywords: rheology, semisolid alloys, thixotropic, viscoelasticity
Procedia PDF Downloads 3783697 The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer
Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Oros B. Ivana, Kecić S. Vesna
Abstract:
The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ions removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ions was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ions. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ions due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ions removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ions removal (adsorption efficiency is 92.8%) from a waste printing developer.Keywords: adsorption efficiency, clayey pellet, metal ions, waste printing developer
Procedia PDF Downloads 3013696 Cat Stool as an Additive Aggregate to Garden Bricks
Authors: Mary Joy B. Amoguis, Alonah Jane D. Labtic, Hyna Wary Namoca, Aira Jane V. Original
Abstract:
Animal waste has been rapidly increasing due to the growing animal population and the lack of innovative waste management practices. In a country like the Philippines, animal waste is rampant. This study aims to minimize animal waste by producing garden bricks using cat stool as an additive. The research study analyzes different levels of concentration to determine the most efficient combination in terms of compressive strength and durability of cat stool as an additive to garden bricks. The researcher's first collects the cat stool and incinerates the different concentrations. The first concentration is 25% cat stool and 75% cement mixture. The second concentration is 50% cat stool and 50% cement mixture. And the third concentration is 75% cat stool and 25% cement mixture. The researchers analyze the statistical data using one-way ANOVA, and the statistical analysis revealed a significant difference compared to the controlled variable. The research findings show an inversely proportional relationship: the higher the concentration of cat stool additive, the lower the compressive strength of the bricks, and the lower the concentration of cat stool additive, the higher the compressive strength of the bricks.Keywords: cat stool, garden bricks, cement, concentrations, animal wastes, compressive strength, durability, one-way ANOVA, additive, incineration, aggregates, stray cats
Procedia PDF Downloads 65