Search results for: organic coating and duplex systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12013

Search results for: organic coating and duplex systems

11053 Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk

Authors: Siti Rohana Mohd Yatim, Ku Halim Ku Hamid, Kamariah Noor Ismail, Zulkifli Abdul Rashid

Abstract:

The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health.

Keywords: volatile organic compounds, decomposition process, food waste, health risk

Procedia PDF Downloads 512
11052 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions

Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev

Abstract:

Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.

Keywords: air-electronic, geometrical parameters, improvement, measurement systems

Procedia PDF Downloads 222
11051 Protective Coating Layers via Phosphazene Compounds for Stabilizing Silicon Anode Materials

Authors: Adjmal Ghaur, Christoph Peschel, Iris Dienwiebel, Lukas Haneke, Leilei Du , Laurin Profanter, Tobias Placke, Martin Winter

Abstract:

In recent years, lithium-ion batteries (LIBs)are widely used in electric vehicles (EVs) and mobile energy storage devices (ESDs), which has led to higher requirements for energy density. To fulfill these requirements, tremendous attention has been paid to design advanced LIBs with various siliconactive materials as alternative negative electrodes to replace graphite (372 mAh g⁻¹)due to their high theoretical gravimetric capacity (4200mAh g⁻¹). However, silicon as potential anode material suffers from huge volume changes during charging and discharging and has poor electronicconductivity which negatively impacts the long-term performance and preventshigh silicon contents from practical application. Additionally, an unstable crystalline silicon structure tends to pulverization during the (de)lithiation process. To compensate for the volume changes, alleviate pulverization, and maintain high electronicconductivity, silicon-doped graphite composites with protecting coating layers are a promising approach. In this context, phosphazene compounds are investigated concerning their silicon protecting properties in silicon-doped graphite composites. In detail, electrochemical performance measurements in pouch full-cells(NCM523||SiOx/C), supressing gas formation properties, and post-mortem analyzes were carried out to characterize phosphazene compounds as additive materials. The introduction of the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between FEC and phosphazene compounds which accelerate the durability of silicon particles and results in enhanced electrochemical performance.

Keywords: silicon, phosphazene, solid electrolyte interphase, electrolyte, gasmeasurements

Procedia PDF Downloads 161
11050 Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413

Authors: Rajib Mia, Badam Singh Kushvah

Abstract:

The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories.

Keywords: exoplanetary systems, lagrangian points, periodic orbit, restricted three body problem, stability

Procedia PDF Downloads 427
11049 Synthesis of 5-Substituted 1H-Tetrazoles in Deep Eutectic Solvent

Authors: Swapnil A. Padvi, Dipak S. Dalal

Abstract:

The chemistry of tetrazoles has been grown tremendously in the past few years because tetrazoles are important and useful class of heterocyclic compounds which have a widespread application such as anticancer, antimicrobial, analgesics, antibacterial, antifungal, antihypertensive, and anti-allergic drugs in medicinal chemistry. Furthermore, tetrazoles have application in material sciences as explosives, rocket propellants, and in information recording systems. In addition to this, they have a wide range of application in coordination chemistry as a ligand. Deep eutectic solvents (DES) have emerged over the current decade as a novel class of green reaction media and applied in various fields of sciences because of their unique physical and chemical properties similar to the ionic liquids such as low vapor pressure, non-volatility, high thermal stability and recyclability. In addition, the reactants of DES are cheaply available, low-toxic, and biodegradable, which makes them predominantly required for large-scale applications effectively in industrial production. Herein we report the [2+3] cycloaddition reaction of organic nitriles with sodium azide affords the corresponding 5-substituted 1H-tetrazoles in six different types of choline chloride based deep eutectic solvents under mild reaction condition. Choline chloride: ZnCl2 (1:2) showed the best results for the synthesis of 5-substituted 1 H-tetrazoles. This method reduces the disadvantages such as: the use of toxic metals and expensive reagents, drastic reaction conditions and the presence of dangerous hydrazoic acid. The approach provides environment-friendly, short reaction times, good to excellent yields; safe process and simple workup make this method an attractive and useful contribution to present green organic synthesis of 5-substituted-1H-tetrazoles. All synthesized compounds were characterized by IR, 1H NMR, 13C NMR and Mass spectroscopy. DES can be recovered and reused three times with very little loss in activity.

Keywords: click chemistry, choline chloride, green chemistry, deep eutectic solvent, tetrazoles

Procedia PDF Downloads 226
11048 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis

Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas

Abstract:

Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.

Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux

Procedia PDF Downloads 128
11047 Reducing the Cooking Time of Bambara Groundnut (BGN)

Authors: Auswell Amfo-Antiri, Esther Eshun, Theresa A. Amu

Abstract:

Cooking Bambara groundnut (Bambara beans) is time and energy-consuming. Over time, some substances have been used to help reduce cooking time and save energy. This experimental study was carried out to find ways of reducing the cooking time of Bambara groundnut using selected organic substances. Twenty grams (20g) each of fresh pawpaw leaves, guava leaves, ginger, onion, and palm kernel were cooked with five samples of 200g of the creamy variety of raw Bambara groundnut. A control was cooked without any organic substance added. All six samples were cooked with equal quantities of water (4L); the gas mark used for cooking the samples was marked 5, the highest for the largest burner, using the same cooking pot. Gas matter. The control sample used 192 minutes to cook thoroughly. The ginger-treated sample (AET02) had the shortest cooking time of 145 minutes, followed by the onion-treated sample (AET05), with a cooking time of 157 minutes. The sample cooked with Palm kernel (AET06) and Pawpaw (AET04) used 172 minutes and 174 minutes, respectively, while sample AET03, cooked with Guava, used 185 minutes for cooking. The difference in cooking time for the sample treated with ginger (AET02) and onion (AET05) was 47 minutes and 35 minutes, respectively, as compared with the control. The comparison between Control and Pawpaw produced [p=0.163>0.05]; Control and Ginger yielded [p=0.006<0.05]; Control and Kernel resulted in [p=0.128>0.05]; Control and Guava resulted in [p=0.560>0.05]. The study concluded that ginger and onions comparatively reduced the cooking time for Bambara ground nut appreciably. The study recommended that ginger and onions could be used to reduce the cooking time of Bambara groundnut.

Keywords: cooking time, organic substances, ginger, onions, pawpaw leaves, guava leaves, bambara groundnut

Procedia PDF Downloads 75
11046 Evaluation of Chromium Fortified - Parboiled Rice Coated with Herbal Extracts: Cooking Quality and Sensory Properties

Authors: Wisnu Adi Yulianto, Agus Slamet, Sri Luwihana, Septian Albar Dwi Suprayogi

Abstract:

Parboiled rice was developed to produce rice, which has a low glycemic index for diabetics. However, diabetics also have a chromium (Cr) deficiency. Thus, it is important to fortify rice with Cr to increase the Cr content. Moreover, parboiled rice becomes rancid easily and has a musty odor, rendering the rice unfavorable. Natural herbs such as pandan leaves (Pandanus amaryllifolius Roxb.), bay leaves (Syzygium polyanthum [Wigh] Walp) and cinnamon bark powder (Cinnamomon cassia) are commonly added to food as aroma enhancers. Previous research has shown that these herbs could improve insulin sensitivity. The purpose of this study was to evaluate the effect of herbal extract coatings on the cooking quality and the preference level of chromium fortified - parboiled rice (CFPR). The rice grain variety used for this experiment was Ciherang and the fortificant was CrCl3. The three herbal extracts used for coating the CFPR were cinnamon, pandan and bay leaf, with concentration variations of 3%, 6%, and 9% (w/w) for each of the extracts. The samples were analyzed for their alkali spreading value, cooking time, elongation, water uptake ratio, solid loss, colour and lightness; and their sensory properties were determined by means of an organoleptic test. The research showed that coating the CFPR with pandan and cinnamon extracts at a concentration of 3% each produced a preferred CFPR. When coated with those herbal extracts the CFPR had the following cooking quality properties: alkali spreading value 5 (intermediate gelatinization temperature), cooking time, 26-27 min, color value, 14.95-15.00, lightness, 42.30 – 44.06, elongation, 1.53 – 1.54, water uptake ratio , 4.05-4.06, and solid loss, 0.09/100 g – 0.13 g/100 g.

Keywords: bay leaves, chromium, cinnamon, pandan leaves, parboiled rice

Procedia PDF Downloads 452
11045 Topological Analyses of Unstructured Peer to Peer Systems: A Survey

Authors: Hend Alrasheed

Abstract:

Due to their different properties that have led to avoid several limitations of classic client/server systems, there has been a great interest in the development and the improvement of different peer to peer systems. Understanding the properties of complex peer to peer networks is essential for their future improvements. It was shown that the performances of peer to peer protocols are directly related to their underlying topologies. Therefore, multiple efforts have analyzed the topologies of different peer to peer systems. This study presents an overview of major findings of close experimental analyses to different topologies of three unstructured peer to peer systems: BitTorrent, Gnutella, and FreeNet.

Keywords: peer to peer networks, network topology, graph diameter, clustering coefficient, small-world property, random graph, degree distribution

Procedia PDF Downloads 376
11044 Isolation, Characterization and Optimization of Alkalophilic and Thermotolerant Lipase from Bacillus subtilis Strain

Authors: Indu Bhushan Sharma, Rashmi Saraswat

Abstract:

The thermotolerant, solvent stable and alkalophilic lipase producing bacterial strain was isolated from the water sample of the foothills of Trikuta Mountain in Kakryal (Reasi district) in Jammu and Kashmir, India. The lipase-producing microorganisms were screened using tributyrin agar plates. The selected microbe was optimized for maximum lipase production by subjecting to various carbon and nitrogen sources, incubation period and inoculum size. The selected strain was identified as Bacillus subtilis strain kakrayal_1 (BSK_1) using 16S rRNA sequence analysis. Effect of pH, temperature, metal ions, detergents and organic solvents were studied on lipase activity. Lipase was found to be stable over a pH range of 6.0 to 9.0 and exhibited maximum activity at pH 8. Lipolytic activity was highest at 37°C and the enzyme activity remained at 60°C for 24hrs, hence, established as thermo-tolerant. Production of lipase was significantly induced by vegetable oil and the best nitrogen source was found to be peptone. The isolated Bacillus lipase was stimulated by pre-treatment with Mn2+, Ca2+, K+, Zn2+, and Fe2+. Lipase was stable in detergents such as triton X 100, tween 20 and Tween 80. The 100% ethyl acetate enhanced lipase activity whereas, lipase activity were found to be stable in Hexane. The optimization resulted in 4 fold increase in lipase production. Bacillus lipases are ‘generally recognized as safe’ (GRAS) and are industrially interesting. The inducible alkaline, thermo-tolerant lipase exhibited the ability to be stable in detergents and organic solvents. This could be further researched as a potential biocatalyst for industrial applications such as biotransformation, detergent formulation, bioremediation and organic synthesis.

Keywords: bacillus, lipase, thermotolerant, alkalophilic

Procedia PDF Downloads 250
11043 Investigating the Feasibility of Berry Production in Central Oregon under Protected and Unprotected Culture

Authors: Clare S. Sullivan

Abstract:

The high desert of central Oregon, USA is a challenging growing environment: short growing season (70-100 days); average annual precipitation of 280 mm; drastic swings in diurnal temperatures; possibility of frost any time of year; and sandy soils low in organic matter. Despite strong demand, there is almost no fruit grown in central Oregon due to potential yield loss caused by early and late frosts. Elsewhere in the USA, protected culture (i.e., high tunnels) has been used to extend fruit production seasons and improve yields. In central Oregon, high tunnels are used to grow multiple high-value vegetable crops, and farmers are unlikely to plant a perennial crop in a high tunnel unless proven profitable. In May 2019, two berry trials were established on a farm in Alfalfa, OR, to evaluate raspberry and strawberry yield, season length, and fruit quality in protected (high tunnels) vs. unprotected culture (open field). The main objective was to determine whether high tunnel berry production is a viable enterprise for the region. Each trial was arranged using a split-plot design. The main factor was the production system (high tunnel vs. open field), and the replicated, subplot factor was berry variety. Four day-neutral strawberry varieties and four primocane-bearing raspberry varieties were planted for the study and were managed using organic practices. Berries were harvested once a week early in the season, and twice a week as production increased. Harvested berries were separated into ‘marketable’ and ‘unmarketable’ in order to calculate percent cull. First-year results revealed berry yield and quality differences between varieties and production systems. Strawberry marketable yield and berry fruit size increased significantly in the high tunnel compared to the field; percent yield increase ranged from 7-46% by variety. Evie 2 was the highest yielding strawberry, although berry quality was lower than other berries. Raspberry marketable yield and berry fruit size tended to increase in the high tunnel compared to the field, although variety had a more significant effect. Joan J was the highest yielding raspberry and out-yielded the other varieties by 250% outdoor and 350% indoor. Overall, strawberry and raspberry yields tended to improve in high tunnels as compared to the field, but data from a second year will help determine whether high tunnel investment is worthwhile. It is expected that the production system will have more of an effect on berry yield and season length for second-year plants in 2020.

Keywords: berries, high tunnel, local food, organic

Procedia PDF Downloads 112
11042 Investigation of Fumaric Acid Radiolysis Using Gamma Irradiation

Authors: Wafa Jahouach-Rabai, Khouloud Ouerghi, Zohra Azzouz-Berriche, Faouzi Hosni

Abstract:

Widely used organic products in the pharmaceutical industry have been detected in environmental systems, essentially carboxylic acids. In this purpose, the degradation efficiency of these contaminants was evaluated using an advanced oxidation process (AOP), namely ionization process as an alternative to conventional water treatment technologies. This process permitted the generation of radical reactions to directly degrade organic pollutants in wastewater. In fact, gamma irradiation of aqueous solutions produces several reactive radicals, essentially hydroxyl radical (OH), to destroy recalcitrant pollutants. Different concentrations of aqueous solutions of Fumaric acid (FA) were considered in this study (0.1-1 mmol/L), which were treated by irradiation doses from 1 to 15 kGy with 6.1 kGy/h rate by ionizing system in pilot scale (⁶⁰Co irradiator). Variations of main parameters influencing degradation efficiency versus absorbed doses were released in the aim to optimize total mineralization of considered pollutants. Preliminary degradation pathway until complete mineralization into CO₂ has been suggested based on detection of residual degradation derivatives using different techniques, namely high performance liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy (EPR). Results revealed total destruction of treated compound, which improve the efficiency of this process in water remediation. We investigated the reactivity of hydroxyl radicals generated by irradiation on dicarboxylic acid (FA) in aqueous solutions, leading to its degradation into other smaller molecules. In fact, gamma irradiation of FA leads to the formation of hydroxylated intermediates such as hydroxycarbonyl radical which were identified by EPR spectroscopy. Finally, pilot plant irradiation facilities improved the applicability of radiation technology on large scale.

Keywords: AOP, radiolysis, fumaric acid, gamma irradiation, hydroxyl radical, EPR, HPLC

Procedia PDF Downloads 168
11041 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 147
11040 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor

Authors: Junior B. N. Adohinzin, Ling Xu

Abstract:

Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen. Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.

Keywords: membrane bioreactor (MBR), moving bed biofilm reactor (MBBR), nutrients removal, simultaneous nitrification and denitrification

Procedia PDF Downloads 342
11039 Dynamic Analysis of Differential Systems with Infinite Memory and Damping

Authors: Kun-Peng Jin, Jin Liang, Ti-Jun Xiao

Abstract:

In this work, we are concerned with the dynamic behaviors of solutions to some coupled systems with infinite memory, which consist of two partial differential equations where only one partial differential equation has damping. Such coupled systems are good mathematical models to describe the deformation and stress characteristics of some viscoelastic materials affected by temperature change, external forces, and other factors. By using the theory of operator semigroups, we give wellposedness results for the Cauchy problem for these coupled systems. Then, with the help of some auxiliary functions and lemmas, which are specially designed for overcoming difficulties in the proof, we show that the solutions of the coupled systems decay to zero in a strong way under a few basic conditions. The results in this dynamic analysis of coupled systems are generalizations of many existing results.

Keywords: dynamic analysis, coupled system, infinite memory, damping.

Procedia PDF Downloads 213
11038 Large-Area Film Fabrication for Perovskite Solar Cell via Scalable Thermal-Assisted and Meniscus-Guided Bar Coating

Authors: Gizachew Belay Adugna

Abstract:

Scalable and cost-effective device fabrication techniques are urgent to commercialize the perovskite solar cells (PSCs) for the next photovoltaic (PV) technology. Herein, large-area films of perovskite and hole-transporting materials (HTMs) were developed via a rapid and scalable thermal-assisting bar-coating process in the open air. High-quality and large crystalline grains of MAPbI₃ with homogenous morphology and thickness were obtained on a large-area (10 cm×10 cm) solution-sheared mp-TiO₂/c-TiO₂/FTO substrate. Encouraging photovoltaic performance of 19.02% was achieved for devices fabricated from the bar-coated perovskite film compared to that from the small-scale spin-coated film (17.27%) with 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as an HTM whereas a higher power conversion efficiency of 19.89% with improved device stability was achieved by capping a fluorinated (HYC-2) HTM as an alternative to the traditional spiro-OMeTAD. The fluorinated exhibited better molecular packing in the HTM film and deeper HOMO level compared to the nonfluorinated counterpart; thus, improved hole mobility and overall charge extraction in the device were demonstrated. Furthermore, excellent film processability and an impressive PCE of 18.52% were achieved in the large area bar-coated HYC-2 prepared sequentially on the perovskite underlayer in the open atmosphere, compared to the bar-coated spiro-OMeTAD/perovskite (17.51%). This all-solution approach demonstrated the feasibility of high-quality films on a large-area substrate for PSCs, which is a vital step toward industrial-scale PV production.

Keywords: perovskite solar cells, hole transporting materials, up-scaling process, power conversion efficiency

Procedia PDF Downloads 58
11037 High-performance Supercapacitors Enabled by Highly-porous Date Stone-derived Activated Carbon and Organic Redox Gel Electrolyte

Authors: Abubakar Dahiru Shuaibu, Atif Saeed Alzahrani, Md. Abdul Aziz

Abstract:

Construction of eco-benign, cost effective, and high-performance supercapacitors with improved electrolytes and hierarchical porous electrodes is necessary for effective energy storage. In this study, a gel type organic redox electrolyte made of polyvinyl alcohol (PVA)-H2SO4 and an organic redox molecule, anthraquinone (PVA-H2SO4-AQ), was prepared by simple solution casting method and was used to construct a symmetric supercapacitor (SSC) with a high BET surface area (1612 m²/g) using activated carbon made from date stones (DSAC). The DSAC was synthesized by simple carbonization method followed by activation with potassium hydroxide. The SSC exhibit a high specific capacitance of 126.5 F/g at 0.5 A/g, as well as a high energy density of 17.5 Wh/kg at a power density of 250 W/kg with high capacitance retention (87%) after 1000 GCD cycles. The present research suggests that adding anthraquinone to a PVA-H2SO4 gel electrolyte improves the performance of the fabricated device significantly as compared to using pristine PVA-H₂SO₄ or 1M H₂SO₄ electrolytes. The research also presents a promising approach for the development of sustainable and eco-benign materials for energy storage applications. The use of date stone waste as a precursor material for activated carbon electrodes presents an opportunity for cost-effective and sustainable energy storage. Overall, the findings of this research have important implications for the future design and fabrication of high-performance and cost-effective supercapacitors

Keywords: date stone, activated carbon, anthraquinone, redox gel-electrolyte, supercapacitor

Procedia PDF Downloads 76
11036 Gap between Knowledge and Behaviour in Recycling Domestic Solid Waste: Evidence from Manipal, India

Authors: Vidya Pratap, Seena Biju, Keshavdev A.

Abstract:

In the educational town of Manipal (located in southern India) households dispose their wastes without segregation. Mixed wastes (organic, inorganic and hazardous items) are collected either by private collectors or by the local municipal body in trucks and taken to dump yards. These collectors select certain recyclables from the collected trash and sell them to scrap merchants to earn some extra money. Rag pickers play a major role in picking up card board boxes, glass bottles and milk sachets from dump yards and public areas and scrap iron from construction sites for recycling. In keeping with the Indian Prime Minister’s mission of Swachh Bharat (A Clean India), the local municipal administration is taking efforts to ensure segregation of domestic waste at source. With this in mind, each household in a residential area in Manipal was given two buckets – for wet and dry wastes (wet waste referred to organic waste while dry waste included recyclable and hazardous items). A study was conducted in this locality covering a cluster of 145 households to assess the residents’ knowledge of recyclable, organic and hazardous items commonly disposed by households. Another objective of this research was to evaluate the extent to which the residents actually dispose their wastes appropriately. Questionnaires were self-administered to a member of each household with the assistance of individuals speaking the local language whenever needed. Respondents’ knowledge of whether an item was organic, inorganic or hazardous was captured through a questionnaire containing a list of 50 common items. Their behaviour was captured by asking how they disposed these items. Results show that more than 70% of respondents are aware that banana and orange peels, potato skin, egg shells and dried leaves are organic; similarly, more than 70% of them consider newspapers, notebook and printed paper are recyclable. Less than 65% of respondents are aware that plastic bags and covers and plastic bottles are recyclable. However, the results of the respondents’ recycling behaviour is less impressive. Fewer than 35% of respondents recycle card board boxes, milk sachets and glass bottles. Unfortunately, since plastic items like plastic bags and covers and plastic bottles are not accepted by scrap merchants, they are not recycled. This study shows that the local municipal authorities must find ways to recycle plastic into products, alternate fuel etc.

Keywords: behaviour, knowledge, plastic waste management, recyclables

Procedia PDF Downloads 170
11035 Quantifying Temporal Variation of Volatile Organic Compounds and Their Ozone Forming Potential at Rural Atmosphere in Delhi

Authors: Amit Kumar, Bhupendra Pratap Singh, Manoj Singh, Monika Punia, Krishan Kumar, V. K. Jain

Abstract:

Ambient concentrations of volatile organic compounds (VOCs) were investigated in order to find out temporal variations and their ozone forming potentials (OFP) at rural site in Delhi National Capital Region during summer 2013. Sampling was performed for continuous five days, to identify the differences in working days and weekend VOCs concentration levels. Sampling and analytical procedure for VOCs were done using National Institute for Occupational Safety and Health (NIOSH) standard method. On each sampling day, VOCs samples were collected for 3-hours in the morning, afternoon and evening. There has been observed a noticeable contrast in the concentration of VOCs levels between working days and weekend. However, most of the VOCs showed diurnal fluctuations with higher concentrations in the morning and evening as compared to afternoon which might be due to change in meteorology. The results showed that mean toluene/benzene and m-/p-xylene/benzene ratios were higher in the afternoon while it was lower during morning and evening. The relative contribution of the VOCs to ozone formation, total propylene equivalent concentrations and OFP were calculated. Toluene was the most contributing organic contaminant to ozone formation as well as ambient VOCs concentrations. Results obtained in current study demonstrate that ozone formation at rural site in Delhi is probably limited by the emissions of VOCs.

Keywords: VOCs, rural, NIOSH, ozone forming potential, propylene equivalent concentration

Procedia PDF Downloads 524
11034 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 220
11033 Assessment of Sustainable Sanitation Systems: Urban Slums

Authors: Ali Hamza, Bertug Akintug

Abstract:

Having an appropriate plan of sanitation systems is one of the critical issues for global urban slums. Poor sanitation systems in urban slums outcomes an enhanced vulnerability of severe diseases, low hygiene and environmental risks within our environment. Mentioning human excreta being one of the most highly risked pollutants among all the other major contributors of sanitation pollutants is increasing public health risks and amounts of pollution loads within the slum environment. Higher population growth, urge of urbanization and illegal status of urban slums makes it impossible to increase the level of performance of sanitation systems in urban slums. According to Sustainable Sanitation Alliance, design parameters for sanitation systems were set up to ensure sustainable environment. This paper reviews the characteristics of human excreta at present, treatment technologies, and procedures of processes that can be adopted feasibly in the urban slums. Keeping these factors as our significant concern of study, assessment of sustainable sanitation systems is done using sanitation chain concept in accordance to the pre-determined sustainability indicators and criteria which reflect the potential and feasible application of waterless sanitation systems bringing sustainable sanitation systems in urban slums.

Keywords: human excreta, sanitation chain, sustainable sanitation systems, urban slums

Procedia PDF Downloads 307
11032 Possibility of Membrane Filtration to Treatment of Effluent from Digestate

Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska

Abstract:

The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.

Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.

Procedia PDF Downloads 349
11031 Multishape Task Scheduling Algorithms for Real Time Micro-Controller Based Application

Authors: Ankur Jain, W. Wilfred Godfrey

Abstract:

Embedded systems are usually microcontroller-based systems that represent a class of reliable and dependable dedicated computer systems designed for specific purposes. Micro-controllers are used in most electronic devices in an endless variety of ways. Some micro-controller-based embedded systems are required to respond to external events in the shortest possible time and such systems are known as real-time embedded systems. So in multitasking system there is a need of task Scheduling,there are various scheduling algorithms like Fixed priority Scheduling(FPS),Earliest deadline first(EDF), Rate Monotonic(RM), Deadline Monotonic(DM),etc have been researched. In this Report various conventional algorithms have been reviewed and analyzed, these algorithms consists of single shape task, A new Multishape scheduling algorithms has been proposed and implemented and analyzed.

Keywords: dm, edf, embedded systems, fixed priority, microcontroller, rtos, rm, scheduling algorithms

Procedia PDF Downloads 398
11030 Effect of Pre-Aging and Aging Parameters on Mechanical Behavior of Be-Treated 7075 Aluminum Alloys: Experimental Correlation using Minitab Software

Authors: M. Tash, S. Alkahtani

Abstract:

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Duplex aging treatments were carried out for the as solution treated (SHT) specimens (pre-aged at different time and temperature followed by high temperature aging). A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of pre-aging and aging treatment parameters and any interactions between them on the mechanical properties of 7075 alloys. A mathematical models are developed to relate the alloy ultimate tensile strength, yield strength and % elongation with the different pre-aging and aging parameters i.e. Pre-aging Temperature (PA T0C), Pre-aging time (PA t h), Aging temperature (AT0C), Aging time (At h), to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of be-treated 7075 alloys.

Keywords: aging heat Treatment, tensile properties, be-treated cast Al-Mg-Zn (7075) alloys, experimental correlation

Procedia PDF Downloads 269
11029 Fabrication of Superhydrophobic Galvanized Steel by Sintering Zinc Nanopowder

Authors: Francisco Javier Montes Ruiz-Cabello, Guillermo Guerrero-Vacas, Sara Bermudez-Romero, Miguel Cabrerizo Vilchez, Miguel Angel Rodriguez-Valverde

Abstract:

Galvanized steel is one of the widespread metallic materials used in industry. It consists on a iron-based alloy (steel) coated with a layer of zinc with variable thickness. The zinc is aimed to prevent the inner steel from corrosion and staining. Its production is cheaper than the stainless steel and this is the reason why it is employed in the construction of materials with large dimensions in aeronautics, urban/ industrial edification or ski-resorts. In all these applications, turning the natural hydrophilicity of the metal surface into superhydrophobicity is particularly interesting and would open a wide variety of additional functionalities. However, producing a superhydrophobic surface on galvanized steel may be a very difficult task. Superhydrophobic surfaces are characterized by a specific surface texture which is reached either by coating the surface with a material that incorporates such texture, or by conducting several roughening methods. Since galvanized steel is already a coated material, the incorporation of a second coating may be undesired. On the other hand, the methods that are recurrently used to incorporate the surface texture leading to superhydrophobicity in metals are aggressive and may damage their surface. In this work, we used a novel strategy which goal is to produce superhydrophobic galvanized steel by a two-step non-aggressive process. The first process is aimed to create a hierarchical structure by incorporating zinc nanoparticles sintered on the surface at a temperature slightly lower than the zinc’s melting point. The second one is a hydrophobization by a thick fluoropolymer layer deposition. The wettability of the samples is characterized in terms of tilting plate and bouncing drop experiments, while the roughness is analyzed by confocal microscopy. The durability of the produced surfaces was also explored.

Keywords: galvanaized steel, superhydrophobic surfaces, sintering nanoparticles, zinc nanopowder

Procedia PDF Downloads 144
11028 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil

Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru

Abstract:

The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.

Keywords: ecology, soil, organic waste, fertility

Procedia PDF Downloads 75
11027 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality

Procedia PDF Downloads 279
11026 Microbes in Aquaculture: New Trends and Application in Freshwater Fish Culture

Authors: Muhammad Younis Laghari

Abstract:

Microbial communities play the most important role in aquatic ecosystems. These microbes have a great role in fish growth and aquaculture production. Unfortunately, the farmers are unaware of these useful creatures. Nowadays, the trend of fish farming is developed to re-circulatory aquaculture system (RAS) to increase production and reduce the investment/management cost to increase the profit. However, sometimes, it has been observed that even the growth of fish is decreased in RAS without apparent changes in water quality. There is a great importance of microorganisms in aquaculture, where they occur naturally. However, they can be added artificially by applying different roles. Even these microbes play an important role in the degradation of organic matter and recycling nutrients, along with nutritional support to fish. Even some microorganisms may protect fish and larvae against diseases. But if not managed/utilized properly, they may cause to infect or kill the fish and their larvae. However, manipulating the microbes and monitoring them in aquaculture systems hold great potential to assess and improve the water quality as well as to control the development of microbial infections. While there is an utmost need for research to determine the microbiomes of healthy aquaculture systems, we also need to develop authentic methods for the successful manipulation of microbes as well as engineer these microbiomes. Hence, we should develop a plan to utilize and get full advantage from these microbial interactions for the successful management of aquaculture through advanced research and technology.

Keywords: aquaculture, ecology system, degradation, microbes, nutrient recycling, water quality

Procedia PDF Downloads 78
11025 Organic Fertilizers Mitigate Microplastics Toxicity in Agricultural Soil

Authors: Ghulam Abbas Shah, Maqsood Sadiq, Ahsan Yasin

Abstract:

Massive global plastic production, combined with poor degradation and recycling, leads to significant environmental pollution from microplastics, whose effects on plants in the soil remain understudied. Besides, effective mitigation strategies and their impact on ammonia (NH₃) emissions under varying fertilizer management practices remains sketchy. Therefore, the objectives of the study were (i) to determine the impact of organic fertilizers on the toxicity of microplastics in sorghum and physicochemical characteristics of microplastics-contaminated soil and (ii) to assess the impacts of these fertilizers on NH₃ emissions from this soil. A field experiment was conducted using sorghum as a test crop. Treatments were: (i) Control (C), (ii) Microplastics (MP), (iii) Inorganic fertilizer (IF), (iv) MPIF, (v) Farmyard manure (FM), (vi) MPFM, (vii) Biochar (BC), and (viii) MPBC, arranged in a randomized complete block design (RCBD) with three replicates. Microplastics of polyvinyl chloride (PVC) were applied at a rate of 1.5 tons ha-¹, and all fertilizers were applied at the recommended dose of 90 kg N ha-¹. Soil sampling was done before sowing and after harvesting the sorghum, with samples analyzed for chemical properties and microbial biomass. Crop growth and yield attributes were measured. In a parallel pot experiment, NH₃ emissions were measured using passive flux samplers over 72 hours following the application of treatments similar to those used in the field experiment. Application of MPFM, MPBC and MPIF reduced soil mineral nitrogen by 8, 20 and 38% compared to their sole treatments, respectively. Microbial biomass carbon (MBC) was reduced by 19, 25 and 59% in MPIF, MPBC and MPFM as compared to their sole application, respectively. Similarly, the respective reduction in microbial biomass nitrogen (MBN) was 10, 27 and 66%. The toxicity of microplastics was mitigated by MPFM and MPBC, each with only a 5% reduction in grain yield of sorghum relative to their sole treatments. The differences in nitrogen uptake between BC vs. MPBC, FM vs. MPFM, and IF vs. MPIF were 8, 10, and 12 kg N ha-¹, respectively, indicating that organic fertilizers mitigate microplastic toxicity in the soil. NH₃ emission was reduced by 5, 11 and 20% after application of MPFM, MPBC and MPIF than their sole treatments, respectively. The study concludes that organic fertilizers such as FM and BC can effectively mitigate the toxicity of microplastics in soil, leading to improved crop growth and yield.

Keywords: microplastics, soil characteristics, crop n uptake, biochar, NH₃ emissions

Procedia PDF Downloads 34
11024 Improvement of Activity of β-galactosidase from Kluyveromyces lactis via Immobilization on Polyethylenimine-Chitosan

Authors: Carlos A. C. G. Neto, Natan C. G. e Silva , Thaís de O. Costa, Luciana R. B. Gonçalves, Maria V. P. Rocha

Abstract:

β-galactosidases (E.C. 3.2.1.23) are enzymes that have attracted by catalyzing the hydrolysis of lactose and in producing galacto-oligosaccharides by favoring transgalactosylation reactions. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers is a promising alternative to enhance the stability of the biocatalysts, among which polyethylenimine (PEI) stands out. PEI has certain properties, such as being a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases. Besides that, protects them from environmental variations. The use of chitosan support coated with PEI could improve the catalytic efficiency of β-galactosidase from Kluyveromyces lactis in the transgalactosylation reaction for the production of prebiotics, such as lactulose since this strain is more effective in the hydrolysis reaction. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from K. lactis immobilized on chitosan-coated with PEI, determining the immobilization parameters, its operational and thermal stability, and then to apply it in hydrolysis and transgalactolisation reactions to produce lactulose using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% (v/v) glutaraldehyde and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg protein per gram support. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey supplemented with fructose at a ratio of 1:2 lactose/fructose, totaling 200 g/L. Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6 with 0.1 mM MnCl2. The biocatalyst whose support was coated was named CHI_GLU_PEI_GAL, and the one that was not coated was named CHI_GLU_GAL. The coating of the support with PEI considerably improved the parameters of immobilization. The immobilization yield increased from 56.53% to 97.45%, biocatalyst activity from 38.93 U/g to 95.26 U/g and the efficiency from 3.51% to 6.0% for uncoated and coated support, respectively. The biocatalyst CHI_GLU_PEI_GAL was better than CHI_GLU_GAL in the hydrolysis of lactose and production of lactulose, converting 97.05% of lactose at 5 min of reaction and producing 7.60 g/L lactulose in the same time interval. QUI_GLU_PEI_GAL biocatalyst was stable in the hydrolysis reactions of lactose during the 10 cycles evaluated, converting 73.45% lactose even after the tenth cycle, and in the lactulose production was stable until the fifth cycle evaluated, producing 10.95 g/L lactulose. However, the thermal stability of CHI_GLU_GAL biocatalyst was superior, with a half-life time 6 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (CHI_GLU_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as, the catalytic action of the enzyme. Besides that, this process can be economically viable due to the use of an industrial residue as a substrate.

Keywords: β-galactosidase, immobilization, kluyveromyces lactis, lactulose, polyethylenimine, transgalactosylation reaction, whey

Procedia PDF Downloads 108