Search results for: crop disease detection
6955 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine
Procedia PDF Downloads 5946954 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 2156953 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing
Procedia PDF Downloads 2246952 Conservation Agriculture Practice in Bangladesh: Farmers’ Socioeconomic Status and Soil Environment Perspective
Authors: Mohammad T. Uddin, Aurup R. Dhar
Abstract:
The study was conducted to assess the impact of conservation agriculture practice on farmers’ socioeconomic condition and soil environmental quality in Bangladesh. A total of 450 (i.e., 50 focal, 150 proximal and 250 control) farmers from five districts were selected for this study. Descriptive statistics like sum, averages, percentages, etc. were calculated to evaluate the socioeconomic data. Using Enyedi’s crop productivity index, it was found that the crop productivity of focal, proximal and control farmers was increased by 0.9, 1.2 and 1.3 percent, respectively. The result of DID (Difference-in-difference) analysis indicated that the impact of conservation agriculture practice on farmers’ average annual income was significant. Multidimensional poverty index (MPI) indicates that poverty in terms of deprivation of health, education and living standards was decreased; and a remarkable improvement in farmers’ socioeconomic status was found after adopting conservation agriculture practice. Most of the focal and proximal farmers stated about increased soil environmental condition where majority of control farmers stated about constant environmental condition in this regard. The Probit model reveals that minimum tillage operation, permanent organic soil cover, and application of compost and vermicompost were found significant factors affecting soil environmental quality under conservation agriculture. Input support, motivation, training programmes and extension services are recommended to implement in order to raise the awareness and enrich the knowledge of the farmers on conservation agriculture practice.Keywords: conservation agriculture, crop productivity, socioeconomic status, soil environment quality
Procedia PDF Downloads 3276951 Finding the Longest Common Subsequence in Normal DNA and Disease Affected Human DNA Using Self Organizing Map
Authors: G. Tamilpavai, C. Vishnuppriya
Abstract:
Bioinformatics is an active research area which combines biological matter as well as computer science research. The longest common subsequence (LCSS) is one of the major challenges in various bioinformatics applications. The computation of the LCSS plays a vital role in biomedicine and also it is an essential task in DNA sequence analysis in genetics. It includes wide range of disease diagnosing steps. The objective of this proposed system is to find the longest common subsequence which presents in a normal and various disease affected human DNA sequence using Self Organizing Map (SOM) and LCSS. The human DNA sequence is collected from National Center for Biotechnology Information (NCBI) database. Initially, the human DNA sequence is separated as k-mer using k-mer separation rule. Mean and median values are calculated from each separated k-mer. These calculated values are fed as input to the Self Organizing Map for the purpose of clustering. Then obtained clusters are given to the Longest Common Sub Sequence (LCSS) algorithm for finding common subsequence which presents in every clusters. It returns nx(n-1)/2 subsequence for each cluster where n is number of k-mer in a specific cluster. Experimental outcomes of this proposed system produce the possible number of longest common subsequence of normal and disease affected DNA data. Thus the proposed system will be a good initiative aid for finding disease causing sequence. Finally, performance analysis is carried out for different DNA sequences. The obtained values show that the retrieval of LCSS is done in a shorter time than the existing system.Keywords: clustering, k-mers, longest common subsequence, SOM
Procedia PDF Downloads 2676950 Transarterial Chemoembolization (TACE) in Hepatocellular Carcinoma (HCC)
Authors: Ilirian Laçi, Alketa Spahiu
Abstract:
Modality of treatment in hepatocellular carcinoma (HCC) patients depends on the stage of the disease. The Barcelona Clinic Liver Cancer Classification (BCLC) is the preferred staging system. There are many patients initially present with intermediate-stage disease. For these patients, transarterial chemoembolization (TACE) is the treatment of choice. The differences in individual factors that are not captured by the BCLC framework, such as the tumor growth pattern, degree of hypervascularity, and vascular supply, complicate further evaluation of these patients. Because of these differences, not all patients benefit equally from TACE. Several tools have been devised to aid the decision-making process, which have shown promising initial results but have failed external evaluation and have not been translated to the clinic aspects. Criteria for treatment decisions in daily clinical practice are needed in all stages of the disease.Keywords: hepatocellular carcinoma, transarterial chemoembolization, TACE, liver
Procedia PDF Downloads 986949 Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop
Authors: S. Athiralakshmi, B.E. Bhojaraja, U. Pruthviraj
Abstract:
In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS.Keywords: FLAASH, Hyperspectral remote sensing, Linear Spectral Unmixing, Spectral Angle Mapper Classifier.
Procedia PDF Downloads 5196948 Quantitative Evaluation on Community Perceptions of Sanitation and Hygiene in Rural Guatemala
Authors: Akudo Ejelonu, Sarah Willig, J. Anthony Sauder, Heather Murphy, Frances Shofer
Abstract:
Background: The high prevalence of diarrheal diseases in the village of Tzununá, Guatemala is linked to lack of sanitation facilities and handwashing practices. Diarrheal diseases are preventable and improved access to latrines, hygiene education and clean water may improve sanitation by reducing the spread of disease. Objective: Between May 2015-January 2017, the University of Pennsylvania Chapter of Engineers Without Border (PennEWB) and local partners designed an intervention to reduce diarrheal disease by building pour flush latrines in 50 individual households and providing education on the importance of handwashing practice. Design/Methods: Through convenient sampling, we surveyed 45 households to evaluate the community’s knowledge of diarrheal disease, handwashing practices, and maintenance of the latrines. Results: 92% of the study participants experienced decrease of new cases of diarrheal disease after receiving a latrine. Only 11% washed their hands after defecating in the latrine. There was gap in understanding the health outcome of latrine sanitation and handwashing education. The respondents did not connect the reduction of diarrheal disease with latrine use and maintenance. Instead, they associated their motivation for latrine use with aesthetics, proximity to their home, ease and comfort, and reduction of shame. We recommend that PennEWB adopt UNICEF or WHO education on hand washing practice. Conclusion: Social interaction and social pressure drove the household use of latrines. The latrines are being valued and cleaned. The education that the residents received did not target norms and behaviors. Latrines could be used to create a new social norm that supports behavioral change.Keywords: diarrheal disease, latrine, open defecation, water, sanitation and hygiene
Procedia PDF Downloads 1576947 Advanced Magnetic Resonance Imaging in Differentiation of Neurocysticercosis and Tuberculoma
Authors: Rajendra N. Ghosh, Paramjeet Singh, Niranjan Khandelwal, Sameer Vyas, Pratibha Singhi, Naveen Sankhyan
Abstract:
Background: Tuberculoma and neurocysticercosis (NCC) are two most common intracranial infections in developing country. They often simulate on neuroimaging and in absence of typical imaging features cause significant diagnostic dilemmas. Differentiation is extremely important to avoid empirical exposure to antitubercular medications or nonspecific treatment causing disease progression. Purpose: Better characterization and differentiation of CNS tuberculoma and NCC by using morphological and multiple advanced functional MRI. Material and Methods: Total fifty untreated patients (20 tuberculoma and 30 NCC) were evaluated by using conventional and advanced sequences like CISS, SWI, DWI, DTI, Magnetization transfer (MT), T2Relaxometry (T2R), Perfusion and Spectroscopy. rCBV,ADC,FA,T2R,MTR values and metabolite ratios were calculated from lesion and normal parenchyma. Diagnosis was confirmed by typical biochemical, histopathological and imaging features. Results: CISS was most useful sequence for scolex detection (90% on CISS vs 73% on routine sequences). SWI showed higher scolex detection ability. Mean values of ADC, FA,T2R from core and rCBV from wall of lesion were significantly different in tuberculoma and NCC (P < 0.05). Mean values of rCBV, ADC, T2R and FA for tuberculoma and NCC were (3.36 vs1.3), (1.09x10⁻³vs 1.4x10⁻³), (0.13 x10⁻³ vs 0.09 x10⁻³) and (88.65 ms vs 272.3 ms) respectively. Tuberculomas showed high lipid peak, more choline and lower creatinine with Ch/Cr ratio > 1. T2R value was most significant parameter for differentiation. Cut off values for each significant parameters have proposed. Conclusion: Quantitative MRI in combination with conventional sequences can better characterize and differentiate similar appearing tuberculoma and NCC and may be incorporated in routine protocol which may avoid brain biopsy and empirical therapy.Keywords: advanced functional MRI, differentiation, neurcysticercosis, tuberculoma
Procedia PDF Downloads 5686946 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 856945 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques
Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar
Abstract:
This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI
Procedia PDF Downloads 956944 Frequency of Alloimmunization in Sickle Cell Disease Patients in Africa: A Systematic Review with Meta-analysis
Authors: Theresa Ukamaka Nwagha, Angela Ogechukwu Ugwu, Martins Nweke
Abstract:
Background and Objectives: Blood transfusion is an effective and proven treatment for some severe complications of sickle cell disease. Recurrent transfusions have put patients with sickle cell disease at risk of developing antibodies against the various antigens they were exposed to. This study aims to investigate the frequency of red blood cell alloimmunization in patients with sickle disease in Africa. Materials and Methods: This is a systematic review of peer-reviewed literature published in English. The review was conducted consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. Data sources for the review include MEDLINE, PubMed, CINAHL, and Academic Search Complete. Included in this review are articles that reported the frequency/prevalence of red blood cell alloimmunization in sickle cell disease patients in Africa. Eligible studies were subjected to independent full-text screening and data extraction. Risk of bias assessment was conducted with the aid of the mixed method appraisal tool. We employed a random-effects model of meta-analysis to estimate the pooled prevalence. We computed Cochrane’s Q statistics and I2 and prediction interval to quantify heterogeneity in effect size. Results: The prevalence estimates range from 2.6% to 29%. Pooled prevalence was estimated to be 10.4% (CI 7.7.–13.8); PI = 3.0 – 34.0%), with significant heterogeneity (I2 = 84.62; PI = 2.0-32.0%) and publication bias (Egger’s t-test = 1.744, p = 0.0965). Conclusion: The frequency of red cell alloantibody varies considerably in Africa. The alloantibodies appeared frequent in this order: the Rhesus, Kell, Lewis, Duffy, MNS, and LutheranKeywords: frequency, red blood cell, alloimmunization, sickle cell disease, Africa
Procedia PDF Downloads 1006943 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 5756942 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection
Authors: Martin Pumera
Abstract:
Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.Keywords: graphene, 2D nanomaterials, biosensing, chip design
Procedia PDF Downloads 5506941 Efficiency and Factors Affecting Inefficiency in the Previous Enclaves of Northern Region of Bangladesh: An Analysis of SFA and DEA Approach
Authors: Md. Mazharul Anwar, Md. Samim Hossain Molla, Md. Akkas Ali, Mian Sayeed Hassan
Abstract:
After 68 years, the agreement between Bangladesh and India was ratified on 6 June 2015 and Bangladesh received 111 Indian enclaves. Millions of farm household lived in these previous enclaves, being detached from the mainland of the country, they were socially, economically and educationally deprived people in the world. This study was undertaken to compare of the Stochastic Frontier Analysis (SFA) and the constant returns to scale (CRS) and variable returns to scale (VRS) output-oriented DEA models, based on a sample of 300 farms from the three largest enclaves of Bangladesh in 2017. However, the aim of the study was not only to compare estimates of technical efficiency obtained from the two approaches, but also to examine the determinants of inefficiency. The results from both the approaches indicated that there is a potential for increasing farm production through efficiency improvement and that farmers' age, educational level, new technology dissemination and training on crop production technology have a significant effect on efficiency. The detection and measurement of technical inefficiency and its determinants can be used as a basis of policy recommendations.Keywords: DEA approach, previous enclaves, SFA approach, technical inefficiency
Procedia PDF Downloads 1296940 Long-Term Tillage, Lime Matter and Cover Crop Effects under Heavy Soil Conditions in Northern Lithuania
Authors: Aleksandras Velykis, Antanas Satkus
Abstract:
Clay loam and clay soils are typical for northern Lithuania. These soils are susceptible to physical degradation in the case of intensive use of heavy machinery for field operations. However, clayey soils having poor physical properties by origin require more intensive tillage to maintain proper physical condition for grown crops. Therefore not only choice of suitable tillage system is very important for these soils in the region, but also additional search of other measures is essential for good soil physical state maintenance. Research objective: To evaluate the long-term effects of different intensity tillage as well as its combinations with supplementary agronomic practices on improvement of soil physical conditions and environmental sustainability. The experiment examined the influence of deep and shallow ploughing, ploughless tillage, combinations of ploughless tillage with incorporation of lime sludge and cover crop for green manure and application of the same cover crop for mulch without autumn tillage under spring and winter crop growing conditions on clay loam (27% clay, 50% silt, 23% sand) Endocalcaric Endogleyic Cambisol. Methods: The indicators characterizing the impact of investigated measures were determined using the following methods and devices: Soil dry bulk density – by Eijkelkamp cylinder (100 cm3), soil water content – by weighing, soil structure – by Retsch sieve shaker, aggregate stability – by Eijkelkamp wet sieving apparatus, soil mineral nitrogen – in 1 N KCL extract using colorimetric method. Results: Clay loam soil physical state (dry bulk density, structure, aggregate stability, water content) depends on tillage system and its combination with additional practices used. Application of cover crop winter mulch without tillage in autumn, ploughless tillage and shallow ploughing causes the compaction of bottom (15-25 cm) topsoil layer. However, due to ploughless tillage the soil dry bulk density in subsoil (25-35 cm) layer is less compared to deep ploughing. Soil structure in the upper (0-15 cm) topsoil layer and in the seedbed (0-5 cm), prepared for spring crops is usually worse when applying the ploughless tillage or cover crop mulch without autumn tillage. Application of lime sludge under ploughless tillage conditions helped to avoid the compaction and structure worsening in upper topsoil layer, as well as increase aggregate stability. Application of reduced tillage increased soil water content at upper topsoil layer directly after spring crop sowing. However, due to reduced tillage the water content in all topsoil markedly decreased when droughty periods lasted for a long time. Combination of reduced tillage with cover crop for green manure and winter mulch is significant for preserving the environment. Such application of cover crops reduces the leaching of mineral nitrogen into the deeper soil layers and environmental pollution. This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: clay loam, endocalcaric endogleyic cambisol, mineral nitrogen, physical state
Procedia PDF Downloads 2266939 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes
Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono
Abstract:
Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is a widely used approach for LV segmentation but suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is proposed to improve the accuracy and speed of the model-based segmentation. Firstly, a robust and efficient detector based on Hough forest is proposed to localize cardiac feature points, and such points are used to predict the initial fitting of the LV shape model. Secondly, to achieve more accurate and detailed segmentation, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. The performance of the proposed method is evaluated on a dataset of 800 cardiac ultrasound images that are mostly of abnormal shapes. The proposed method is compared to several combinations of ASM and existing initialization methods. The experiment results demonstrate that the accuracy of feature point detection for initialization was improved by 40% compared to the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops, thus speeding up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.Keywords: hough forest, active shape model, segmentation, cardiac left ventricle
Procedia PDF Downloads 3406938 Gastrointestinal Disturbances in Postural Orthostatic Tachycardia Syndrome (POTS)
Authors: Chandralekha Ashangari, Amer Suleman
Abstract:
Background and Purpose: The Postural Orthostatic Tachycardia Syndrome (POTS) affects primarily young women. POTS is a form of dysautonomia that is estimated to impact between 1,000,000 and 3,000,000 Americans, and millions more around the world. POTS is a form of orthostatic intolerance that is associated with many Gastrointestinal disturbances. The aim of this study is to determine the Gastrointestinal disturbances in Postural Orthostatic Tachycardia Syndrome (POTS) patients.2. Methods: 249 patients referred to our clinic from January to November with POTS. Reviewed the medical records of 249 POTS patients and gastrointestinal symptoms. Results: however out of 249 patients, 226 patients are female (90.76%; average age 32.69), 23 patients are male (9.24%; average age 27.91) Data analysis: Out of 249 patients 189 patients (76%) had vomiting or nausea, 150 patients (60%) had irritable bowel syndrome, 128 patients (51%) had bloating, 125 patients (50%) had constipation , 80 patients (32%) had abdominal pain, 56 patients (22%) had delayed gastric emptying, 24 patients (10%) had lactose intolerance, 8 patients (3%) had Gastroesophageal reflux disease, 5 patients (2%) had Iron deficiency anemia, 6 patients (2%) had Peptic ulcer disease, 4 patients (2%) had Celiac Disease. Conclusion: Patients with POTS have a very high prevalence of gastrointestinal symptoms however the majority of abnormalities appear to be motility related. Motility testing should be performed be performed in POTS patients. The diagnostic yield of endoscopic procedures appears to be low.Keywords: gastrointestinal disturbances, Postural Orthostatic Tachycardia Syndrome (POTS), celiac disease, POTS patients
Procedia PDF Downloads 3386937 A Review on the Vulnerability of Rural-Small Scale Farmers to Insect Pest Attacks in the Eastern Cape Province, South Africa
Authors: Nolitha L. Skenjana, Bongani P. Kubheka, Maxwell A. Poswal
Abstract:
The Eastern Cape Province of South Africa is characterized by subsistence farming, which is mostly distributed in the rural areas of the province. It is estimated that cereal crops such as maize and sorghum, and vegetables such as cabbage are grown in more than 400.000 rural households, with maize being the most dominant crop. However, compared to commercial agriculture, small-scale farmers receive minimal support from research and development, limited technology transfer on the latest production practices and systems and have poor production infrastructure and equipment. Similarly, there is limited farmers' appreciation on best practices in insect pest management and control. The paper presents findings from the primary literature and personal observations on insect pest management practices of small-scale farmers in the province. Inferences from literature and personal experiences in the production areas have led to a number of deductions regarding the level of exposure and extent of vulnerability. Farmers' pest management practices, which included not controlling at all though there is a pest problem, resulted in their crop stands to be more vulnerable to pest attacks. This became more evident with the recent brown locust, African armyworm, and Fall armyworm outbreaks, and with the incidences of opportunistic phytophagous insects previously collected on wild hosts only, found causing serious damages on crops. In most of these occurrences, damage to crops resulted in low or no yield. Improvements on farmers' reaction and response to pest problems were only observed in areas where focused awareness campaigns and trainings on specific pests and their management techniques were done. This then calls for a concerted effort from all role players in the sphere of small-scale crop production, to train and equip farmers with relevant skills, and provide them with information on affordable and climate-smart strategies and technologies in order to create a state of preparedness. This is necessary for the prevention of substantial crop losses that may exacerbate food insecurity in the province.Keywords: Eastern Cape Province, small-scale farmers, insect pest management, vulnerability
Procedia PDF Downloads 1406936 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 1276935 The Connection between Social Support, Caregiver Burden, and Life Satisfaction of the Parents Whose Children Have Congenital Heart Disease
Authors: A. Uludağ, F. G. Tufekci, N. Ceviz
Abstract:
Aim: The research has been carried out in order to evaluate caregiver burden, life satisfaction and received social support level of the parents whose children have congenital heart disease; to examine the relationship between the social supports received by them and caregiver burden and life satisfaction. Material and Method: The research which is descriptive and which is searching a relationship has been carried out between the dates June 7, 2012- June 30, 2014, in Erzurum Ataturk University Research and Application Hospital, Department of Pediatrics and Children Cardiology Polyclinic. In the research, it was collaborated with the parents (N = 157) who accepted to participate in, of children who were between the ages of 3 months- 12 years. While gathering the data, a questionnaire, Zarit Caregiver Burden, Life Satisfaction and Social Support Scales have been used. The statistics of the data acquired has been produced by using percentage distribution, mean, and variance and correlation analysis. Ethical principles are followed in the research. Results: In the research, caregiver burden, life satisfaction and social support level received from family (p < 0.05), have been determined higher in the parents whose children have serious congenital heart disease than that of parents whose children have slight disease and social support received from friends has been found lower. It has been determined that there is a strong relation (p < 0.001) through negative direction between both social support levels and caregiver burden of parents; and that there is a strong relation (p < 0.001) through positive direction between both support levels and life satisfaction. Conclusion: That Social Support is in a strong relation with Caregiver Burden through a negative direction and a strong relation with Life Satisfaction through positive direction in parents of all the children who have congenital heart disease requires social support systems to be reinforced. Parents can be led or guided so as to prompt social support systems more.Keywords: congenital heart disease, child, parents, caregiver burden, life satisfaction, social support
Procedia PDF Downloads 3006934 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 666933 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 1256932 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 526931 Children Beliefs about Illness, Treatments and Vaccines after the Experience of Covid 19 Pandemic
Authors: Margarida Maria Cabugueira Csutódio dos Santos, Joana Filipa Pintéus Pereira
Abstract:
The way children understand the concept of health and illness influences their reaction in contexts where these concepts are present (e.g.,illness; vaccination). The recognition of the importance of children's beliefs/representations about health and disease has led to the development of models that seek to explain the development process of these concepts. In the construction of their representations, children are influenced not only by their cognitive competence but also by their life experiences. In the last 3 years, children have experienced a pandemic health crisis that has exposed them to anomalous and stressful situations. Objective: the aim of this study was (1) to identify children’s representations about disease (including symptoms, causes, control/treatment) and prevention (including health procedures and vaccines) and (2) whether COVID19 is mentioned and influences their representations. Methodology: a qualitative study in which 67 children with 7 to 10 years old (mean 8,8) participated. A semi-structured interview was used following the Bibace and Walsh model, focusing on the representation of the disease and its prevention. Results show a marked influence of the lived experience with regard to causes of the disease, disease control and treatment, and adherence to vaccination. Age-dependent differences were found with older children being able to talk about illness and contamination process and younger displaying more basic, concrete and rigid representations. Conclusions: The results of this study bring clues to the adequacy of communication with the child in the context of health and illness and discriminately in a future health pandemic crisis.Keywords: childen, health beliefs, pediatrics, covid19, vaccines
Procedia PDF Downloads 906930 Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan
Authors: Mehdi Moradi Sarmeidani, Peyman Keyhani, Hasan Momtaz
Abstract:
Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds.Keywords: chlamydophila psittaci, psittacine birds, PCR, Isfahan
Procedia PDF Downloads 3726929 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method
Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a
Abstract:
The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.Keywords: damage detection, finite element, tapered pipe, vibration characteristics
Procedia PDF Downloads 1706928 Long-Term Conservation Tillage Impact on Soil Properties and Crop Productivity
Authors: Danute Karcauskiene, Dalia Ambrazaitiene, Regina Skuodiene, Monika Vilkiene, Regina Repsiene, Ieva Jokubauskaite
Abstract:
The main ambition for nowadays agriculture is to get the economically effective yield and to secure the soil ecological sustainability. According to the effect on the main soil quality indexes, tillage systems may be separated into two types, conventional and conservation tillage. The goal of this study was to determine the impact of conservation and conventional primary soil tillage methods and soil fertility improvement measures on soil properties and crop productivity. Methods: The soil of the experimental site is Dystric Glossic Retisol (WRB 2014) with texture of sandy loam. The trial was established in 2003 in the experimental field of crop rotation of Vėžaičiai Branch of Lithuanian Research Centre for Agriculture and Forestry. Trial factors and treatments: factor A- primary soil tillage in (autumn): deep ploughing (20-25cm), shallow ploughing (10-12cm), shallow ploughless tillage (8-10cm); factor B – soil fertility improvement measures: plant residues, plant residues + straw, green manure 1st cut + straw, farmyard manure 40tha-1 + straw. The four - course crop rotation consisted of red clover, winter wheat, spring rape and spring barley with undersown. Results: The tillage had no statistically significant effect on topsoil (0-10 cm) pHKCl level, it was 5.5 - 5.7. During all experiment period, the highest soil pHKCl level (5.65) was in the shallow ploughless tillage. The organic fertilizers particularly the biomass of grass and farmyard manure had tendency to increase the soil pHKCl. The content of plant - available phosphorus and potassium significantly increase in the shallow ploughing compared with others tillage systems. The farmyard manure increases those elements in whole arable layer. The dissolved organic carbon concentration was significantly higher in the 0 - 10 cm soil layer in the shallow ploughless tillage compared with deep ploughing. After the incorporation of clover biomass and farmyard manure the concentration of dissolved organic carbon increased in the top soil layer. During all experiment period the largest amount of water stable aggregates was determined in the soil where the shallow ploughless tillage was applied. It was by 12% higher compared with deep ploughing. During all experiment time, the soil moisture was higher in the shallow ploughing and shallow ploughless tillage (9-27%) compared to deep ploughing. The lowest emission of CO2 was determined in the deep ploughing soil. The highest rate of CO2 emission was in shallow ploughless tillage. The addition of organic fertilisers had a tendency to increase the CO2 emission, but there was no statistically significant effect between the different types of organic fertilisers. The crop yield was larger in the deep ploughing soil compared to the shallow and shallow ploughless tillage.Keywords: reduced tillage, soil structure, soil pH, biological activity, crop productivity
Procedia PDF Downloads 2676927 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures
Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski
Abstract:
Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems
Procedia PDF Downloads 3486926 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine
Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif
Abstract:
The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)
Procedia PDF Downloads 373