Search results for: cancer detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5321

Search results for: cancer detection

4361 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid

Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus

Abstract:

Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.

Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid

Procedia PDF Downloads 245
4360 Cytotoxic Activity of Acetone and Ethanol Overripe Tempe Extracts against MCF-7 Breast Cancer Cells and Their Antioxidant Property

Authors: Dian Muzdalifah, Anastasia F. Devi, Zatil A. Athaillah, Linar Z. Udin

Abstract:

Tempe is a functional food prepared from soybeans through Rhizopus spp fermentation. It is well known as functional food, originated from Indonesia. Most studies on tempe functionalities refer to ripe (48 h fermentation) tempe and only limited studies discuss overripe tempe while longer fermentation time possibly increased tempe health benefit. Hence, the present study was performed to investigate the cytotoxic activity againts MCF-7 breast cancer cells and antioxidant property of tempe prepared from 0–156 h of fermentation. Tempe samples were dried and extracted with acetone and ethanol, respectively. Their extracts were used for subsequent analysis. The cytotoxic activity was assessed on MCF 7 breast cancer cells using Alamar Blue method. The antioxidant activity was determined by DPPH free radical scavenging assay. The results indicated that acetone extracts of 108 h tempe had a potent cytotoxic activity against MCF-7 breast cancer cells (IC50 = 2.54 ± 0,30 μg/mL). Ethanol extracts of 108 h tempe also showed the potency, but at slightly higher IC50 (5.20 ± 1.01 μg/mL). Both acetone and ethanol extracts of 108 and 120 h tempe showed high antioxidant activity expressed as percent inhibition with no significant difference. However, acetone extracts of 120 h tempe (81.31 ± 3.70 %) had better ability to inhibit oxidation reaction than that of ethanol extracts (75.77 ± 6.00 %). It can be concluded that the cytotoxic activity of tempe from 0–156 h of fermentation is positively correlated to their corresponding antioxidant property. Longer fermentation time, up to 108 h, increased the ability of tempe to inhibit the growth of MCF-7 breast cancer cells and oxidative reaction. But extended fermentation time, up to 156 h, tends to decrease its ability. Further studies are encouraged to identify the active components contained in each extract.

Keywords: antioxidant property, cytotoxic activity, extracts, overripe tempeh

Procedia PDF Downloads 275
4359 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 103
4358 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing

Procedia PDF Downloads 244
4357 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 222
4356 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 312
4355 Local Availability Influences Choice of Radical Treatment for Prostate Cancer

Authors: Jemini Vyas, Oluwatobi Adeyoe, Jenny Branagan, Chandran Tanabalan, Aakash Pai

Abstract:

Introduction: Radical prostatectomy and radiotherapy are both viable options for the treatment of localised prostate cancer. Over the years medicine has evolved towards a patient-centred approach. Patient decision-making is not motivated by clinical outcomes alone. Geographical location and ease of access to treating clinician are contributory factors. With the development of robotic surgery, prostatectomy has been centralised into tertiary centres. This has impacted on the distances that patients and their families are expected to travel. Methods: A single centre retrospective study was undertaken over a five-year period. All patients with localised prostate cancer, undergoing radical radiotherapy or prostatectomy were collected pre-centralisation. This was compared to the total number undergoing these treatments post centralisation. Results: Pre-centralisation, both radiotherapy and prostatectomy groups had to travel a median of less than five miles for treatment. Post-centralisation of pelvic surgery, prostatectomy patients had to travel a median of more than 40 miles, whilst travel distance for the radiotherapy group was unchanged. In the post centralisation cohort, there was a 63% decline in the number of patients undergoing radical prostatectomy per month from a mean of 5.1 to 1.9. The radical radiotherapy group had a concurrent 41% increase in patient numbers with a mean increase from 13.3 to 18.8 patients per month. Conclusion: Choice of radical treatment in localised prostate cancer is based on multiple factors. This study infers that local availability can influence choice of radical treatment. It is imperative that efforts are made to maintain accessibility to all viable options for prostate cancer patients, so that patient choice is not compromised.

Keywords: prostate, prostatectomy, radiotherapy, centralisation

Procedia PDF Downloads 92
4354 Incidence of Breast Cancer and Enterococcus Infection: A Retrospective Analysis

Authors: Matthew Cardeiro, Amalia D. Ardeljan, Lexi Frankel, Dianela Prado Escobar, Catalina Molnar, Omar M. Rashid

Abstract:

Introduction: Enterococci comprise the natural flora of nearly all animals and are ubiquitous in food manufacturing and probiotics. However, its role in the microbiome remains controversial. The gut microbiome has shown to play an important role in immunology and cancer. Further, recent data has suggested a relationship between gut microbiota and breast cancer. These studies have shown that the gut microbiome of patients with breast cancer differs from that of healthy patients. Research regarding enterococcus infection and its sequala is limited, and further research is needed in order to understand the relationship between infection and cancer. Enterococcus may prevent the development of breast cancer (BC) through complex immunologic and microbiotic adaptations following an enterococcus infection. This study investigated the effect of enterococcus infection and the incidence of BC. Methods: A retrospective study (January 2010- December 2019) was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using a Humans Health Insurance Database. International Classification of Disease (ICD) 9th and 10th codes, Current Procedural Terminology (CPT), and National Drug Codes were used to identify BC diagnosis and enterococcus infection. Patients were matched for age, sex, Charlson Comorbidity Index (CCI), antibiotic treatment, and region of residence. Chi-squared, logistic regression, and odds ratio were implemented to assess the significance and estimate relative risk. Results: 671 out of 28,518 (2.35%) patients with a prior enterococcus infection and 1,459 out of 28,518 (5.12%) patients without enterococcus infection subsequently developed BC, and the difference was statistically significant (p<2.2x10⁻¹⁶). Logistic regression also indicated enterococcus infection was associated with a decreased incidence of BC (RR=0.60, 95% CI [0.57, 0.63]). Treatment for enterococcus infection was analyzed and controlled for in both enterococcus infected and noninfected populations. 398 out of 11,523 (3.34%) patients with a prior enterococcus infection and treated with antibiotics were compared to 624 out of 11,523 (5.41%) patients with no history of enterococcus infection (control) and received antibiotic treatment. Both populations subsequently developed BC. Results remained statistically significant (p<2.2x10-16) with a relative risk of 0.57 (95% CI [0.54, 0.60]). Conclusion & Discussion: This study shows a statistically significant correlation between enterococcus infection and a decrease incidence of breast cancer. Further exploration is needed to identify and understand not only the role of enterococcus in the microbiome but also the protective mechanism(s) and impact enterococcus infection may have on breast cancer development. Ultimately, further research is needed in order to understand the complex and intricate relationship between the microbiome, immunology, bacterial infections, and carcinogenesis.

Keywords: breast cancer, enterococcus, immunology, infection, microbiome

Procedia PDF Downloads 171
4353 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 252
4352 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 172
4351 Gethuk Marillo: The New Product Development of Anti-Cancer Snacks Utilizing Xanthones and Anthocyanin in Mangosteen Pericarp and Tamarillo Fruit

Authors: Desi Meriyanti, Delina Puspa Rosana Firdaus, Ristia Rinati

Abstract:

Nowadays, the presence of free radicals become a big concern due to its negative impact to the body, which can triggers the formation of degenerative diseases such as cancer, heart disease cardiovascular, diabetic mellitus and others. Free radical oxidation can be prevented by the presence of antioxidants. Naturally, the human body produces its own antioxidants. Because of the free radicals exposure are so intense, especially from the environment, it is necessary to supply antioxidants needed from outside, through the consumption of functional foods with high antioxidant content. Gethuk is one of the traditional snacks in Indonesia. Gethuk is made from cassava with minimal processing such as boiling, destructing, and forming. Gethuk is classified as a familiar snack in the community, so it has a potential for developing, especially into a functional food. The low content of antioxidants in gethuk can be overcome with the development of a product called Gethuk Marillo. Gethuk Marillo is gethuk with the addition of natural antioxidants from mangosteen pericarp extract which has a high content of xanthones, these compounds are classified into flavonoids and act as antioxidants in the body. Gethuk Marillo served along with tamarillo fruit sauce which is also high in antioxidants such as anthocyanin. The combination between 300 grams gethuk Marillo and sauce contain flavonoid about 31% of human antioxidant needs per day. Gethuk Marillo called as a functional food because of high flavonoids content which can prevent degenerative diseases namely cancer, as many studies that the xanthone and anthocyanins compounds can effectively prevent the formation of cancer cells in human body.

Keywords: Gethuk marillo, xanthones, anthocyanin, high antioxidants, anti-cancer

Procedia PDF Downloads 652
4350 A Lung Cancer Patient Grief Counseling Nursing Experience

Authors: Syue-Wen Lin

Abstract:

Objective: This article explores the nursing experience of a 64-year-old female lung cancer patient who underwent a thoracoscopic left lower lobectomy and treatment. The patient has a history of diabetes. The nursing process included cancer treatment, postoperative pain management, wound care and healing, and family grief counseling. Methods: The nursing period is from March 11 to March 15, 2024. During this time, strict aseptic wound dressing procedures and advanced wound care techniques are employed to promote wound healing and prevent infection. Postoperatively, due to the development of aspiration pneumonia and worsening symptoms, re-intubation was necessary. Given the patient's advanced cancer and deteriorating condition, the nursing team provided comprehensive grief counseling and care tailored to both the patient's physical and psychological needs, as well as the emotional needs of the family. Considering the complexity of the patient's condition, including advanced cancer, palliative care was also integrated into the overall nursing process to alleviate discomfort and provide psychological support. Results: Using Gordon's Functional Health Patterns for assessment, including evaluating the patient's medical history, physical assessment, and interviews, to provide individualized nursing care, it is important to collect data that will help understand the patient's physical, psychological, social, and spiritual dimensions. The interprofessional critical care team collaborates with the hospice team to help understand the psychological state of the patient's family and develop a comprehensive approach to care. Family meetings should be convened, and support should be provided to patients during the final stages of their lives. Additionally, the combination of cancer care, pain management, wound care, and palliative care ensures comprehensive support for the patient throughout her recovery, thereby improving her quality of life. Conclusion: Lung cancer and aspiration pneumonia present significant challenges to patients, and the nursing team not only provides critical care but also addresses individual patient needs through cancer care, pain management, wound care, and palliative care interventions. These measures have effectively improved the quality of life of patients, provided compassionate palliative care to terminally ill patients, and allowed them to spend the last mile of their lives with their families. Nursing staff work closely with families to develop comprehensive care plans to ensure patients receive high-quality medical care as well as psychological support and a comfortable recovery environment.

Keywords: grief counseling, lung cancer, palliative care, nursing experience

Procedia PDF Downloads 25
4349 Effect of Low Level Laser Therapy versus Polarized Light Therapy on Oral Mucositis in Cancer Patients Receiving Chemotherapy

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

The goal of this study is to compare the efficacy of polarised light therapy with low-intensity laser therapy in treating oral mucositis brought on by chemotherapy in cancer patients. Evaluation procedures are the measurement of the WHO oral mucositis scale and the Common toxicity criteria scale. Techniques: Cancer patients (men and women) who had oral mucositis, ulceration, and discomfort and whose ages varied from 30 to 55 years were separated into two groups and received 40 chemotherapy treatments. Twenty patients in Group (A) received low-level laser therapy (LLLT) along with their regular oral mucositis medication treatment, while twenty patients in Group (B) received Bioptron light therapy (BLT) along with their regular oral mucositis medication treatment. Both treatments were applied for 10 minutes each day for 30 days. Conclusion and results: This study showed that the use of both BLT and LLLT on oral mucositis in cancer patients following chemotherapy greatly improved, as seen by the sharp falls in both the WHO oral mucositis scale (OMS) and the common toxicity criteria scale (CTCS). However, low-intensity laser therapy (LLLT) was superior to Bioptron light therapy in terms of benefits (BLT).

Keywords: Bioptron light therapy, low level laser therapy, oral mucositis, WHO oral mucositis scale, common toxicity criteria scale

Procedia PDF Downloads 245
4348 Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer

Authors: Ji Hye Im, Nguyen T. T. Phuong, Keon Wook Kang

Abstract:

Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.

Keywords: TAMR-MCF-7, CREB, estrogen receptor, aromatase

Procedia PDF Downloads 410
4347 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka

Procedia PDF Downloads 294
4346 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 93
4345 Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines

Authors: Ceyda Okudu, Secil Eroglu, Khandakar A. S. M. Saadat, Sibel O. Balci

Abstract:

Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not.

Keywords: breast cancer, epigenetic, microRNAs, RNF2

Procedia PDF Downloads 178
4344 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov

Abstract:

Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 98
4343 Comparing Nonverbal Deception Detection of Police Officers and Human Resources Students in the Czech Republic

Authors: Lenka Mynaříková, Hedvika Boukalová

Abstract:

The study looks at the ability to detect nonverbal deception among police officers and management students in the Czech Republic. Respondents from police departments (n=197) and university students of human resources (n=161) completed a deception detection task and evaluated veracity of the statements of suspects in 21 video clips from real crime investigations. Their evaluations were based on nonverbal behavior. Voices in the video clips were modified so that words were not recognizable, yet paraverbal voice characteristics were preserved. Results suggest that respondents have a tendency to lie bias based on their profession. In the evaluation of video clips, stereotypes also played a significant role. The statements of suspects of a different ethnicity, younger age or specific visual features were considered deceitful more often. Research might be beneficial for training in professions that are in need of deception detection techniques.

Keywords: deception detection, police officers, human resources, forensic psychology, forensic studies, organizational psychology

Procedia PDF Downloads 430
4342 Efficacy of Topical Ectoin Therapy for Acute Radiodermatitis Associated with Breast Cancer Radiotherapy: A Randomized Controlled Study

Authors: Nagwa E. Abd Elazim, Maha S. El-naggar, Rania H. Mohamed, Sara M. Awad

Abstract:

Background: Radiodermatitis is a common side effect of radiation therapy for breast cancer. However, there is no current consensus about effective standard therapy for the prevention and management of radiation dermatitis. Topical ectoine has demonstrated efficacy in the treatment of atopic dermatitis owing to its anti-inflammatory activity. Objective: To evaluate the efficacy of topical ectoine in comparison to traditional topical dexpanthenol treatment in the management of acute radiodermatitis in breast cancer patients undergoing adjuvant radiotherapy. Methods: Fifty patients were randomized to use either dexpanthenol 0.5% cream (25 patients), or ectoin 7% cream (25 patients), applied twice daily to the irradiated area during the radiation period and continued for 2 weeks after cessation of radiotherapy. Assessment of radiation skin toxicity using Common Terminology Criteria of Adverse Events (CTCAE) v4.0, radiation-associated symptoms, and adverse events were undertaken weekly during radiotherapy and 2 weeks after the end of radiotherapy. Results: Topical ectoine showed some clinical benefit over dexpanthenol, as shown by delayed time to onset (at week 3 versus week 2, respectively) and larger number of patients who reached grade 0 at the end of treatment (64% vs. 48%, respectively). The clinical symptoms of pain (p = 0.003) and itching (p = 0.001) attributable to radiation were less pronounced with ectoine than with dexpanthenol. Burning and hyperpigmentation were the most common side effects with ectoine. However, no significant difference between dexpanthenol and ectoine treatments was found in any of the side effects (p = 0.1). Conclusion: Ectoin was overall more effective in improving radiation dermatitis than topical dexpanthenol in breast cancer patients. Ectoin could be proposed as a preventive or curative treatment for patients undergoing postoperative irradiation for breast cancer. Further clinical studies with a larger number of patients are recommended for the confirmation of these preliminary results.

Keywords: breast cancer, dexapanthenol, ectoin, radiation dermatitis

Procedia PDF Downloads 131
4341 Electrochemical Sensor Based on Poly(Pyrogallol) for the Simultaneous Detection of Phenolic Compounds and Nitrite in Wastewater

Authors: Majid Farsadrooh, Najmeh Sabbaghi, Seyed Mohammad Mostashari, Abolhasan Moradi

Abstract:

Phenolic compounds are chief environmental contaminants on account of their hazardous and toxic nature on human health. The preparation of sensitive and potent chemosensors to monitor emerging pollution in water and effluent samples has received great consideration. A novel and versatile nanocomposite sensor based on poly pyrogallol is presented for the first time in this study, and its electrochemical behavior for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS) in the presence of nitrite is evaluated. The physicochemical characteristics of the fabricated nanocomposite were investigated by emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The electrochemical response of the proposed sensor to the detection of HQ, CT, RS, and nitrite is studied using cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The kinetic characterization of the prepared sensor showed that both adsorption and diffusion processes can control reactions at the electrode. In the optimized conditions, the new chemosensor provides a wide linear range of 0.5-236.3, 0.8-236.3, 0.9-236.3, and 1.2-236.3 μM with a low limit of detection of 21.1, 51.4, 98.9, and 110.8 nM (S/N = 3) for HQ, CT and RS, and nitrite, respectively. Remarkably, the electrochemical sensor has outstanding selectivity, repeatability, and stability and is successfully employed for the detection of RS, CT, HQ, and nitrite in real water samples with the recovery of 96.2%–102.4%, 97.8%-102.6%, 98.0%–102.4% and 98.4%–103.2% for RS, CT, HQ, and nitrite, respectively. These outcomes illustrate that poly pyrogallol is a promising candidate for effective electrochemical detection of dihydroxybenzene isomers in the presence of nitrite.

Keywords: electrochemical sensor, poly pyrogallol, phenolic compounds, simultaneous determination

Procedia PDF Downloads 66
4340 Adverse Reactions from Contrast Media in Patients Undergone Computed Tomography at the Department of Radiology, Srinagarind Hospital

Authors: Pranee Suecharoen, Jaturat Kanpittaya

Abstract:

Background: The incidence of adverse reactions to iodinated contrast media has risen. The dearth of reports on reactions to the administration of iso- and low-osmolar contrast media should be addressed. We, therefore, studied the profile of adverse reactions to iodinated contrast media; viz., (a) the body systems affected (b) causality, (c) severity, and (d) preventability. Objective: To study adverse reactions (causes and severity) to iodinated contrast media at Srinagarind Hospital. Method: Between March and July, 2015, 1,101 patients from the Department of Radiology were observed and interviewed for the occurrence of adverse reactions. The patients were classified per Naranjo’s algorithm and through use of an adverse reactions questionnaire. Results: A total of 105 cases (9.5%) reported adverse reactions (57% male; 43% female); among whom 2% were iso-osmolar vs. 98% low-osmolar. Diagnoses included hepatoma and cholangiocarcinoma (24.8%), colorectal cancer (9.5%), breast cancer (5.7%), cervical cancer (3.8%), lung cancer (2.9%), bone cancer (1.9%), and others (51.5%). Underlying diseases included hypertension and diabetes mellitus type 2. Mild, moderate, and severe adverse reactions accounted for 92, 5 and 3%, respectively. The respective groups of escalating symptoms included (a) mild urticaria, itching, rash, nausea, vomiting, dizziness, and headache; (b) moderate hypertension, hypotension, dyspnea, tachycardia and bronchospasm; and (c) severe laryngeal edema, profound hypotension, and convulsions. All reactions could be anticipated per Naranjo’s algorithm. Conclusion: Mild to moderate adverse reactions to low-osmolar contrast media were most common and these occurred immediately after administration. For patient safety and better outcomes, improving the identification of patients likely to have an adverse reaction is essential.

Keywords: adverse reactions, contrast media, computed tomography, iodinated contrast agents

Procedia PDF Downloads 359
4339 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks

Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng

Abstract:

Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.

Keywords: biological molecular networks, essential genes, graph theory, network subgraphs

Procedia PDF Downloads 156
4338 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics

Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta

Abstract:

The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.

Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology

Procedia PDF Downloads 133
4337 Telephonic Communication in Palliative Care for Better Management of Terminal Cancer Patients in Rural India: An NGO Based Approach

Authors: Aditya Manna, L. K. Khanra, S. K. Sarkar

Abstract:

Aim: Due to financial incapability and the absence of manpower-poor families often fail to carry their advanced cancer patients to the nodal centers. This pilot study will explore whether communication by mobile phone can lessen this burden. Method: Initially a plan was generated regarding management of an advanced cancer patient in a nodal center at District Head Quarter. Subsequently every two week a trained social worker attached to the nodal center will follow up and give necessary advice and emotional support to the patients and their families through their registered mobile phone number. Patient’s family were also encouraged to communicate with the team by phone in case of fresh complain and urgency in between. Results: Since initiation in January 2013, 193 cancer patients were contacted by mobile phone every two weeks to enquire about their difficulties. In 76% of the situation trained social workers could give necessary advice by phone regarding management of their physical symptoms. Moreover, patient’s family was really overwhelmed by the emotional support offered by the team over the phone. Only 24% of cancer patients have to attend the nodal center for expert advice from Palliative Care specialists. Conclusion: This novel approach helped: (a) In providing regular physical and emotional support to the patients and their families. (b) In significantly reducing the financial and manpower problems of carrying patients to the nodal units. (c) In improving the quality of life of patients by continuous guidance. More and more team members can take help of this new strategy for better communication and uninterrupted care.

Keywords: palliative care, terminal care, home based palliative care, rural india

Procedia PDF Downloads 301
4336 Comparing Community Detection Algorithms in Bipartite Networks

Authors: Ehsan Khademi, Mahdi Jalili

Abstract:

Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.

Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks

Procedia PDF Downloads 624
4335 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor

Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh

Abstract:

Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.

Keywords: acoustic, aptasensor, detection, nonlinear

Procedia PDF Downloads 564
4334 Analysis of Collision Avoidance System

Authors: N. Gayathri Devi, K. Batri

Abstract:

The advent of technology has increased the traffic hazards and the road accidents take place. Collision detection system in automobile aims at reducing or mitigating the severity of an accident. This project aims at avoiding Vehicle head on collision by means of collision detection algorithm. This collision detection algorithm predicts the collision and the avoidance or minimization have to be done within few seconds on confirmation. Under critical situation collision minimization is made possible by turning the vehicle to the desired turn radius so that collision impact can be reduced. In order to avoid the collision completely, the turning of the vehicle should be achieved at reduced speed in order to maintain the stability.

Keywords: collision avoidance system, time to collision, time to turn, turn radius

Procedia PDF Downloads 544
4333 Dual Mode “Turn On-Off-On” Photoluminescence Detection of EDTA and Lead Using Moringa Oleifera Gum-Derived Carbon Dots

Authors: Anisha Mandal, Swambabu Varanasi

Abstract:

Lead is one of the most prevalent toxic heavy metal ions, and its pollution poses a significant threat to the environment and human health. On the other hand, Ethylenediaminetetraacetic acid is a widely used metal chelating agent that, due to its poor biodegradability, is an incessant pollutant to the environment. For the first time, a green, simple, and cost-effective approach is used to hydrothermally synthesise photoluminescent carbon dots using Moringa Oleifera Gum in a single step. Then, using Moringa Oleifera Gum-derived carbon dots, a photoluminescent "ON-OFF-ON" mechanism for dual mode detection of trace Pb2+ and EDTA was proposed. MOG-CDs detect Pb2+ selectively and sensitively using a photoluminescence quenching mechanism, with a detection limit (LOD) of 0.000472 ppm. (1.24 nM). The quenched photoluminescence can be restored by adding EDTA to the MOG-CD+Pb2+ system; this strategy is used to quantify EDTA at a level of detection of 0.0026 ppm. (8.9 nM). The quantification of Pb2+ and EDTA in actual samples encapsulated the applicability and dependability of the proposed photoluminescent probe.

Keywords: carbon dots, photoluminescence, sensor, moringa oleifera gum

Procedia PDF Downloads 112
4332 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning

Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker

Abstract:

Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.

Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16

Procedia PDF Downloads 145