Search results for: One-Bit Transform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1528

Search results for: One-Bit Transform

568 Evaluation of the Efficiency of Nanomaterials in Consolidation of Limestone

Authors: Mohamed Saad Gad Eloghby

Abstract:

Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. Exposure to different weathering processes caused degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols and nanosilica, i.e., dispersions of silica nanoparticles in water promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes the evaluation of some nano materials in consolidation limestone stone in comparison with traditional consolidantes. These consolidation materials are nano calcium hydroxide nanolime and nanosilica. The latter is known commercially as Nano Estel and the former is known as Nanorestore compared to traditional consolidantes Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidantes by using followed methods, Characterization of physical properties of stone, Scanning electron microscopy (SEM), X-ray diffractometry, Fourier transform infrared spectroscopy and Mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results can be achieved through mixtures of nanomaterials and traditional consolidants.

Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope

Procedia PDF Downloads 76
567 Structural and Optical Characterization of Rice-Husk-Derived SiO₂ Crystals-reinforced PVA Composites

Authors: Suminar Pratapa, Agus Riyanto, Silmi Machmudah, Sri Yani Purwaningsih

Abstract:

The objective of this study was to investigate the optical properties of polyvinyl alcohol (PVA) and its prospective applications by adding crystalline silica which is usually used as a reinforcing agent. To do this, we synthesized and evaluated PVA-based composites reinforced with silica crystals, namely cristobalite, derived from rice husk. The experimental procedure involved the production of SiO2 particles using rice husk precursors, which were subsequently subjected to calcination at a rate of 10 °C/min for a duration of 3 hours. This process primarily resulted in the formation of SiO2 crystals in the cristobalite phase, according to X-ray diffraction (XRD). Following this, the crystals were incorporated into polyvinyl alcohol (PVA) via a casting technique, resulting in the formation of composite sheets. The SiO2 contents in the composites were 0, 2.5, 5.0, and 10.%. XRD and Fourier-transform infrared spectroscopy (FTIR) techniques provided confirmation of the composites' successful synthesis, i.e., it did not yield any indications of chemical bonding between polyvinyl alcohol (PVA) and silicon dioxide (SiO2), indicating that the interaction was limited to interfacial reactions. The incorporation of SiO2 crystals resulted in a notable enhancement in UV-vis light absorption and a decrease in the optical band gap. Addition of 2.5, 5.0, and 10.% SiO2, for example, decreases the direct optical band gap of the composites form 5.37, 5.19, and 5.02 eV respectively, while the indirect band gaps of the samples were 4.44, 4.84, and 4.48 eV, correspondingly. These findings emphasize the efficacy of rice husk-derived SiO2 crystals as both reinforcement agents and modifiers of optical properties in the polymer composites, showcasing their significant potential to modify the composite's structural and optical characteristics.

Keywords: rice husk, cristaline SiO₂, PVA-based composites, structural characteristics, optical properties.

Procedia PDF Downloads 46
566 Analytical Study and Conservation Processes of a Wooden Coffin of Middel Kingdom, Ancient Egypt

Authors: Mohamed Ahmed Abd El Kader

Abstract:

This paper describes the conservation processes of an Ancient Egyptian wooden coffin dating back to the Middle Kingdom, ancient Egypt, using several scientific and analytical methods in order to provide a deeper understanding of the deterioration status and a greater awareness of how well preserved the object is. Visual observation and 2D Programs, as well as Optical Microscopy (OM), Environmental scanning Electron Microscopy (ESEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used in our study. The identification of wood species and the composition of the pigments and previous restoration materials were made. The coffin was previously conserved and stored in improper conditions, which led to its further deterioration; the surface of the lid dust, which obscured the decorations as well as all necessary restoration work was promptly carried out as soon as the coffin was transferred from the display hall from the Egyptian Museum to the Wood Conservation Laboratory of the Grand Egyptian Museum-Conservation Center (GEM-CC). The analyses provided detailed information concerning the original materials and the materials added during the previous treatment interventions, which was considered when applying the conservation plan. Conservation procedures have been applied with high accuracy to conserve the coffin including cleaning, consolidation of fragile painted layers, and the wooden boards forming the sides of the coffin were reassembled in their original positions. The materials and methods that were applied were extremely effective in stability and reinforcement of the coffin without harmfulness to the original materials and the coffin was successfully conserved and ready to display in the Grand Egyptian Museum (GEM).

Keywords: coffin, middle kingdom, deterioration, 2d program

Procedia PDF Downloads 53
565 Indian Emigration to Gulf Countries: Opportunities and Challenges

Authors: Sudhaveni Naresh

Abstract:

International migration is an important subject and gaining more significance andinterest among scholars in recent years. It is defined as crossing of the boundaries of political or administrative units for a certain minimum period for reasons such as education, employment, etc.International migration is not new for India because it has a long history with the Gulf region since ancient period. India is also one of the largest migrant-sending countries after China in the world. Migration towards the Gulf region became more prominent during early 1970s due to oil boom which led to rapid increase in the demand for foreign labour. Of 25 million Indian emigrants are living across the world, about six million Indian emigrants working in the Gulf. Most of these migrants were either unskilled or semi-skilled. Both the pull and push factors behind labour emigrate to Gulf countries. India is world’s leading receiver of remittances and the flow of remittances to India has been increasing steadily since the 1970s. In 2011-12, it was about 4 percent of GDP.Emigrants play a significant role in the economic development and growth of the country via the remittances and knowledge and skill transfer. Scholars see remittances as vital tool in the development for origin country. This paper examines the recent trend and pattern of migration from India to Gulf countries and explores impact of remittances on emigrants’ families at home country. It also highlights opportunities, challenges and the need for strengthening multilateral cooperation to transform migration into an efficient, orderly and humane process.The study propose to undertake a primary survey for this purpose. Both quantitative and qualitative research methods will be used to study the above issues.

Keywords: development, international migration, remittances, unskilled labour

Procedia PDF Downloads 291
564 Enhancement of 2, 4-Dichlorophenoxyacetic Acid Solubility via Solid Dispersion Technique

Authors: Tamer M. Shehata, Heba S. Elsewedy, Mashel Al Dosary, Alaa Elshehry, Mohamed A. Khedr, Maged E. Mohamed

Abstract:

Objective: 2,4-Dichlorophenoxy acetic acid (2,4-D) is a well-known herbicide widely used as a weed killer. Recently, 2,4-D was rediscovered as a new anti-inflammatory agent through in silico as well as in-vivo experiments. However, poor solubility of 2,4-D could represent a problems during pharmaceutical development in addition to lower bioavailability. Solid dispersion (SD) refers to a group of solid products consisting of at least two different components, usually a hydrophobic drug and hydrophilic matrix. It is well known technique for enhancing drug solubility. Therefore, selecting SD as a tool for enhancing 2,4-D could be of great interest to the formulator. Method: In our project, several polymers were investigated (such as PEG, HPMC, citric acid and others) in addition to drug polymer ratios and its effect on solubility. Evaluation of drug polymer interaction was investigated through both Fourier Transform Infrared (FTIR) and Differential Scanning Calorimetry (DSC). Finally, in-vivo evaluation was performed for the best selected preparation through inflammatory response of rat induce hind paw. Results: Results indicated that, citric acid 2,4-D and in ratio of 0.75 : 1 showed modified the dissolution profile of the drug. The FTIR resltes indicated no significant chemical interaction, however DSC showed shifting of the drug melting point. Finally, Carragenan induced rat hind paw edema showed significant reduction of the drug solid dispersion in comparison to the pure drug, indicating rapid and complete absorption of the drug in solid dispersion form. Conclusion: Solid dispersion technology can be utilized efficiently to enhance the solubility of 2,4-D.

Keywords: solid dispersion, 2, 4-D solubility, carragenan induced edema

Procedia PDF Downloads 453
563 Virtual Reality as a Method in Transformative Learning: A Strategy to Reduce Implicit Bias

Authors: Cory A. Logston

Abstract:

It is imperative researchers continue to explore every transformative strategy to increase empathy and awareness of racial bias. Racism is a social and political concept that uses stereotypical ideology to highlight racial inequities. Everyone has biases they may not be aware of toward disparate out-groups. There is some form of racism in every profession; doctors, lawyers, and teachers are not immune. There have been numerous successful and unsuccessful strategies to motivate and transform an individual’s unconscious biased attitudes. One method designed to induce a transformative experience and identify implicit bias is virtual reality (VR). VR is a technology designed to transport the user to a three-dimensional environment. In a virtual reality simulation, the viewer is immersed in a realistic interactive video taking on the perspective of a Black man. The viewer as the character experiences discrimination in various life circumstances growing up as a child into adulthood. For instance, the prejudice felt in school, as an adolescent encountering the police and false accusations in the workplace. Current research suggests that an immersive VR simulation can enhance self-awareness and become a transformative learning experience. This study uses virtual reality immersion and transformative learning theory to create empathy and identify any unintentional racial bias. Participants, White teachers, will experience a VR immersion to create awareness and identify implicit biases regarding Black students. The desired outcome provides a springboard to reconceptualize their own implicit bias. Virtual reality is gaining traction in the research world and promises to be an effective tool in the transformative learning process.

Keywords: empathy, implicit bias, transformative learning, virtual reality

Procedia PDF Downloads 194
562 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: building structure, seismic waves, spectral analysis, structural response

Procedia PDF Downloads 400
561 Biomass and Lipid Enhancement by Response Surface Methodology in High Lipid Accumulating Indigenous Strain Rhodococcus opacus and Biodiesel Study

Authors: Kulvinder Bajwa, Narsi R. Bishnoi

Abstract:

Finding a sustainable alternative for today’s petrochemical industry is a major challenge facing by researchers, scientists, chemical engineers, and society at the global level. Microorganisms are considered to be sustainable feedstock for 3rd generation biofuel production. In this study, we have investigated the potential of a native bacterial strain isolated from a petrol contaminated site for the production of biodiesel. The bacterium was identified to be Rhodococcus opacus by biochemical test and 16S rRNA. Compositional analysis of bacterial biomass has been carried out by Fourier transform infrared spectroscopy (FTIR) in order to confirm lipid profile. Lipid and biomass were optimized by combination with Box Behnken design (BBD) of response surface methodology. The factors selected for the optimization of growth condition were glucose, yeast extract, and ammonium nitrate concentration. The experimental model developed through RSM in terms of effective operational factors (BBD) was found to be suitable to describe the lipid and biomass production, which indicated higher lipid and biomass with a minimum concentration of ammonium nitrate, yeast extract, and quite higher dose of glucose supplementation. Optimum results of the experiments were found to be 2.88 gL⁻¹ biomass and lipid content 38.75% at glucose 20 gL⁻¹, ammonium nitrate 0.5 gL⁻¹ and yeast extract 1.25 gL⁻¹. Furthermore, GCMS study revealed that Rhodococcus opacus has favorable fatty acid profile for biodiesel production.

Keywords: biofuel, Oleaginious bacteria, Rhodococcus opacus, FTIR, BBD, free fatty acids

Procedia PDF Downloads 136
560 Removal of Metal Ions (II) Using a Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets

Authors: Laroussi Chaabane, Emmanuel Beyou, Amel El Ghali, Mohammed Hassen V. Baouab

Abstract:

The functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished followed by the grafting of bis(2-pyridylmethyl)amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) produced the martial [(Go-EDA-CAC)-BPED]. The physic-chemical properties of [(Go-EDA-CAC)-BPED] composites were investigated by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPs), Scanning electron microscopy (SEM) and Thermogravimetric analysis (TGA). Moreover, [(Go-EDA-CAC)-BPED] was used for removing M(II) (where M=Cu, Ni and Co) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature were investigated. More importantly, the [(Go-EDA-CAC)-BPED] adsorbent exhibited remarkable performance in capturing heavy metal ions from water. The maximum adsorption capacity values of Cu(II), Ni(II) and Co(II) on the [(GO-EDA-CAC)-BPED] at the pH of 7 is 3.05 mmol.g⁻¹, 3.25 mmol.g⁻¹ and 3.05 mmol.g⁻¹ respectively. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the three metal ions adsorption by [(Go-EDA-CAC)-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossensadsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)-BPED], their reusability (more than 10 cycles) and durability in the aqueous solutions open the path to removal of metal ions (Cu(II), Ni(II) and Co(II) from water solution. Based on the results obtained, we conclude that [(Go-EDA-CAC)-BPED] can be an effective and potential adsorbent for removing metal ions from an aqueous solution.

Keywords: graphene oxide, bis(2-pyridylmethyl)amino, adsorption kinetics, isotherms

Procedia PDF Downloads 134
559 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 461
558 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures

Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui

Abstract:

The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.

Keywords: multi-cores DSP, scheduling, SMT solver, workflow

Procedia PDF Downloads 286
557 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses

Authors: Walid Tawfik

Abstract:

The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.

Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband

Procedia PDF Downloads 224
556 A U-Net Based Architecture for Fast and Accurate Diagram Extraction

Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal

Abstract:

In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.

Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO

Procedia PDF Downloads 137
555 Novel Urban Regulation Panorama in Latin America

Authors: Yeimis Milton, Palomino Pichihua

Abstract:

The city, like living organisms, originates from codes, structured information in the form of rules that condition the physical form and performance of urban space. Usually, the so-called urban codes clash with the spontaneous nature of the city, with the urban Kháos that contextualizes the free creation (poiesis) of human collectives. This contradiction is especially evident in Latin America, which, like other developing regions, lacks adequate instruments to guide urban growth. Thus constructing a hybrid between the formal and informal city, categories that are difficult to separate one from the other. This is a comparative study focusing on the urban codes created to address the pandemic. The objective is to build an overview of these innovations in the region. The sample is made up of official norms published in pandemic, directly linked to urban planning and building control (urban form). The countries analyzed are Brazil, Mexico, Argentina, Peru, Colombia, and Chile. The study uncovers a shared interest in facing future urban problems, in contrast to the inconsistency of proposed legal instruments. Factors such as the lack of articulation, validity time, and ambiguity, among others, accentuate this problem. Likewise, it evidences that the political situation of each country has a significant influence on the development of these norms and the possibility of their long-term impact. In summary, the global emergency has produced opportunities to transform urban systems from their internal rules; however, there are very few successful examples in this field. Therefore, Latin American cities have the task of learning from this defeat in order to lay the foundations for a more resilient and sustainable urban future.

Keywords: pandemic, regulation, urban planning, latin America

Procedia PDF Downloads 101
554 Effect of Depth on Texture Features of Ultrasound Images

Authors: M. A. Alqahtani, D. P. Coleman, N. D. Pugh, L. D. M. Nokes

Abstract:

In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent.

Keywords: ultrasound image, texture parameters, computational biology, biomedical engineering

Procedia PDF Downloads 295
553 Servant Leadership for Elder Care in St. Camillus Health Systems, USA

Authors: Anthoni Jeorge

Abstract:

Throughout the history of the world, servant leadership has been researched, and favourable results such as individual, team, and organizational have been linked to the construct. This research paper designates St. Camillus de Lellis, a practitioner of servant leadership and founder of the Ministers of the Sick as a servant leader in his approach to care for the sick. Service is the visible face of his servant leadership. First of all, despite many challenges, St. Camillus de Lellis practiced leadership by the example of compassionate service to the sick. Second, he made service to the sick the highest priority of his life. Third, Camillus displayed servant leadership such that his manner of leadership gave birth to a New School of Service to the Sick. The paper identifies the distinctive dimensions and essential elements which characterized his service-centered leadership. Furthermore, discuss the six major characteristics of a servant leader as set forth by St. Camillus’s life example. The research illustrates the transformational power of servant leadership infield healthcare in general and, in doing so, provides servant leadership seekers ways servant leadership can transform elder care in one’s own field (St. Camillus Health Systems). Thus, it ascertains that servant leadership is best-fit for humanized elder care. Supported by the review of literature, the paper ascertains that Camillus, by identifying himself with the sick, gained deeper insights concerning the pain and suffering of the population. Uniquely drawn from his true grit, Camillus’ service-centered leadership is value-based, people-oriented, and compassion-filled. His way of service to the sick is the prolongation of gestures of mercy and compassion. It is hoped that the results of this study will help health care workers and servant leadership practitioners to humanize elder care and cultivate servant leadership attitude in their health care services to the sick. By incorporating such service-oriented elements into their leadership orientation, health care workers will be true servant leaders of the sick.

Keywords: leadership, service, healthcare, compassion

Procedia PDF Downloads 164
552 Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application

Authors: Li Maksym, Prabhakar M. N., Jung-Il Song

Abstract:

In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport.

Keywords: cotton farbic, flame retardancy, surface coating, intumescent mechanism

Procedia PDF Downloads 92
551 Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis

Authors: Samim Khair Mohammad, Takeshi Tsuji, Chanmaly Chhun

Abstract:

The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks.

Keywords: The Afghan Tajik basin, seismic lines, spectral decomposition, thrust folds, hydrocarbon reservoirs

Procedia PDF Downloads 112
550 Nutritional Importance and Functional Properties of Baobab Leaves

Authors: Khadijat Ayanpeju Abdulsalam, Bolanle Mary Olawoye, Paul Babatunde Ayoola

Abstract:

The potential of Baobab leaves is understudied and not yet fully documented. The purpose of this work is to highlight the important nutritional value and practical qualities of baobab leaves. In this research, proximate analysis was studied to determine the macronutrient quantitative analysis in baobab leaves. Studies were also conducted on other characteristics, such as moisture content, which is significant to the food business since it affects food quality, preservation, and resistance to deterioration. Dietary fiber, which was also studied, has important health benefits, such as lowering blood cholesterol levels by lowering low-density lipoprotein or "bad" cholesterol. It functions as an anti-obesity and anti-diabetic agent, lowering the likelihood of haemorrhoids developing. Additionally, increasing face bulk and short-chain fatty acid synthesis improves gastrointestinal health and overall wellness. Baobab leaves had a moisture content of 6.4%, fat of 16.1%, ash of 3.2%, protein of 18.7%, carbohydrate 57.2% and crude fiber of 4.1%. The minerals determined in the sample of baobab leaves are Ca, Fe, Mg, K, Na, P, and Zn with Potassium (347.6±0.70) as the most abundant mineral while Zn (9.31±0.60) is the least abundant. The functional properties studied include pH, gelation temperature, bulk density, water absorption capacity, oil absorption capacity, foaming property, emulsifying property, and stability and swelling capacity, which are 8.72, 29, 0.39, 138, 98.20, 0.80, 72.80, and 73.50 respectively. The Fourier Transform InfraRed absorption spectra show bands like C=O, C-Cl and N-H. Baobab leaves are edible, nutritious, and non-toxic, as the mineral contents are within the required range.

Keywords: dietary fibre, proximate analysis, macronutrients, minerals, baobab leaves, frequency range

Procedia PDF Downloads 72
549 Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B

Authors: Ceren Karaman, Onur Karaman

Abstract:

The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction.

Keywords: adsorption, Cetyltrimethylammonium Bromide (CTAB), orange pulp, Remazol Black B (RBB), surface modification

Procedia PDF Downloads 248
548 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 151
547 Clay Effect on PET/Clay and PEN/Clay Nanocomposites Properties

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

Reinforced plastics or nanocomposites have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters, i.e., polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete, and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide-angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition.

Keywords: exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing

Procedia PDF Downloads 326
546 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique

Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu

Abstract:

Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.

Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing

Procedia PDF Downloads 101
545 Electrospun Fibers Made from Biopolymers (Cellulose Acetate/Chitosan) for Metals Recovery

Authors: Mauricio Gómez, Esmeralda López, Ian Becar, Jaime Pizarro, Paula A. Zapata

Abstract:

A biodegradable material is developed with adsorptive capacity for metals ion for intended use in mining tailings mitigating the environmental impact with economic retribution, two types of fibers were elaborated by electrospinning: (1) a cellulose acetate (CA) matrix and (2) a cellulose acetate (CA)/chitosan (CH) matrix evaluating the effect of CH in CA on its physicochemical properties. Through diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) the incorporation of chitosan in the matrix was identified, observing the band of the amino group at 1500 - 1600 [cm-1]. By scanning electron microscopy (SEM), Hg porosimetry, and CO2 isotherm at 273 [K], the intrafiber microporosity and interfiber macroporosity were identified, with an increase in the distribution of macropores for CA/CH fibers. In the tensile test, CH into the matrix produces a more ductile and tenacious behavior, where the % elongation at break increased by 33% with the other parameters constant. Thermal analysis by differential scanning calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that the incorporation of chitosan produces higher retention of water molecules due to the functional groups (amino groups (- NH3)), but there is a decrease in the specific heat and thermoplastic properties of the matrix since the glass transition temperature and softening temperature disappear. The effect of the optimum pH for CA and CA/CH fibers were studied in a batch system. In the adsorption kinetic study, the best isotherm model adapted to the experimental results corresponds to the Sips model and the kinetics corresponds to pseudo-second order

Keywords: environmental materials, wastewater treatment, electrospun fibers, biopolymers (cellulose acetate/chitosan), metals recovery

Procedia PDF Downloads 80
544 Removal of Lead Ions from Aqueous Medium Using Devised Column Filters Packed with Chitosan from Trash Crab Shells: A Characterization Study

Authors: Charles Klein O. Gorit, Mark Tristan J. Quimque Jr., M. Cecilia V. Almeda, Concepcion M. Salvana

Abstract:

Chitosan is a promising biopolymer commonly found in crustacean shells that has plausible effects in water purification and wastewater treatment. It is a primary derivative of chitin and considered second of the most abundant biopolymer prior to cellulose. Morphological analysis had been done using Scanning Electron Microscopy with Energy Dispersive Microscopy (SEM/EDS), and due to its porous nature, it showcases a certain degree of porosity, hence, larger adsorption site of heavy metal. The Energy Dispersive Spectroscopy of the chitosan and ‘lead-bound’ chitosan, shows a relative increase of percent abundance of lead cation from 1.44% to 2.08% hence, adsorption occurs. Chitosan, as a nitrogenous polysaccharide, subjected to Fourier transform infrared spectroscopy (FTIR) analysis shows amide bands ranging from 1635.36 cm⁻¹ for amide 1 band and 1558.40 cm-1 for amide 2 band with NH stretching. For ‘lead-bound’ chitosan, the FT-IR analysis shows a change in peaks upon adsorption of Pb(II) cation. The spectrum shows broadening of OH and NH stretching band. Such observation can be attributed to the probability that the attachment of Pb(II) ions is in these functional groups. A column filter was devised with lead-bound chitosan to determine the zero point charge (pHzpc) of the biopolymer. The results show that at pH 8.34, below than the zpc level of literatures cited for lead which ranges from pH 4 to 7, favors the adsorption site of chitosan and its capability to adsorb traces amount of aqueous lead.

Keywords: chitosan, biopolymer, FT-IR, SEM, zero-point charge, heavy metal, lead ions

Procedia PDF Downloads 151
543 Facilitating Conditions Mediating SME’s Intention to Use Social Media for Knowledge Sharing

Authors: Stevens Phaphadi Mamorobela

Abstract:

The Covid-19 pandemic has accelerated the use of social media in SMEs to stay abreast with information about the latest news and developments and to predict the future world of business. The national shutdown regulations for curbing the spread of the Covid-19 virus resulted in SMEs having to distribute large volumes of information through social media platforms to collaborate and conduct business remotely. How much of the information shared on social media is used by SMEs as significant knowledge for economic rent is yet to be known. This study aims to investigate the facilitating conditions that enable SMEs’ intention to use social media as a knowledge-sharing platform to create economic rent and to cope with the Covid-19 challenges. A qualitative research approach was applied where semi-structured interviews were conducted with 13 SME owners located in the Gauteng province in South Africa to identify and explain the facilitating conditions of SMEs towards their intention to use social media as a knowledge-sharing tool in the Covid-19 era. The study discovered that the national lockdown regulations towards curbing the spread of the Covid-19 pandemic had compelled SMEs to adopt digital technologies that enabled them to quickly transform their business processes to cope with the challenges of the pandemic. The facilitating conditions, like access to high bandwidth internet coverage in the Gauteng region, enable SMEs to have strong intentions to use social media to distribute content and to reach out to their target market. However, the content is shared informally using diverse social media platforms without any guidelines for transforming content into rent-yielding knowledge.

Keywords: facilitating conditions, knowledge sharing, social media, intention to use, SME

Procedia PDF Downloads 106
542 Evaluation of Cytotoxic Effect of Mitoxantrone Conjugated Magnetite Nanoparticles and Graphene Oxide-Magnetite Nanocomposites on Mesenchymal Stem Cells

Authors: Abbas Jafarizad, Duygu Ekinci

Abstract:

In this work targeted drug delivery is proposed to decrease adverse effect of drugs with concomitant reduces in consumption and treatment outgoings. Nanoparticles (NPs) can be prepared from a variety of materials such as lipid, biodegradable polymer that prevent the drugs cytotoxicity in healthy cells, etc. One of the most important drugs used in chemotherapy is mitoxantrone (MTX) which prevents cell proliferation by inhibition of topoisomerase II and DNA repair; however, it is not selective and has some serious side effects. In this study, mentioned aim is achieved by using several nanocarriers like magnetite (Fe3O4) and their composites with magnetic graphene oxide (Fe3O4@GO). Also, cytotoxic potential of Fe3O4, Fe3O4-MTX, and Fe3O4@GO-MTX nanocomposite were evaluated on mesenchymal stem cells (MSCs). In this study, we reported the synthesis of monodisperse Fe3O4 NPs and Fe3O4@GO nanocomposite and their structures were investigated by using field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM), Brauneur Emmet Teller (BET) isotherm and contact angle studies. Moreover, we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate cytotoxic effects of MTX, Fe3O4 NPs, Fe3O4-MTX and Fe3O4@GO-MTX nanocomposite on MSCs. The in-vitro MTT results indicated that all concentrations of MTX and Fe3O4@GO-MTX nanocomposites showed cytotoxic effects while all concentrations of Fe3O4 NPs and Fe3O4-MTX NPs did not show any cytotoxic effect on stem cells. The results from this study indicated that using Fe3O4 NPs as anticancer drug delivery systems could be a trustworthy method for cancer treatment. But for reaching excellent and accurate results, further investigation is necessary.

Keywords: mitoxantrone, magnetite, magnetic graphene oxide, MTT assay, mesenchymal stem cells

Procedia PDF Downloads 272
541 White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes

Authors: Manasa Perikala, Asha Bhardwaj

Abstract:

Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots.

Keywords: carbon dots, photoluminescence, size effects on emission in CDs, surface modification of carbon dots

Procedia PDF Downloads 135
540 Collagen Silver Lipid Nanoparticles as Matrix and Fillers for Cosmeceuticals: An In-Vitro and In-Vivo Study

Authors: Kumari Kajal, Muthu Kumar Sampath, Hare Ram Singh

Abstract:

In this context, the formulation and characterization of collagen silver lipid nanoparticles (CSLNs) were studied for their capacity to serve as fillers/matrix materials used in cosmeceutical applications. The CSLNs were prepared following a series of studies, such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy FT-IR; thermogravimetric analysis (TGA); and differential scanning calorimetry (DSC). The studies confirmed the structural integrity of nanoparticles, their cargo and thermal stability. The biological functionality of CSLNs was studied by carrying out in vitro & in vivo studies. The antibacterial effect, hemocompatibility and anti-inflammatory characteristics of these fibers were systematically investigated. The toxicological assays included oral toxicity in mice and aquatic life tests with the fish Danio rerio model. The morphology of the nanoparticles was confirmed using high-resolution transmission electron microscopy (HR-TEM). The report found that CSLNs had strong antimicrobial effects, unmatched hemocompatibility, and low or absent inflammatory reactions, which makes them perfect candidates for cosmeceutical applications. The toxicological evaluations evinced a good safety record without any significant adverse effects in both murine and Danio rerio models. This research reveals the efficient way of CSLNs to the efficacy and safety of dermaceuticals.

Keywords: collagen silver lipid nanoparticles (CSLNs), cosmeceuticals, antimicrobial activity, hemocompatibility, in vitro assessment, in vivo assessment.

Procedia PDF Downloads 15
539 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 144