Search results for: weather forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1149

Search results for: weather forecast

219 Targeting and Developing the Remaining Pay in an Ageing Field: The Ovhor Field Experience

Authors: Christian Ihwiwhu, Nnamdi Obioha, Udeme John, Edward Bobade, Oghenerunor Bekibele, Adedeji Awujoola, Ibi-Ada Itotoi

Abstract:

Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have a drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study aims to evaluate selected reservoirs in Ovhor Field, Niger Delta, Nigeria, with the objective of optimising production from the field by targeting undeveloped oil reserves, bypassed pay, and gaining an improved understanding of the selected reservoirs to increase the company’s reservoir limits. The task at the Ovhor field is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (sedimentology and stratigraphy) interpretation, use of results from quantitative interpretation, and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model has been constructed in such a way as to capture heterogeneities and the various compartments in the field to aid the proper simulation of fluid flow in the field for future production prediction, proper history matching and design of good trajectories to adequately target undeveloped oil in the field. Reservoir property models (porosity, permeability, and net-to-gross) have been constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captures the heterogeneities expected in the studied reservoirs. At least, two scenarios have been modelled for most of the studied reservoirs to capture the range of uncertainties we are dealing with. The total original oil in-place volume for the four reservoirs studied is 157 MMstb. The cumulative oil and gas production from the selected reservoirs are 67.64 MMstb and 9.76 Bscf respectively, with current production rate of about 7035 bopd and 4.38 MMscf/d (as at 31/08/2019). Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities include side-tracking and re-perforation of existing wells. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. New wells have/are being drilled now to test the results of our studies, and the results are very confirmatory and satisfying.

Keywords: facies, flow baffle, bypassed pay, heterogeneities, history matching, reservoir limit

Procedia PDF Downloads 112
218 Calibration of Contact Model Parameters and Analysis of Microscopic Behaviors of Cuxhaven Sand Using The Discrete Element Method

Authors: Anjali Uday, Yuting Wang, Andres Alfonso Pena Olare

Abstract:

The Discrete Element Method is a promising approach to modeling microscopic behaviors of granular materials. The quality of the simulations however depends on the model parameters utilized. The present study focuses on calibration and validation of the discrete element parameters for Cuxhaven sand based on the experimental data from triaxial and oedometer tests. A sensitivity analysis was conducted during the sample preparation stage and the shear stage of the triaxial tests. The influence of parameters like rolling resistance, inter-particle friction coefficient, confining pressure and effective modulus were investigated on the void ratio of the sample generated. During the shear stage, the effect of parameters like inter-particle friction coefficient, effective modulus, rolling resistance friction coefficient and normal-to-shear stiffness ratio are examined. The calibration of the parameters is carried out such that the simulations reproduce the macro mechanical characteristics like dilation angle, peak stress, and stiffness. The above-mentioned calibrated parameters are then validated by simulating an oedometer test on the sand. The oedometer test results are in good agreement with experiments, which proves the suitability of the calibrated parameters. In the next step, the calibrated and validated model parameters are applied to forecast the micromechanical behavior including the evolution of contact force chains, buckling of columns of particles, observation of non-coaxiality, and sample inhomogeneity during a simple shear test. The evolution of contact force chains vividly shows the distribution, and alignment of strong contact forces. The changes in coordination number are in good agreement with the volumetric strain exhibited during the simple shear test. The vertical inhomogeneity of void ratios is documented throughout the shearing phase, which shows looser structures in the top and bottom layers. Buckling of columns is not observed due to the small rolling resistance coefficient adopted for simulations. The non-coaxiality of principal stress and strain rate is also well captured. Thus the micromechanical behaviors are well described using the calibrated and validated material parameters.

Keywords: discrete element model, parameter calibration, triaxial test, oedometer test, simple shear test

Procedia PDF Downloads 105
217 Control of Indoor Carbon through Soft Approaches in Himachal Pradesh, India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

The mountainous regions are very crucial for a country because of their importance for weather, water supply, forests, and various other socio-economic benefits. But the increasing population and its demand for energy and infrastructure have contributed very high loadings of air pollution. Various activities such as cooking, heating, manufacturing, transport, etc. contribute various particulate and gaseous pollutants in the atmosphere. This study was focused upon indoor air pollution and was carried out in four rural households of the Baggi village located in the Hamirpur District of the Himachal Pradesh state. The residents of Baggi village use biomass as fuel for cooking on traditional stove (Chullah). The biomass types include wood (mainly Beul, Grewia Optiva), crop residue and dung cakes. This study aimed to determine the organic carbon (OC), elemental carbon (EC), major cations and anions in the indoor air of each household. During non-cooking hours, it was found that the indoor air contained OC and EC as low as 21µg/m³ and 17µg/m³ respectively. But during cooking hours (with biomass burning), the levels of OC and EC were raised significantly by 91.2% and 85.4% respectively. Then the residents were advised to switch over as per our soft approach options. In the first approach change, they were asked to prepare the meal partially on Chullah using biomass and partially with liquefied petroleum gas (LPG). By doing this change, a considerable reduction in OC (53.1%) and in EC (41.8%) was noticed. The second change of approach included the cooking of entire meal by using LPG. This resulted in the reduction of OC (84.1%) and EC (73.3%) as compared to the values obtained during cooking entirely with biomass. The carbonaceous aerosol levels were higher in the morning hours than in the evening hours because of more biomass burning activity in the morning. According to a general survey done with the residents, the study provided them an awareness about the air pollution and the harmful effects of biomass burning. Some of them correlated their ailments like weakened eyesight, fatigue and respiratory problems with indoor air pollution. This study demonstrated that by replacing biomass with clean fuel such as LPG, the indoor concentrations of EC and OC can be reduced substantially.

Keywords: biomass burning, carbonaceous aerosol, elemental carbon, organic carbon, LPG

Procedia PDF Downloads 108
216 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies

Authors: Tania Viju, Bimal P., Naseer M. A.

Abstract:

This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.

Keywords: decision support system, dynamic management, road accident blackspots, road safety

Procedia PDF Downloads 123
215 Simulation of Technological, Energy and GHG Comparison between a Conventional Diesel Bus and E-bus: Feasibility to Promote E-bus Change in High Lands Cities

Authors: Riofrio Jonathan, Fernandez Guillermo

Abstract:

Renewable energy represented around 80% of the energy matrix for power generation in Ecuador during 2020, so the deployment of current public policies is focused on taking advantage of the high presence of renewable sources to carry out several electrification projects. These projects are part of the portfolio sent to the United Nations Framework on Climate Change (UNFCCC) as a commitment to reduce greenhouse gas emissions (GHG) in the established national determined contribution (NDC). In this sense, the Ecuadorian Organic Energy Efficiency Law (LOEE) published in 2019 promotes E-mobility as one of the main milestones. In fact, it states that the new vehicles for urban and interurban usage must be E-buses since 2025. As a result, and for a successful implementation of this technological change in a national context, it is important to deploy land surveys focused on technical and geographical areas to keep the quality of services in both the electricity and transport sectors. Therefore, this research presents a technological and energy comparison between a conventional diesel bus and its equivalent E-bus. Both vehicles fulfill all the technical requirements to ride in the study-case city, which is Ambato in the province of Tungurahua-Ecuador. In addition, the analysis includes the development of a model for the energy estimation of both technologies that are especially applied in a highland city such as Ambato. The altimetry of the most important bus routes in the city varies from 2557 to 3200 m.a.s.l., respectively, for the lowest and highest points. These operation conditions provide a grade of novelty to this paper. Complementary, the technical specifications of diesel buses are defined following the common features of buses registered in Ambato. On the other hand, the specifications for E-buses come from the most common units introduced in Latin America because there is not enough evidence in similar cities at the moment. The achieved results will be good input data for decision-makers since electric demand forecast, energy savings, costs, and greenhouse gases emissions are computed. Indeed, GHG is important because it allows reporting the transparency framework that it is part of the Paris Agreement. Finally, the presented results correspond to stage I of the called project “Analysis and Prospective of Electromobility in Ecuador and Energy Mix towards 2030” supported by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).

Keywords: high altitude cities, energy planning, NDC, e-buses, e-mobility

Procedia PDF Downloads 132
214 An Exploratory Study to Understand the Economic Opportunities from Climate Change

Authors: Sharvari Parikh

Abstract:

Climate change has always been looked upon as a threat. Increased use of fossil fuels, depletion of bio diversity, certain human activities, rising levels of Greenhouse Gas (GHG) emissions are the factors that have caused climate change. Climate change is creating new risks and aggravating the existing ones. The paper focuses on breaking the stereotypical perception of climate change and draws attention towards the constructive side of it. Researches around the world have concluded that climate change has provided us with many untapped opportunities. The next 15 years will be crucial, as it is in our hands whether we are able to grab these opportunities or just let the situation get worse. The world stands at a stage where we cannot think of making a choice between averting climate change and promoting growth and development. In fact, the solution to climate change itself has got economic opportunities. The data evidences from the paper show how we can create the opportunity to improve the lives of the world’s population at large through structural change which will promote environment friendly investments. Rising Investment in green energy and increased demand of climate friendly products has got ample of employment opportunities. Old technologies and machinery which are employed today lack efficiency and demand huge maintenance because of which we face high production cost. This can be drastically brought down by adaptation of Green technologies which are more accessible and affordable. Overall GDP of the world has been heavily affected in aggravating the problems arising out of increasing weather problems. Shifting to green economy can not only eliminate these costs but also build a sound economy. Accelerating the economy in direction of low-carbon future can lessen the burdens such as subsidies for fossil fuels, several public debts, unemployment, poverty, reduce healthcare expenses etc. It is clear that the world will be dragged into the ‘Darker phase’ if the current trends of fossil fuels and carbon are being consumed. Switching to Green economy is the only way in which we can lift the world from darker phase. Climate change has opened the gates for ‘Green and Clean economy’. It will also bring countries of the world together in achieving the common goal of Green Economy.

Keywords: climate change, economic opportunities, green economy, green technology

Procedia PDF Downloads 224
213 Sentiment Analysis of Creative Tourism Experiences: The Case of Girona, Spain

Authors: Ariadna Gassiot, Raquel Camprubi, Lluis Coromina

Abstract:

Creative tourism involves the participation of tourists in the co-creation of their own experiences in a tourism destination. Consequently, creative tourists move from a passive behavior to an active behavior, and tourism destinations address this type of tourism by changing the scenario and making tourists learn and participate while they travel instead of merely offering tourism products and services to them. In creative tourism experiences, tourists are in close contact with locals and their culture. In destinations where culture (i.e. food, heritage, etc.) is the basis of their offer, such as Girona, Spain, tourism stakeholders must especially consider, analyze, and further foster the co-creation of authentic tourism experiences. They should focus on discovering more about these experiences, their main attributes, visitors’ opinions, etc. Creative tourists do not only participate while they travel around the world, but they also have and active post-travel behavior. They feel free to write about tourism experiences in different channels. User-generated content becomes crucial for any tourism destination when analyzing the market, making decisions, planning strategies, and when addressing issues, such as their reputation and performance. Sentiment analysis is a methodology used to automatically analyze semantic relationships and meanings in texts, so it is a way to extract tourists’ emotions and feelings. Tourists normally express their views and opinions regarding tourism products and services. They may express positive, neutral or negative feelings towards these products or services. For example, they may express anger, love, hate, sadness or joy towards tourism services and products. They may also express feelings through verbs, nouns, adverbs, adjectives, among others. Sentiment analysis may help tourism professionals in a range of areas, from marketing to customer service. For example, sentiment analysis allows tourism stakeholders to forecast tourism expenditure and tourist arrivals, or to analyze tourists’ profile. While there is an increasing presence of creativity in tourists’ experiences, there is also an increasing need to explore tourists’ expressions about these experiences. There is a need to know how they feel about participating in specific tourism activities. Thus, the main objective of this study is to analyze the meanings, emotions and feelings that tourists express about their creative experiences in Girona, Spain. To do so, sentiment analysis methodology is used. Results show the diversity of tourists who actively participate in tourism in Girona. Their opinions refer both to tangible aspects (e.g. food, museums, etc.) and to intangible aspects (e.g. friendliness, nightlife, etc.) of tourism experiences. Tourists express love, likeliness and other sentiments towards tourism products and services in Girona. This study can help tourism stakeholders in understanding tourists’ experiences and feelings. Consequently, they can offer more customized products and services and they can efficiently make them participate in the co-creation of their own tourism experiences.

Keywords: creative tourism, sentiment analysis, text mining, user-generated content

Procedia PDF Downloads 163
212 Estimation of Snow and Ice Melt Contributions to Discharge from the Glacierized Hunza River Basin, Karakoram, Pakistan

Authors: Syed Hammad Ali, Rijan Bhakta Kayastha, Danial Hashmi, Richard Armstrong, Ahuti Shrestha, Iram Bano, Javed Hassan

Abstract:

This paper presents the results of a semi-distributed modified positive degree-day model (MPDDM) for estimating snow and ice melt contributions to discharge from the glacierized Hunza River basin, Pakistan. The model uses daily temperature data, daily precipitation data, and positive degree day factors for snow and ice melt. The model is calibrated for the period 1995-2001 and validated for 2002-2013, and demonstrates close agreements between observed and simulated discharge with Nash–Sutcliffe Efficiencies of 0.90 and 0.88, respectively. Furthermore, the Weather Research and Forecasting model projected temperature, and precipitation data from 2016-2050 are used for representative concentration pathways RCP4.5 and RCP8.5, and bias correction was done using a statistical approach for future discharge estimation. No drastic changes in future discharge are predicted for the emissions scenarios. The aggregate snow-ice melt contribution is 39% of total discharge in the period 1993-2013. Snow-ice melt contribution ranges from 35% to 63% during the high flow period (May to October), which constitutes 89% of annual discharge; in the low flow period (November to April) it ranges from 0.02% to 17%, which constitutes 11 % of the annual discharge. The snow-ice melt contribution to total discharge will increase gradually in the future and reach up to 45% in 2041-2050. From a sensitivity analysis, it is found that the combination of a 2°C temperature rise and 20% increase in precipitation shows a 10% increase in discharge. The study allows us to evaluate the impact of climate change in such basins and is also useful for the future prediction of discharge to define hydropower potential, inform other water resource management in the area, to understand future changes in snow-ice melt contribution to discharge, and offer a possible evaluation of future water quantity and availability.

Keywords: climate variability, future discharge projection, positive degree day, regional climate model, water resource management

Procedia PDF Downloads 270
211 Formation Flying Design Applied for an Aurora Borealis Monitoring Mission

Authors: Thais Cardoso Franco, Caio Nahuel Sousa Fagonde, Willer Gomes dos Santos

Abstract:

Aurora Borealis is an optical phenomenon composed of luminous events observed in the night skies in the polar regions resulting from disturbances in the magnetosphere due to the impact of solar wind particles with the Earth's upper atmosphere, channeled by the Earth's magnetic field, which causes atmospheric molecules to become excited and emit electromagnetic spectrum, leading to the display of lights in the sky. However, there are still different implications of this phenomenon under study: high intensity auroras are often accompanied by geomagnetic storms that cause blackouts on Earth and impair the transmission of signals from the Global Navigation Satellite Systems (GNSS). Auroras are also known to occur on other planets and exoplanets, so the activity is an indication of active space weather conditions that can aid in learning about the planetary environment. In order to improve understanding of the phenomenon, this research aims to design a satellite formation flying solution for collecting and transmitting data for monitoring aurora borealis in northern hemisphere, an approach that allows studying the event with multipoint data collection in a reduced time interval, in order to allow analysis from the beginning of the phenomenon until its decline. To this end, the ideal number of satellites, the spacing between them, as well as the ideal topology to be used will be analyzed. From an orbital study, approaches from different altitudes, eccentricities and inclinations will also be considered. Given that at large relative distances between satellites in formation, controllers tend to fail, a study on the efficiency of nonlinear adaptive control methods from the point of view of position maintenance and propellant consumption will be carried out. The main orbital perturbations considered in the simulation: non-homogeneity terrestrial, atmospheric drag, gravitational action of the Sun and the Moon, accelerations due to solar radiation pressure and relativistic effects.

Keywords: formation flying, nonlinear adaptive control method, aurora borealis, adaptive SDRE method

Procedia PDF Downloads 13
210 Resurgence of Influenza A (H1N1) Pdm09 during November 2015 - February 2016, Pakistan

Authors: Nazish Badar

Abstract:

Background: To investigate the epidemic resurgent wave of influenza A (H1N1) pdm09 infections during 2015-16 Influenza season(Nov,15 –Feb,16) we compared epidemiological features of influenza A (H1N1) pdm09 associated hospitalizations and deaths during this period in Pakistan. Methods: Respiratory samples were tested using CDC Real-Time RT-PCR protocols. Demographic and epidemiological data was analyzed using SPSS. Risk ratio was calculated between age groups to compare patients that were hospitalized and died due to influenza A (H1N1) pdm09 during this period. Results: A total of 1970 specimens were analyzed; influenza virus was detected in 494(25%) samples, including 458(93%) Influenza type A and 36(7%) influenza type B viruses. Amongst influenza A viruses, 351(77%) A(H1N1) pdm09 and 107(23%) were A/H3N2. Influenza A(H1N1)pdm09 peaked in January 2016 when 250(54%) of tested patients were positive. The resurgent waves increased hospitalizations due to pdmH1N1 as compared to the rest part of the year. Overall 267(76%) A(H1N1) pdm09 cases were hospitalized. Adults ≥18 years showed the highest relative risk of hospitalization (1.2). Median interval of hospitalization and symptom onset was five days for all age groups. During this period, a total of 34 laboratory-confirmed deaths associated with pandemic influenza A (H1N1) were reported out of 1970 cases, the case fatality rate was 1.72%. the male to female ratio was 2:1in reported deaths. The majority of the deaths during that period occurred in adults ≥18 years of age. Overall median age of the death cases was 42.8 years with underlying medical conditions. The median number of days between symptom onset was two days. The diagnosis upon admission in influenza-associated fatal cases was pneumonia (53%). Acute Respiratory Distress Syndrome 9 (26%), eight out of which (88%) required mechanical ventilation. Conclusions: The present resurgence of pandemic virus cannot be attributed to a single factor. The prolong cold and dry weather, possibility of drift in virus and absence of annual flu vaccination may have played an integrated role in resurfacing of pandemic virus.

Keywords: influenza A (H1N1)pdm 09, resurgence, epidemiology, Pakistan

Procedia PDF Downloads 182
209 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies

Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan

Abstract:

The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.

Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping

Procedia PDF Downloads 74
208 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions

Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju

Abstract:

Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.

Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism

Procedia PDF Downloads 147
207 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates

Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.

Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump

Procedia PDF Downloads 32
206 Mature Field Rejuvenation Using Hydraulic Fracturing: A Case Study of Tight Mature Oilfield with Reveal Simulator

Authors: Amir Gharavi, Mohamed Hassan, Amjad Shah

Abstract:

The main characteristics of unconventional reservoirs include low-to ultra low permeability and low-to-moderate porosity. As a result, hydrocarbon production from these reservoirs requires different extraction technologies than from conventional resources. An unconventional reservoir must be stimulated to produce hydrocarbons at an acceptable flow rate to recover commercial quantities of hydrocarbons. Permeability for unconventional reservoirs is mostly below 0.1 mD, and reservoirs with permeability above 0.1 mD are generally considered to be conventional. The hydrocarbon held in these formations naturally will not move towards producing wells at economic rates without aid from hydraulic fracturing which is the only technique to assess these tight reservoir productions. Horizontal well with multi-stage fracking is the key technique to maximize stimulated reservoir volume and achieve commercial production. The main objective of this research paper is to investigate development options for a tight mature oilfield. This includes multistage hydraulic fracturing and spacing by building of reservoir models in the Reveal simulator to model potential development options based on sidetracking the existing vertical well. To simulate potential options, reservoir models have been built in the Reveal. An existing Petrel geological model was used to build the static parts of these models. A FBHP limit of 40bars was assumed to take into account pump operating limits and to maintain the reservoir pressure above the bubble point. 300m, 600m and 900m lateral length wells were modelled, in conjunction with 4, 6 and 8 stages of fracs. Simulation results indicate that higher initial recoveries and peak oil rates are obtained with longer well lengths and also with more fracs and spacing. For a 25year forecast, the ultimate recovery ranging from 0.4% to 2.56% for 300m and 1000m laterals respectively. The 900m lateral with 8 fracs 100m spacing gave the highest peak rate of 120m3/day, with the 600m and 300m cases giving initial peak rates of 110m3/day. Similarly, recovery factor for the 900m lateral with 8 fracs and 100m spacing was the highest at 2.65% after 25 years. The corresponding values for the 300m and 600m laterals were 2.37% and 2.42%. Therefore, the study suggests that longer laterals with 8 fracs and 100m spacing provided the optimal recovery, and this design is recommended as the basis for further study.

Keywords: unconventional, resource, hydraulic, fracturing

Procedia PDF Downloads 283
205 Adaptation Nature-Based Solutions: CBA of Woodlands for Flood Risk Management in the Aire Catchment, UK

Authors: Olivia R. Rendon

Abstract:

More than half of the world population lives in cities, in the UK, for example, 82% of the population was urban by 2013. Cities concentrate valuable and numerous infrastructure and sectors of the national economies. Cities are particularly vulnerable to climate change which will lead to higher damage costs in the future. There is thus a need to develop and invest in adaptation measures for cities to reduce the impact of flooding and other extreme weather events. Recent flood episodes present a significant and growing challenge to the UK and the estimated cost of urban flood damage is 270 million a year for England and Wales. This study aims to carry out cost-benefit analysis (CBA) of a nature-based approach for flood risk management in cities, focusing on the city of Leeds and the wider Aire catchment as a case study. Leeds was chosen as a case study due to its being one of the most flood vulnerable cities in the UK. In Leeds, over 4,500 properties are currently vulnerable to flooding and approximately £450 million of direct damage is estimated for a potential major flood from the River Aire. Leeds is also the second largest Metropolitan District in England with a projected population of 770,000 for 2014. So far the city council has mainly focused its flood risk management efforts on hard infrastructure solutions for the city centre. However, the wider Leeds district is at significant flood risk which could benefit from greener adaptation measures. This study presents estimates of a nature-based adaptation approach for flood risk management in Leeds. This land use management estimate is based on generating costings utilising primary and secondary data. This research contributes findings on the costs of different adaptation measures to flood risk management in a UK city, including the trade-offs and challenges of utilising nature-based solutions. Results also explore the potential implementation of the adaptation measures in the case study and the challenges of data collection and analysis for adaptation in flood risk management.

Keywords: green infrastructure, ecosystem services, woodland, adaptation, flood risk

Procedia PDF Downloads 263
204 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia

Authors: Nguyen-Thanh Son

Abstract:

Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.

Keywords: MODIS, flood, mapping, Cambodia

Procedia PDF Downloads 106
203 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation

Procedia PDF Downloads 93
202 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)

Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen

Abstract:

The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.

Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles

Procedia PDF Downloads 119
201 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 302
200 A Literature Study on IoT Based Monitoring System for Smart Agriculture

Authors: Sonu Rana, Jyoti Verma, A. K. Gautam

Abstract:

In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology.

Keywords: smart agriculture, IoT, agriculture technology, data analytics, smart technology

Procedia PDF Downloads 96
199 Physical Planning Trajectories for Disaster Mitigation and Preparedness in Costal and Seismic Regions: Capital Region of Andhra Pradesh, Vijayawada in India

Authors: Timma Reddy, Srikonda Ramesh

Abstract:

India has been traditionally vulnerable to natural disasters such as Floods, droughts, cyclones, earthquakes and landslides. It has become a recurrent phenomenon as observed in last five decades. The survey indicates that about 60% of the landmass is prone to earthquakes of various intensities; over 40 million hectares is prone to floods; about 8% of the total area is prone to cyclones and 68% of the area is susceptible to drought. Climate change is likely to be perceived through experience of extreme weather events. There is growing societal concern about climate change, given the potential impacts of associated natural hazards such as cyclones, flooding, earthquakes, landslides etc, hence it is essential and crucial to strengthening our settlements to respond to such calamities. So, the research paper focus is to analyze the effective planning strategy/mechanism to integrate disaster mitigation measures in coastal regions in general and Capital Region of Andhra Pradesh in particular. The basic hypothesis is to govern the appropriate special planning considerations would facilitate to have organized way of protective life and properties from natural disasters. And further to integrate the infrastructure planning with conscious direction would provide an effective mitigations measures. It has been planned and analyzed to Vijayawada city with conscious land use planning with reference to space syntax trajectory in accordance to required social infrastructure such as health facilities, institution areas and recreational and other open spaces. It has been identified that the geographically ideal location with reference to the population densities based on GIS tools the properness strategies can be effectively integrated to protect the life and to save the properties by means of reducing the damage/impact of natural disasters in general earth quake/cyclones or floods in particularly.

Keywords: modular, trajectories, social infrastructure, evidence based syntax, drills and equipments, GIS, geographical micro zoning, high resolution satellite image

Procedia PDF Downloads 200
198 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform

Authors: Khadija Refouh

Abstract:

Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.

Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms

Procedia PDF Downloads 125
197 Cultures, Differences, and Education in EU: Right to Have Rights against Reality

Authors: Ana Campina, José Caramelo Gomes, Maria Emília Teixeira, Cristina Costa-Lobo

Abstract:

In the pursuit of educational equity within Human Rights and European Fundamental Laws, the reality presents serious problems based on the psychologic, social understanding. Take into account the miscellaneous cultures in the global context and the nowadays numbers of Human mobilities, there are serious problems affecting the societies. This justifies the diagnosed need of a renew pedagogical and social education strategy to achieve the integration positive context preventing violence and discrimination, especially in Education systems. Consequently, it is important to have in mind the respect, acceptance, and integration of special needs students in all study degrees, as it is law but a complex reality. Despite the UN and International Human Rights, European Fundamental Chart, and all EU Treats, as the 28th EU State Member’s fundamental laws forecast the right of Education, the respect, the action and promotion of different cultures and the Education for ‘Difference’ integration – cultures; ideologies, Special Needs Students/Citizens – there are different and severe problems. Firstly, there are questions/contexts/problems not denounced by the lack of investments, political, social or ‘powers’ pressures, so, consequently, the authorities don’t have the action as laws demand and the transgressors haven´t any juridical or judicial punishment. Secondly, and our most important point: Governments, authorities and even victims hide these violations/violence/problems what disable the effective protection and law enforcement. Finally, the official and non-official strategies to get around the duties, break away the laws, failing the victims protection and consequently enable the problems increase dramatically. With this research, we observed that there are international Organizations/regions and States acting without respect to the Education right despite their democratic ideology and the generated external ‘image’ of law-abiding and Human Rights defenders. Nevertheless, it is urgent to develop a consistent Human Rights Education program aiming to protect, promote and implement the Right to be different and be respected by the law, the governments, institutions official and non-official, adapted to the needs in each society. The background of this research is the International and European laws, in accordance with the state’s legal systems. The approaches and the differences of the Education for Human and Fundamental Rights execution in the different EU countries, studying the pedagogy and social inclusion programs/strategies, with particular analysis of the Special Needs students. The results aim to construct a European Education profiling, with the governments and EU interventions need, as well as the panorama of the Special Needs Students effective integration achieving a renewed strategy to promote the respect of the Differences and an Inclusive School life.

Keywords: international human rights, culture, differences, European education profiling

Procedia PDF Downloads 179
196 The Potential Fresh Water Resources of Georgia and Sustainable Water Management

Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili

Abstract:

Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.

Keywords: GIS, management, rivers, water resources

Procedia PDF Downloads 352
195 Using Linear Logistic Regression to Evaluation the Patient and System Delay and Effective Factors in Mortality of Patients with Acute Myocardial Infarction

Authors: Firouz Amani, Adalat Hoseinian, Sajjad Hakimian

Abstract:

Background: The mortality due to Myocardial Infarction (MI) is often occur during the first hours after onset of symptom. So, for taking the necessary treatment and decreasing the mortality rate, timely visited of the hospital could be effective in this regard. The aim of this study was to investigate the impact of effective factors in mortality of MI patients by using Linear Logistic Regression. Materials and Methods: In this case-control study, all patients with Acute MI who referred to the Ardabil city hospital were studied. All of died patients were considered as the case group (n=27) and we select 27 matched patients without Acute MI as a control group. Data collected for all patients in two groups by a same checklist and then analyzed by SPSS version 24 software using statistical methods. We used the linear logistic regression model to determine the effective factors on mortality of MI patients. Results: The mean age of patients in case group was significantly higher than control group (75.1±11.7 vs. 63.1±11.6, p=0.001).The history of non-cardinal diseases in case group with 44.4% significantly higher than control group with 7.4% (p=0.002).The number of performed PCIs in case group with 40.7% significantly lower than control group with 74.1% (P=0.013). The time distance between hospital admission and performed PCI in case group with 110.9 min was significantly upper than control group with 56 min (P=0.001). The mean of delay time from Onset of symptom to hospital admission (patient delay) and the mean of delay time from hospital admissions to receive treatment (system delay) was similar between two groups. By using logistic regression model we revealed that history of non-cardinal diseases (OR=283) and the number of performed PCIs (OR=24.5) had significant impact on mortality of MI patients in compare to other factors. Conclusion: Results of this study showed that of all studied factors, the number of performed PCIs, history of non-cardinal illness and the interval between onset of symptoms and performed PCI have significant relation with morality of MI patients and other factors were not meaningful. So, doing more studies with a large sample and investigated other involved factors such as smoking, weather and etc. is recommended in future.

Keywords: acute MI, mortality, heart failure, arrhythmia

Procedia PDF Downloads 112
194 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 51
193 Cultivating Social-Ecological Resilience, Harvesting Biocultural Resistance in Southern Andes

Authors: Constanza Monterrubio-Solis, Jose Tomas Ibarra

Abstract:

The fertile interdependence of social-ecological systems reveals itself in the interactions between native forests and seeds, home gardens, kitchens, foraging activities, local knowledge, and food practices, creating particular flavors and food meanings as part of cultural identities within territories. Resilience in local-food systems, from a relational perspective, can be understood as the balance between persistence and adaptability to change. Food growing, preparation, and consumption are constantly changing and adapting as expressions of agency of female and male indigenous peoples and peasants. This paper explores local food systems’ expressions of resilience in the la Araucanía region of Chile, namely: diversity, redundancy, buffer capacity, modularity, self-organization, governance, learning, equity, and decision-making. Applying ethnographic research methods (participant observation, focus groups, and semi-structured interviews), this work reflects on the experience developed through work with Mapuche women cultivating home gardens in the region since 2012; it looks to material and symbolic elements of resilience in the local indigenous food systems. Local food systems show indeed indicators of social-ecological resilience. The biocultural memory is expressed in affection to particular flavors and recipes, the cultural importance of seeds and reciprocity networks, as well as an accurate knowledge about the indicators of the seasons and weather, which have allowed local food systems to thrive with a strong cultural foundation. Furthermore, these elements turn into biocultural resistance in the face of the current institutional pressures for rural specialization, processes of cultural assimilation such as agroecosystems and diet homogenization, as well as structural threats towards the diversity and freedom of native seeds. Thus, the resilience-resistance dynamic shown by the social-ecological systems of the southern Andes is daily expressed in the local food systems and flavors and is key for diverse and culturally sound social-ecological health.

Keywords: biocultural heritage, indigenous food systems, social-ecological resilience, southern Andes

Procedia PDF Downloads 118
192 Study and Simulation of a Sever Dust Storm over West and South West of Iran

Authors: Saeed Farhadypour, Majid Azadi, Habibolla Sayyari, Mahmood Mosavi, Shahram Irani, Aliakbar Bidokhti, Omid Alizadeh Choobari, Ziba Hamidi

Abstract:

In the recent decades, frequencies of dust events have increased significantly in west and south west of Iran. First, a survey on the dust events during the period (1990-2013) is investigated using historical dust data collected at 6 weather stations scattered over west and south-west of Iran. After statistical analysis of the observational data, one of the most severe dust storm event that occurred in the region from 3rd to 6th July 2009, is selected and analyzed. WRF-Chem model is used to simulate the amount of PM10 and how to transport it to the areas. The initial and lateral boundary conditions for model obtained from GFS data with 0.5°×0.5° spatial resolution. In the simulation, two aerosol schemas (GOCART and MADE/SORGAM) with 3 options (chem_opt=106,300 and 303) were evaluated. Results of the statistical analysis of the historical data showed that south west of Iran has high frequency of dust events, so that Bushehr station has the highest frequency between stations and Urmia station has the lowest frequency. Also in the period of 1990 to 2013, the years 2009 and 1998 with the amounts of 3221 and 100 respectively had the highest and lowest dust events and according to the monthly variation, June and July had the highest frequency of dust events and December had the lowest frequency. Besides, model results showed that the MADE / SORGAM scheme has predicted values and trends of PM10 better than the other schemes and has showed the better performance in comparison with the observations. Finally, distribution of PM10 and the wind surface maps obtained from numerical modeling showed that the formation of dust plums formed in Iraq and Syria and also transportation of them to the West and Southwest of Iran. In addition, comparing the MODIS satellite image acquired on 4th July 2009 with model output at the same time showed the good ability of WRF-Chem in simulating spatial distribution of dust.

Keywords: dust storm, MADE/SORGAM scheme, PM10, WRF-Chem

Procedia PDF Downloads 256
191 Climate Species Lists: A Combination of Methods for Urban Areas

Authors: Andrea Gion Saluz, Tal Hertig, Axel Heinrich, Stefan Stevanovic

Abstract:

Higher temperatures, seasonal changes in precipitation, and extreme weather events are increasingly affecting trees. To counteract the increasing challenges of urban trees, strategies are increasingly being sought to preserve existing tree populations on the one hand and to prepare for the coming years on the other. One such strategy lies in strategic climate tree species selection. The search is on for species or varieties that can cope with the new climatic conditions. Many efforts in German-speaking countries deal with this in detail, such as the tree lists of the German Conference of Garden Authorities (GALK), the project Stadtgrün 2021, or the instruments of the Climate Species Matrix by Prof. Dr. Roloff. In this context, different methods for a correct species selection are offered. One possibility is to select certain physiological attributes that indicate the climate resilience of a species. To calculate the dissimilarity of the present climate of different geographic regions in relation to the future climate of any city, a weighted (standardized) Euclidean distance (SED) for seasonal climate values is calculated for each region of the Earth. The calculation was performed in the QGIS geographic information system, using global raster datasets on monthly climate values in the 1981-2010 standard period. Data from a European forest inventory were used to identify tree species growing in the calculated analogue climate regions. The inventory used is the compilation of georeferenced point data at a 1 km grid resolution on the occurrence of tree species in 21 European countries. In this project, the results of the methodological application are shown for the city of Zurich for the year 2060. In the first step, analog climate regions based on projected climate values for the measuring station Kirche Fluntern (ZH) were searched for. In a further step, the methods mentioned above were applied to generate tree species lists for the city of Zurich. These lists were then qualitatively evaluated with respect to the suitability of the different tree species for the Zurich area to generate a cleaned and thus usable list of possible future tree species.

Keywords: climate change, climate region, climate tree, urban tree

Procedia PDF Downloads 84
190 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity

Authors: Anamika Sahu

Abstract:

The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.

Keywords: MASW, mechanical, petrophysical, site characterization

Procedia PDF Downloads 72