Search results for: drug%E2%80%93drug%20interactions
1087 Endotracheal Intubation Self-Confidence: Report of a Realistic Simulation Training
Authors: Cleto J. Sauer Jr., Rita C. Sauer, Chaider G. Andrade, Doris F. Rabelo
Abstract:
Introduction: Endotracheal Intubation (ETI) is a procedure for clinical management of patients with severe clinical presentation of COVID-19 disease. Realistic simulation (RS) is an active learning methodology utilized for clinical skill's improvement. To improve ETI skills of public health network's physicians from Recôncavo da Bahia region in Brazil, during COVID-19 outbreak, RS training was planned and carried out. Training scenario included the Nasco Lifeform realistic simulator, and three actions were simulated: ETI procedure, sedative drugs management, and bougie guide utilization. Training intervention occurred between May and June 2020, as an interinstitutional cooperation between the Health's Department of Bahia State and the Federal University from Recôncavo da Bahia. Objective: The main objective is to report the effects on participants' self-confidence perception for ETI procedure after RS based training. Methods: This is a descriptive study, with secondary data extracted from questionnaires applied throughout RS training. Priority workplace, time from last intubation, and knowledge about bougie were reported on a preparticipation questionnaire. Additionally, participants completed pre- and post-training qualitative self-assessment (10-point Likert scale) regarding self-confidence perception in performing each of simulated actions. Distribution analysis for qualitative data was performed with Wilcoxon Signed Rank Test, and self-confidence increase analysis in frequency contingency tables with Fisher's Exact Test. Results: 36 physicians participated of training, 25 (69%) from primary care setting, 25 (69%) performed ETI over a year ago, and only 4 (11%) had previous knowledge about the bougie guide utilization. There was an increase in self-confidence medians for all three simulated actions. Medians (variation) for self-confidence before and after training, for each simulated action were as follows: ETI [5 (1-9) vs. 8 (6-10) (p < 0.0001)]; Sedative drug management [5 (1-9) vs. 8 (4-10) (p < 0.0001)]; Bougie guide utilization [2.5 (1-7) vs. 8 (4-10) (p < 0.0001)]. Among those who performed ETI over a year ago (n = 25), an increase in self-confidence greater than 3 points for ETI was reported by 23 vs. 2 physicians (p = 0.0002), and by 21 vs. 4 (p = 0.03) for sedative drugs management. Conclusions: RS training contributed to self-confidence increase in performing ETI. Among participants who performed ETI over a year, there was a significant association between RS training and increase of more than 3 points in self-confidence, both for ETI and sedative drug management. Training with RS methodology is suitable for ETI confidence enhancement during COVID-19 outbreak.Keywords: confidence, COVID-19, endotracheal intubation, realistic simulation
Procedia PDF Downloads 1401086 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection
Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi
Abstract:
The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora
Procedia PDF Downloads 1021085 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy
Authors: Van Tran Thi Thuy, Dukjoon Kim
Abstract:
A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.Keywords: magnetic, nano, PNIPAM, polysuccinimide
Procedia PDF Downloads 4131084 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)
Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky
Abstract:
The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.Keywords: sutures, biomaterials, silk, Ramie
Procedia PDF Downloads 3161083 Triazenes: Unearthing Their Hidden Arsenal Against Malaria and Microbial Menace
Authors: Frans J. Smit, Wisdom A. Munzeiwa, Hermanus C. M. Vosloo, Lyn-Marie Birkholtz, Richard K. Haynes
Abstract:
Malaria and antimicrobial infections remain significant global health concerns, necessitating the continuous search for novel therapeutic approaches. This abstract presents an overview of the potential use of triazenes as effective agents against malaria and various antimicrobial pathogens. Triazenes are a class of compounds characterized by a linear arrangement of three nitrogen atoms, rendering them structurally distinct from their cyclic counterparts. This study investigates the efficacy of triazenes against malaria and explores their antimicrobial activity. Preliminary results revealed significant antimalarial activity of the triazenes, as evidenced by in vitro screening against P. falciparum, the causative agent of malaria. Furthermore, the compounds exhibited broad-spectrum antimicrobial activity, indicating their potential as effective antimicrobial agents. These compounds have shown inhibitory effects on various essential enzymes and processes involved in parasite survival, replication, and transmission. The mechanism of action of triazenes against malaria involves interactions with critical molecular targets, such as enzymes involved in the parasite's metabolic pathways and proteins responsible for host cell invasion. The antimicrobial activity of the triazenes against bacteria and fungi was investigated through disc diffusion screening. The antimicrobial efficacy of triazenes has been observed against both Gram-positive and Gram-negative bacteria, as well as multidrug-resistant strains, making them potential candidates for combating drug-resistant infections. Furthermore, triazenes possess favourable physicochemical properties, such as good stability, solubility, and low toxicity, which are essential for drug development. The structural versatility of triazenes allows for the modification of their chemical composition to enhance their potency, selectivity, and pharmacokinetic properties. These modifications can be tailored to target specific pathogens, increasing the potential for personalized treatment strategies. In conclusion, this study highlights the potential of triazenes as promising candidates for the development of novel antimalarial and antimicrobial therapeutics. Further investigations are necessary to determine the structure-activity relationships and optimize the pharmacological properties of these compounds. The results warrant additional research, including MIC studies, to further explore the antimicrobial activity of the triazenes. Ultimately, these findings contribute to the development of more effective strategies for combating malaria and microbial infections.Keywords: malaria, anti-microbials, triazene, resistance
Procedia PDF Downloads 1001082 Formulation and Characterization of Antimicrobial Herbal Mouthwash from Some Herbal Extracts for Treatment of Periodontal Diseases
Authors: Reenu Yadav, Abhay Asthana, S. K. Yadav
Abstract:
Purpose: The aim of the present work was to develop an oral gel for brushing with an antimicrobial activity which will cure/protect from various periodontal diseases such as periodontitis, gingivitis, and pyorrhea. Methods: Plant materials procured from local suppliers, extracted and standardized. Screening of antimicrobial activity was carried out with the help of disk diffusion method. The gel was formulated by dried extracts of Beautea monosperma and Cordia obliquus. Gels were evaluated on various parameters and standardization of the formulation was performed. The release of drugs was studied in pH 6.8 using a mastication device.Total phenolic and flavonoid contents were estimated by folin-Ciocalteu and aluminium chloride method, and stability studies were performed (40°C and RH 75% ± 5% for 90 days) to assess the effect of temperature and humidity on the concentration of phenolic and flavonoid contents. The results of accelerated stability conditions were compared with that of samples kept at controlled conditions (RT). The control samples were kept at room temperature (25°C, 35% RH for 180 days). Results: Results are encouraging; extracts possess significant antimicrobial activity at very low concentration (15µg/disc, 20µg/disc and 15 µg/ disc) on oral pathogenic bacteria. The formulation has optimal characteristics, as well as has a pleasant appearance, fragrance, texture, and taste, is highly acceptable by the volunteers. The diffusion coefficient values ranged from 0.6655 to 0.9164. Since the R values of korsmayer papas were close to 1, Drug release from formulation follows matrix diffusion kinetics. Hence, diffusion was the mechanism of the drug release. Formulation follows non-Fickian transport mechanism. Most Formulations released 50 % of their contents within 25-30 minutes. Results obtained from the accelerated stability studies are indicative of a slight reduction in flavonoids and phenolic contents with time on long time storage. When measured degradation under ambient conditions, degradation was significantly lower than in accelerated stability study. Conclusion: Plant extracts possess compounds with antimicrobial properties can be used as. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations oral gel including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.Keywords: herbal gel, dental care, ambient conditions, commercial scale
Procedia PDF Downloads 4381081 The Transcription Factor HNF4a: A Key Player in Haematological Disorders
Authors: Tareg Belali, Mosleh Abomughaid, Muhanad Alhujaily
Abstract:
HNF4a is one of the steroid hormone receptor family of transcription factors with roles in the development of the liver and the regulation of several critical metabolic pathways, such as glycolysis, drug metabolism, and apolipoproteins and blood coagulation. The transcriptional potency of HNF4a is well known due to its involvement in diabetes and other metabolic diseases. However, recently HNF4a has been discovered to be closely associated with several haematological disorders, mainly because of genetic mutations, drugs, and hepatic disorders. We review HNF4a structure and function and its role in haematological disorders. We discuss possible good therapies that are based on targeting HNF4a.Keywords: hepatocyte nuclear factor 4 alpha, HNF4a nuclear receptor, steroid hormone receptor family of transcription factors, hematological disorders
Procedia PDF Downloads 921080 Ultra-deformable Drug-free Sequessome™ Vesicles (TDT 064) for the Treatment of Joint Pain Following Exercise: A Case Report and Clinical Data
Authors: Joe Collins, Matthias Rother
Abstract:
Background: Oral non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the relief of joint pain during and post-exercise. However, oral NSAIDs increase the risk of systemic side effects, even in healthy individuals, and retard recovery from muscle soreness. TDT 064 (Flexiseq®), a topical formulation containing ultra-deformable drug-free Sequessome™ vesicles, has demonstrated equivalent efficacy to oral celecoxib in reducing osteoarthritis-associated joint pain and stiffness. TDT 064 does not cause NSAID-related adverse effects. We describe clinical study data and a case report on the effectiveness of TDT 064 in reducing joint pain after exercise. Methods: Participants with a pain score ≥3 (10-point scale) 12–16 hours post-exercise were randomized to receive TDT 064 plus oral placebo, TDT 064 plus oral ketoprofen, or ketoprofen in ultra-deformable phospholipid vesicles plus oral placebo. Results: In the 168 study participants, pain scores were significantly higher with oral ketoprofen plus TDT 064 than with TDT 064 plus placebo in the 7 days post-exercise (P = 0.0240) and recovery from muscle soreness was significantly longer (P = 0.0262). There was a low incidence of adverse events. These data are supported by clinical experience. A 24-year-old male professional rugby player suffered a traumatic lisfranc fracture in March 2014 and underwent operative reconstruction. He had no relevant medical history and was not receiving concomitant medications. He had undergone anterior cruciate ligament reconstruction in 2008. The patient reported restricted training due to pain (score 7/10), stiffness (score 9/10) and poor function, as well as pain when changing direction and running on consecutive days. In July 2014 he started using TDT 064 twice daily at the recommended dose. In November 2014 he noted reduced pain on running (score 2-3/10), decreased morning stiffness (score 4/10) and improved joint mobility and was able to return to competitive rugby without restrictions. No side effects of TDT 064 were reported. Conclusions: TDT 064 shows efficacy against exercise- and injury-induced joint pain, as well as that associated with osteoarthritis. It does not retard muscle soreness recovery after exercise compared with an oral NSAID, making it an alternative approach for the treatment of joint pain during and post-exercise.Keywords: exercise, joint pain, TDT 064, phospholipid vesicles
Procedia PDF Downloads 4791079 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking
Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed
Abstract:
Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy
Procedia PDF Downloads 3281078 DFT Study of Hoogsteen-Type Base Pairs
Authors: N. Amraoui, D. Hammoutene
Abstract:
We have performed a theoretical study using dispersion-corrected Density Functional Methods to evaluate a variety of artificial nucleobases as candidates for metal-mediated Hoogsteen-type base pairs. We focus on A-M-T Hoogsteen-type base pair with M=Co(II), Ru(I), Ni(I). All calculations are performed using (ADF 09) program. Metal-mediated Hoogsteen-type base pairs are studied as drug candidates, their geometry optimizations are performed at ZORA/TZ2P/BLYP-D level. The molecular geometries and different energies as total energies, coordination energies, Pauli interactions, orbital interactions and electrostatic energies are determined.Keywords: chemistry, biology, density functional method, orbital interactions
Procedia PDF Downloads 2821077 Ecorium: The Ecological Project in Montevideo Uruguay
Authors: Chettou Souhaila, Soufi Omar, Roumia Mohammed Ammar
Abstract:
Protecting the environment is to preserve the survival and future of humanity. Indeed, the environment is our source of food and drinking water, the air is our source of oxygen, the climate allows our survival and biodiversity are a potential drug reservoir. Preserving the environment is, therefore, a matter of survival. The objective of this project is to familiarize the general public with environmental problems not only with the theme of environmental protection, but also with the concept of biodiversity in different ecosystems. For it, the aim of our project was to create the Ecorium which is a place that preserves many species of plants of different ecosystems, schools, malls, buildings, offices, ecological transports, gardens, and many familial activities that participated in the ecosystems development, strategic biodiversity and sustainable development.Keywords: ecological system, ecorium, environment, sustainable development
Procedia PDF Downloads 3381076 Grape Seed Extract in Prevention and Treatment of Liver Toxic Cirrhosis in Rats
Authors: S. Buloyan, V. Mamikonyan, H. Hakobyan, H. Harutyunyan, H. Gasparyan
Abstract:
The liver is the strongest regenerating organ of the organism, and even with 2/3 surgically removed, it can regenerate completely. Hence, liver cirrhosis may only develop when the regenerating system is off. We present the results of a comparative study of structural and functional characteristics of rat liver tissue under the conditions of toxic liver cirrhosis development, induced by carbon tetrachloride, and its prevention/treatment by natural compounds with antioxidant and immune stimulating action. Studies were made on Wister rats, weighing 120~140 g. Grape seeds extracts, separately and in combination with well known anticirrhotic drug ursodeoxycholic acid (ursodiol) have demonstrated effectiveness in prevention of liver cirrhosis development and its treatment.Keywords: carbon tetrachloride, GSE, liver cirrhosis, prevention, treatment
Procedia PDF Downloads 4841075 Hierarchical Zeolites as Potential Carriers of Curcumin
Authors: Ewelina Musielak, Agnieszka Feliczak-Guzik, Izabela Nowak
Abstract:
Based on the latest data, it is expected that the substances of therapeutic interest used will be as natural as possible. Therefore, active substances with the highest possible efficacy and low toxicity are sought. Among natural substances with therapeutic effects, those of plant origin stand out. Curcumin isolated from the Curcuma longa plant has proven to be particularly important from a medical point of view. Due to its ability to regulate many important transcription factors, cytokines, and protein kinases, curcumin has found use as an anti-inflammatory, antioxidant, antiproliferative, antiangiogenic, and anticancer agent. The unfavorable properties of curcumin, such as low solubility, poor bioavailability, and rapid degradation under neutral or alkaline pH conditions, limit its clinical application. These problems can be solved by combining curcumin with suitable carriers such as hierarchical zeolites. This is a new class of materials that exhibit several advantages. Hierarchical zeolites used as drug carriers enable delayed release of the active ingredient and promote drug transport to the desired tissues and organs. In addition, hierarchical zeolites play an important role in regulating micronutrient levels in the body and have been used successfully in cancer diagnosis and therapy. To apply curcumin to hierarchical zeolites synthesized from commercial FAU zeolite, solutions containing curcumin, carrier and acetone were prepared. The prepared mixtures were then stirred on a magnetic stirrer for 24 h at room temperature. The curcumin-filled hierarchical zeolites were drained into a glass funnel, where they were washed three times with acetone and distilled water, after which the obtained material was air-dried until completely dry. In addition, the effect of piperine addition to zeolite carrier containing a sufficient amount of curcumin was studied. The resulting products were weighed and the percentage of pure curcumin in the hierarchical zeolite was calculated. All the synthesized materials were characterized by several techniques: elemental analysis, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Fourier transform infrared (FT-IR), N2 adsorption, and X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The aim of the presented study was to improve the biological activity of curcumin by applying it to hierarchical zeolites based on FAU zeolite. The results showed that the loading efficiency of curcumin into hierarchical zeolites based on commercial FAU-type zeolite is enhanced by modifying the zeolite carrier itself. The hierarchical zeolites proved to be very good and efficient carriers of plant-derived active ingredients such as curcumin.Keywords: carriers of active substances, curcumin, hierarchical zeolites, incorporation
Procedia PDF Downloads 961074 The Impact of Efflux Pump Inhibitor on the Activity of Benzosiloxaboroles and Benzoxadiboroles against Gram-Negative Rods
Authors: Agnieszka E. Laudy, Karolina Stępien, Sergiusz Lulinski, Krzysztof Durka, Stefan Tyski
Abstract:
1,3-dihydro-1-hydroxy-2,1-benzoxaborole and its derivatives are a particularly interesting group of synthetic agents and were successfully employed in supramolecular chemistry medicine. The first important compounds, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole and 5-chloro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole were identified as potent antifungal agents. In contrast, (S)-3-(aminomethyl)-7-(3-hydroxypropoxy)-1-hydroxy-1,3-dihydro-2,1-benzoxaborole hydrochloride is in the second phase of clinical trials as a drug for the treatment of Gram-negative bacterial infections of the Enterobacteriaceae family and Pseudomonas aeruginosa. Equally important and difficult task is to search for compounds active against Gram-negative bacilli, which have multi-drug-resistance efflux pumps actively removing many of the antibiotics from bacterial cells. We have examined whether halogen-substituted benzoxaborole-based derivatives and their analogues possess antibacterial activity and are substrates for multi-drug-resistance efflux pumps. The antibacterial activity of 1,3-dihydro-3-hydroxy-1,1-dimethyl-1,2,3-benzosiloxaborole and 10 halogen-substituted its derivatives, as well as 1,2-phenylenediboronic acid and 3 synthesised fluoro-substituted its analogs, were evaluated. The activity against the reference strains of Gram-positive (n=5) and Gram-negative bacteria (n=10) was screened by the disc-diffusion test (0.4 mg of tested compounds was applied onto paper disc). The minimal inhibitory concentration values and the minimal bactericidal concentration values were estimated according to The Clinical and Laboratory Standards Institute and The European Committee on Antimicrobial Susceptibility Testing recommendations. During the minimal inhibitory concentration values determination with or without phenylalanine-arginine beta-naphthylamide (50 mg/L) efflux pump inhibitor, the concentrations of tested compounds ranged 0.39-400 mg/L in the broth medium supplemented with 1 mM magnesium sulfate. Generally, the studied benzosiloxaboroles and benzoxadiboroles showed a higher activity against Gram-positive cocci than against Gram-negative rods. Moreover, benzosiloxaboroles have the higher activity than benzoxadiboroles compounds. In this study, we demonstrated that substitution (mono-, di- or tetra-) of 1,3-dihydro-3-hydroxy-1,1-dimethyl-1,2,3-benzosiloxaborole with halogen groups resulted in an increase in antimicrobial activity as compared to the parent substance. Interestingly, the 6,7-dichloro-substituted parent substance was found to be the most potent against Gram-positive cocci: Staphylococcus sp. (minimal inhibitory concentration 6.25 mg/L) and Enterococcus sp. (minimal inhibitory concentration 25 mg/L). On the other hand, mono- and dichloro-substituted compounds were the most actively removed by efflux pumps present in Gram-negative bacteria mainly from Enterobacteriaceae family. In the presence of efflux pump inhibitor the minimal inhibitory concentration values of chloro-substituted benzosiloxaboroles decreased from 400 mg/L to 3.12 mg/L. Of note, the highest increase in bacterial susceptibility to tested compounds in the presence of phenylalanine-arginine beta-naphthylamide was observed for 6-chloro-, 6,7-dichloro- and 6,7-difluoro-substituted benzosiloxaboroles. In the case of Escherichia coli, Enterobacter cloacae and P. aeruginosa strains at least a 32-fold decrease in the minimal inhibitory concentration values of these agents were observed. These data demonstrate structure-activity relationships of the tested derivatives and highlight the need for further search for benzoxaboroles and related compounds with significant antimicrobial properties. Moreover, the influence of phenylalanine-arginine beta-naphthylamide on the susceptibility of Gram-negative rods to studied benzosiloxaboroles indicate that some tested agents are substrates for efflux pumps in Gram-negative rods.Keywords: antibacterial activity, benzosiloxaboroles, efflux pumps, phenylalanine-arginine beta-naphthylamide
Procedia PDF Downloads 2691073 Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp
Authors: R. C. Ferreira, H. H. C. De Lima, A. A. Cândido, O. M. Couto Junior, P. A. Arroyo, K. Q De Carvalho, G. F. Gauze, M. A. S. D. Barros
Abstract:
Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface.Keywords: adsorption, activated carbon, babassu, dende
Procedia PDF Downloads 3691072 Contemporary Mexican Shadow Politics: The War on Drugs and the Issue of Security
Authors: Lisdey Espinoza Pedraza
Abstract:
Organised crime in Mexico evolves faster that our capacity to understand and explain it. Organised gangs have become successful entrepreneurs in many ways ad they have somehow mimicked the working ways of the authorities and in many cases, they have successfully infiltrated the governmental spheres. This business model is only possible under a clear scheme of rampant impunity. Impunity, however, is not exclusive to the PRI. Nor the PRI, PAN, or PRD can claim the monopoly of corruption, but what is worse is that none can claim full honesty in their acts either. The current security crisis in Mexico shows a crisis in the Mexican political party system. Corruption today is not only a problem of dishonesty and the correct use of public resources. It is the principal threat to Mexican democracy, governance, and national security.Keywords: security, war on drugs, drug trafficking, Mexico, Latin America, United States
Procedia PDF Downloads 4171071 Current and Emerging Pharmacological Treatment for Status Epilepticus in Adults
Authors: Mathew Tran, Deepa Patel, Breann Prophete, Irandokht Khaki Najafabadi
Abstract:
Status epilepticus is a neurological disorder requiring emergent control with medical therapy. Based on guideline recommendations for adults with status epilepticus, the first-line treatment is to start a benzodiazepine, as they are quick at seizure control. The second step is to initiate a non-benzodiazepine anti-epileptic drug to prevent refractory seizures. Studies show that the anti-epileptic drugs are approximately equivalent in status epilepticus control once a benzodiazepine has been given. This review provides a brief overview of the management of status epilepticus based on evidence from the literature and evidence-based guidelines.Keywords: neurological disorder, seizure, status epilepticus, benzo diazepines, antiepileptic agents
Procedia PDF Downloads 1181070 Invitro Study of Anti-Leishmanial Property of Nigella Sativa Methanalic Black Seed Extract
Authors: Tawqeer Ali Syed, Prakash Chandra
Abstract:
This study aims to evaluate the antileishmanial activity of Nigella sativa black seed extract. This well-known plant extract was taken from the botanical garden of Kashmir. Materials and Methods: The methanolic extracts of these plants were screened for their antileishmanial activity against Leishmania major using 3‑(4.5‑dimethylthiazol‑2yl)‑2.5‑diphenyltetrazolium bromide assay or MTT assay. Results: The methanolic extract of Nigella sativa showed potential antileishmanial activity at an inhibition% value of 80.29% ± 0.65%. IC 50 was calculated after 48 hours to be 964.3 µg/ml. Conclusion: Considering these results, these medicinal plants from Kashmir could serve as potential drug sources for antileishmanial compounds.Keywords: MTT assay, antileishmanial, cell viability, Nigella sativa
Procedia PDF Downloads 2091069 Evaluation of Antioxidant and Anticancer Activity of Tinospora cordifolia against Ehrlich Ascites Carcinoma: In Vitro, in vivo and in silico Approach
Authors: Anik Barua, Rabiul Hossain, Labonno Barua, Rashadul Hossain, Nurul Absar
Abstract:
Background: Globally, the burden of cancer is increasing consistently. Modern cancer therapies include lots of toxicity in the non-targeted organs reducing the life expectancy of the patients. Hence, scientists are trying to seek noble compounds from natural sources to treat cancer. Objectives: The objectives of the present study are to evaluate the phytochemicals, in vitro antioxidants, and in vivo and in silico anticancer study of various solvent fractions of Tinospora cordifolia (Willd.). Methodology: In this experiment, standard quantitative and qualitative assay methods were used to analyze the phytochemicals. The antioxidant activity was measured using the DPPH and ABTS scavenging methods. The in vivo antitumor activity is evaluated against Ehrlich ascites carcinoma (EAC) cell bearing in Swiss albino mice. In-silico ADME/T and molecular docking study were performed to assess the potential of stated phytochemicals against Transcription Factor STAT3b/DNA Complex of adenocarcinoma. Findings: Phytochemical screening confirmed the presence of flavonoids, alkaloids, glycosides, tannins, and carbohydrates. A significant amount of phenolic (20.19±0.3 mg/g GAE) and flavonoids (9.46±0.18 mg/g GAE) were found in methanolic extract in quantitative screening. Tinospora cordifolia methanolic extract showed promising DPPH and ABTS scavenging activity with the IC50 value of 1222.99 µg/mL and 1534.34 µg/mL, respectively, which was concentration dependent. In vivo anticancer activity in EAC cell-bearing mice showed significant (P < 0.05) percent inhibition of cell growth (60.12±1.22) was found at the highest dose compared with standard drug 5-Fluorouracil (81.18±1.28). Forty-two phytochemicals exhibit notable pharmacokinetics properties and passed drug-likeness screening tests in silico. In molecular docking study, (25S)-3Beta-acetoxy-5-alpha-22-beta-spirost-9(11)-en-12-beta-ol showed docking score (-8.5 kJ/mol) with significant non-bonding interactions with target enzyme. Conclusions: The results were found to be significant and confirmed that the methanolic extract of Tinospora cordifolia has remarkable antitumor activity with antioxidant potential. The Tinospora cordifolia methanolic extract may be considered a potent anticancer agent for advanced research.Keywords: anticancer, antioxidant, Tinospora cordifolia, EAC cell
Procedia PDF Downloads 1281068 Adverse Childhood Experience of Domestic Violence and Domestic Mental Health Leading to Youth Violence: An Analysis of Selected Boroughs in London
Authors: Sandra Smart-Akande, Chaminda Hewage, Imtiaz Khan, Thanuja Mallikarachchi
Abstract:
According to UK police-recorded data, there has been a substantial increase in knife-related crime and youth violence in the UK since 2014 particularly in the London boroughs. These crime rates are disproportionally distributed across London with the majority of these crimes occurring in the highly deprived areas of London and among young people aged 11 to 24 with large discrepancies across ethnicity, age, gender and borough of residence. Comprehensive studies and literature have identified risk factors associated with a knife carrying among youth to be Adverse Childhood Experience (ACEs), poor mental health, school or social exclusion, drug dealing, drug using, victim of violent crime, bullying, peer pressure or gang involvement, just to mention a few. ACEs are potentially traumatic events that occur in childhood, this can be experiences or stressful events in the early life of a child and can lead to an increased risk of damaging health or social outcomes in the latter life of the individual. Research has shown that children or youths involved in youth violence have had childhood experience characterised by disproportionate adverse childhood experiences and substantial literature link ACEs to be associated with criminal or delinquent behavior. ACEs are commonly grouped by researchers into: Abuse (Physical, Verbal, Sexual), Neglect (Physical, Emotional) and Household adversities (Mental Illness, Incarcerated relative, Domestic violence, Parental Separation or Bereavement). To the author's best knowledge, no study to date has investigated how household mental health (mental health of a parent or mental health of a child) and domestic violence (domestic violence on a parent or domestic violence on a child) is related to knife homicides across the local authorities areas of London. This study seeks to address the gap by examining a large sample of data from the London Metropolitan Police Force and Characteristics of Children in Need data from the UK Department for Education. The aim of this review is to identify and synthesise evidence from data and a range of literature to identify the relationship between adverse childhood experiences and youth violence in the UK. Understanding the link between ACEs and future outcomes can support preventative action.Keywords: adverse childhood experiences, domestic violence, mental health, youth violence, prediction analysis, London knife crime
Procedia PDF Downloads 1191067 Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation
Authors: D. ChobfroushKhoei, S. K. Heidari , Sh. Dariadel
Abstract:
Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy.Keywords: MWNT-COOH, functionalization, phenylisocyanate, phenylisothiocyanate, 1, 4-phenylendiamine, toxicity investigation
Procedia PDF Downloads 4481066 Condensed Benzo, Pyrido, Pyrimidino-Imidazole Derivatives as Antidiabetic Agents
Authors: Fatima Doganc, Hakan Goker
Abstract:
Benzimidazole moiety is an important pharmacophore and privileged structure for the medicinal chemists, since it exhibits various important biological activities. Some clinically used drugs have benzimidazole moiety, such as omeprazole, astemizole, albendazole and domperidone. 2-(4-tert-Butylphenyl)benzimidazole, is a PGC-1α transcriptional regulator shown to have beneficial effects in diabetic mice. We planned to modify the structure of this compound for developing new antidiabetic drug candidates. Hence, a series of guanidino or amidino, benzo/pyrido/pyrimidino-imidazole derivatives were freshly prepared. Mass, 1H-NMR, 13C-NMR, 2D-NMR spectroscopy techniques were used for the new derivatives to clarify their structures and their purity was controlled through the elemental analysis. Antidiabetic activity studies of the synthesized compounds are under the investigation.Keywords: antidiabetic agents, benzimidazole, imidazopyridine, imidazopyrimidine
Procedia PDF Downloads 3481065 An Investigation of Etiology of Liver Cirrhosis and Its Complications with Other Co-morbid Diseases
Authors: Tayba Akram
Abstract:
our main objective of this study is to work on the etiology of liver cirrhosis, to find basic reasons and causes of liver damage, and to find the pattern of liver cirrhosis in hepatic patients either suffering from hepatitis B/C or simple jaundice. We can evaluate medical treatment and the latest trends in patients suffering from liver cirrhosis. We can evaluate the side effects and adverse effects induced by drug therapy used to treat liver cirrhosis. The conclusion is based on the etiology of liver cirrhosis. The most common cause of liver cirrhosis is the viral Hepatitis C virus. Other common causes of liver cirrhosis that are estimated from our research are Hepatitis B virus, Diabetes Mellitus, Ascites, and very rarely found Hepatitis D virus.Keywords: etiology, liver, cirrhosis, co-morbid diseases
Procedia PDF Downloads 111064 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation
Authors: Virendra Nath, Vipin Kumar
Abstract:
Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.Keywords: computational, diabetes, PPAR, simulation
Procedia PDF Downloads 1011063 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer
Authors: Feng-Sheng Wang, Chao-Ting Cheng
Abstract:
Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution
Procedia PDF Downloads 781062 Antiulcer Potential of Heme Oxygenase-1 Inducers
Authors: Gaweł Magdalena, Lipkowska Anna, Olbert Magdalena, Frąckiewicz Ewelina, Librowski Tadeusz, Nowak Gabriel, Pilc Andrzej
Abstract:
Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs.Keywords: heme oxygenase-1, gastric lesions, gastroprotection, Polaprezinc
Procedia PDF Downloads 5021061 [Keynote Talk]: Bioactive Cyclic Dipeptides of Microbial Origin in Discovery of Cytokine Inhibitors
Authors: Sajeli A. Begum, Ameer Basha, Kirti Hira, Rukaiyya Khan
Abstract:
Cyclic dipeptides are simple diketopiperazine derivatives being investigated by several scientists for their biological effects which include anticancer, antimicrobial, haematological, anticonvulsant, immunomodulatory effect, etc. They are potentially active microbial metabolites having been synthesized too, for developing into drug candidates. Cultures of Pseudomonas species have earlier been reported to produce cyclic dipeptides, helping in quorum sensing signals and bacterial–host colonization phenomena during infections, causing cell anti-proliferation and immunosuppression. Fluorescing Pseudomonas species have been identified to secrete lipid derivatives, peptides, pyrroles, phenazines, indoles, aminoacids, pterines, pseudomonic acids and some antibiotics. In the present work, results of investigation on the cyclic dipeptide metabolites secreted by the culture broth of Pseudomonas species as potent pro-inflammatory cytokine inhibitors are discussed. The bacterial strain was isolated from the rhizospheric soil of groundnut crop and identified as Pseudomonas aeruginosa by 16S rDNA sequence (GenBank Accession No. KT625586). Culture broth of this strain was prepared by inoculating into King’s B broth and incubating at 30 ºC for 7 days. The ethyl acetate extract of culture broth was prepared and lyophilized to get a dry residue (EEPA). Lipopolysaccharide (LPS)-induced ELISA assay proved the inhibition of tumor necrosis factor-alpha (TNF-α) secretion in culture supernatant of RAW 264.7 cells by EEPA (IC50 38.8 μg/mL). The effect of oral administration of EEPA on plasma TNF-α level in rats was tested by ELISA kit. The LPS mediated plasma TNF-α level was reduced to 45% with 125 mg/kg dose of EEPA. Isolation of the chemical constituents of EEPA through column chromatography yielded ten cyclic dipeptides, which were characterized using nuclear magnetic resonance and mass spectroscopic techniques. These cyclic dipeptides are biosynthesized in microorganisms by multifunctional assembly of non-ribosomal peptide synthases and cyclic dipeptide synthase. Cyclo (Gly-L-Pro) was found to be more potentially (IC50 value 4.5 μg/mL) inhibiting TNF-α production followed by cyclo (trans-4-hydroxy-L-Pro-L-Phe) (IC50 value 14.2 μg/mL) and the effect was equal to that of standard immunosuppressant drug, prednisolone. Further, the effect was analyzed by determining mRNA expression of TNF-α in LPS-stimulated RAW 264.7 macrophages using quantitative real-time reverse transcription polymerase chain reaction. EEPA and isolated cyclic dipeptides demonstrated diminution of TNF-α mRNA expression levels in a dose-dependent manner under the tested conditions. Also, they were found to control the expression of other pro-inflammatory cytokines like IL-1β and IL-6, when tested through their mRNA expression levels in LPS-stimulated RAW 264.7 macrophages under LPS-stimulated conditions. In addition, significant inhibition effect was found on Nitric oxide production. Further all the compounds exhibited weak toxicity to LPS-induced RAW 264.7 cells. Thus the outcome of the study disclosed the effectiveness of EEPA and the isolated cyclic dipeptides in down-regulating key cytokines involved in pathophysiology of autoimmune diseases.In another study led by the investigators, microbial cyclic dipeptides were found to exhibit excellent antimicrobial effect against Fusarium moniliforme which is an important causative agent of Sorghum grain mold disease. Thus, cyclic dipeptides are emerging small molecular drug candidates for various autoimmune diseases.Keywords: cyclic dipeptides, cytokines, Fusarium moniliforme, Pseudomonas, TNF-alpha
Procedia PDF Downloads 2101060 Pharmacy-Station Mobile Application
Authors: Taissir Fekih Romdhane
Abstract:
This paper proposes a mobile web application named Pharmacy-Station that sells medicines and permits user to search for medications based on their symptoms, making it is easy to locate a specific drug online without the need to visit a pharmacy where it may be out of stock. This application is developed using the jQuery Mobile framework, which uses many web technologies and languages such as HTML5, PHP, JavaScript and CSS3. To test the proposed application, we used data from popular pharmacies in Saudi Arabia that included important information such as location, contact, and medicines in stock, etc. This document describes the different steps followed to create the Pharmacy-Station application along with screenshots. Finally, based on the results, the paper concludes with recommendations and further works planned to improve the Pharmacy-Station mobile application.Keywords: pharmacy, mobile application, jquery mobile framework, search, medicine
Procedia PDF Downloads 1571059 The Effect of Peer Pressure and Leisure Boredom on Substance Use Among Adolescents in Low-Income Communities in Capetown
Authors: Gaironeesa Hendricks, Shazly Savahl, Maria Florence
Abstract:
The aim of the study is to determine whether peer pressure and leisure boredom influence substance use among adolescents in low-income communities in Cape Town. Non-probability sampling was used to select 296 adolescents between the ages of 16–18 from schools located in two low-income communities. The measurement tools included the Drug Use Disorders Identification Test, the Resistance to Peer Influence and Leisure Boredom Scales. Multiple regression revealed that the combined influence of peer pressure and leisure boredom predicted substance use, while peer pressure emerged as a stronger predictor than leisure boredom on substance use among adolescents.Keywords: substance use, peer pressure, leisure boredom, adolescents, multiple regression
Procedia PDF Downloads 5971058 The Hypoglycaemic and Antioxidant Effects of Ethanolic Extract of Curcuma Longa Rhizomes Alone and with Two Pepper Adjuvants in Alloxan-Induced Diabetic Rats
Authors: J. O. Ezekwesili-Ofili, L. I. Okorafor, S. C. Nsofor
Abstract:
Diabetes mellitus is a carbohydrate metabolism disorder due to an absolute or relative deficiency of insulin secretion, action or both. Many known hypoglycaemic drugs are known to produce serious side effects. However, the search for safer and more effective agents has shifted to plant products, including foods and spices. One of such is the rhizome of Curcuma longa or turmeric, which is a spice with high medicinal value. A drawback in the use of C. longa is the poor bioavailability of curcumin, the active ingredient. It has been reported that piperine, an alkaloid present in peppers increases the bioavailability of curcumin. This work therefore investigated the hypoglycaemic and antioxidant effects of ethanolic extract of C. longa rhizomes, alone and with two pepper adjuvants in alloxan-induced diabetic rats. A total of 48 rats were divided into 6 groups of 8 rats each. Groups A–E were induced with diabetes using 150mg/kg body weight of alloxan monohydrate, while group F was normoglycaemic: Group A: Diabetic; fed with 400 mg/g body weight of turmeric extract; group B: Diabetic, fed with 400 mg/kg b. w. and 200mg/kg b. w of ethanolic extract of seeds of Piper guinensee; group C: Diabetic, fed with 400 mg/kg b. w. and 200 mg /kg b. w. of ethanolic extract of seeds of Capsicum annum var cameroun, group D: Diabetic, treated with standard drug, glibenclamide (0.3mg/kg body weight), group E: Diabetic; no treatment i.e. Positive control and group F: non diabetic, no treatment i.e. Negative control. Blood glucose levels were monitored for 14 days using a glucometer. The levels of the antioxidant enzymes; glutathione peroxidase, catalase and superoxide dismutase were also assayed in serum. The ethanolic extracts of C. longa rhizomes at the dose given (400 mg/kg b. w) significantly reduced the blood glucose levels of the diabetic rats (p<0.05) comparable to the standard drug. Co administration of extract of the peppers did not significantly increase the efficiency of the extract, although C. annum var cameroun showed greater effect, though not significantly. The antioxidant effect of the extract was significant in diabetic rats. The use of piperine-containing peppers enhanced the antioxidant effect. Phytochemical analyses of the ethanolic extract of C. longa showed the presence of alkaloids, flavonoids, steroids, saponins, tannins, glycosides, and terpenoids. These results suggest that the ethanolic extract of C. longa had antidiabetic with antioxidant effects and could thus be of benefit in the treatment and management of diabetes as well as ameliorate pro-oxidant effects that may lead to diabetic complications. However, while the addition of piperine did not affect the antidiabetic effect of C. longa, the antioxidant effect was greatly enhanced.Keywords: antioxidant, Curcuma longa rhizome, hypoglycaemic, pepper adjuvants, piperine
Procedia PDF Downloads 234