Search results for: artificial cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5745

Search results for: artificial cell

4815 Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics

Authors: Vineeth Siripuram, Abhineet Nigam

Abstract:

A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds.

Keywords: cell seeding, CFD, flow patterns, modelling, perfusion systems, scaffold

Procedia PDF Downloads 161
4814 Ethyl Methane Sulfonate-Induced Dunaliella salina KU11 Mutants Affected for Growth Rate, Cell Accumulation and Biomass

Authors: Vongsathorn Ngampuak, Yutachai Chookaew, Wipawee Dejtisakdi

Abstract:

Dunaliella salina has great potential as a system for generating commercially valuable products, including beta-carotene, pharmaceuticals, and biofuels. Our goal is to improve this potential by enhancing growth rate and other properties of D. salina under optimal growth conditions. We used ethyl methane sulfonate (EMS) to generate random mutants in D. salina KU11, a strain classified in Thailand. In a preliminary experiment, we first treated D. salina cells with 0%, 0.8%, 1.0%, 1.2%, 1.44% and 1.66% EMS to generate a killing curve. After that, we randomly picked 30 candidates from approximately 300 isolated survivor colonies from the 1.44% EMS treatment (which permitted 30% survival) as an initial test of the mutant screen. Among the 30 survivor lines, we found that 2 strains (mutant #17 and #24) had significantly improved growth rates and cell number accumulation at stationary phase approximately up to 1.8 and 1.45 fold, respectively, 2 strains (mutant #6 and #23) had significantly decreased growth rates and cell number accumulation at stationary phase approximately down to 1.4 and 1.35 fold, respectively, while 26 of 30 lines had similar growth rates compared with the wild type control. We also analyzed cell size for each strain and found there was no significant difference comparing all mutants with the wild type. In addition, mutant #24 had shown an increase of biomass accumulation approximately 1.65 fold compared with the wild type strain on day 5 that was entering early stationary phase. From these preliminary results, it could be feasible to identify D. salina mutants with significant improved growth rate, cell accumulation and biomass production compared to the wild type for the further study; this makes it possible to improve this microorganism as a platform for biotechnology application.

Keywords: Dunaliella salina, ethyl methyl sulfonate, growth rate, biomass

Procedia PDF Downloads 241
4813 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 199
4812 Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul

Authors: Nihan Gurel Ulusan

Abstract:

It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users.

Keywords: educational buildings, energy efficient, illumination techniques, lighting

Procedia PDF Downloads 283
4811 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains

Authors: Sandip Suman

Abstract:

Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.

Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains

Procedia PDF Downloads 99
4810 Enhancement Effect of Electromagnetic Field on Separation of Edible Oil from Oil-Water Emulsion

Authors: Olfat A. Fadali, Mohamed S. Mahmoud, Omnia H. Abdelraheem, Shimaa G. Mohammed

Abstract:

The effect of electromagnetic field (EMF) on the removal of edible oil from oil-in-water emulsion by means of electrocoagulation was investigated in rectangular batch electrochemical cell with DC current. Iron (Fe) plate anodes and stainless steel cathodes were employed as electrodes. The effect of different magnetic field intensities (1.9, 3.9 and 5.2 tesla), three different positions of EMF (below, perpendicular and parallel to the electrocoagulation cell), as well as operating time; had been investigated. The application of electromagnetic field (5.2 tesla) raises percentage of oil removal from 72.4% for traditional electrocoagulation to 90.8% after 20 min.

Keywords: electrocoagulation, electromagnetic field, Oil-water emulsion, edible oil

Procedia PDF Downloads 533
4809 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 128
4808 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing

Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin

Abstract:

Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.

Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel

Procedia PDF Downloads 182
4807 Long Non-Coding RNAs Mediated Regulation of Diabetes in Humanized Mouse

Authors: Md. M. Hossain, Regan Roat, Jenica Christopherson, Colette Free, Zhiguang Guo

Abstract:

Long noncoding RNA (lncRNA) mediated post-transcriptional gene regulation, and their epigenetic landscapes have been shown to be involved in many human diseases. However, their regulation in diabetes through governing islet’s β-cell function and survival needs to be elucidated. Due to the technical and ethical constraints, it is difficult to study their role in β-cell function and survival in human under in vivo condition. In this study, humanized mice have been developed through transplanting human pancreatic islet under the kidney capsule of NOD.SCID mice and induced β-cell death leading to diabetes condition to study lncRNA mediated regulation. For this, human islets from 3 donors (3000 IEQ, purity > 80%) were transplanted under the kidney capsule of STZ induced diabetic NOD.scid mice. After at least 2 weeks of normoglycecemia, lymphocytes from diabetic NOD mice were adoptively transferred and islet grafts were collected once blood glucose reached > 200 mg/dl. RNA from human donor islets, islet grafts from humanized mice with either adoptive lymphocyte transfer (ALT) or PBS control (CTL) were ribodepleted; barcoded fragment libraries were constructed and sequenced on the Ion Proton sequencer. lncRNA expression in isolated human islets, islet grafts from humanized mice with and without induced β-cell death and their regulation in human islets function in vitro under glucose challenge, cytokine mediated inflammation and induced apoptotic condition were investigated. Out of 3155 detected lncRNAs, 299 that highly expressed in islets were found to be significantly downregulated and 224 upregulated in ALT compared to CTL. Most of these are found to be collocated within 5 kb upstream and 1 kb downstream of 788 up- and 624 down-regulated mRNAs. Genomic Regions Enrichment of Annotations Analysis revealed deregulated and collocated genes are related to pancreas endocrine development; insulin synthesis, processing, and secretion; pancreatitis and diabetes. Many of them, that found to be located within enhancer domains for islet specific gene activity, are associated to the deregulation of known islet/βcell specific transcription factors and genes that are important for β-cell differentiation, identity, and function. RNA sequencing analysis revealed aberrant lncRNA expression which is associated to the deregulated mRNAs in β-cell function as well as in molecular pathways related to diabetes. A distinct set of candidate lncRNA isoforms were identified as highly enriched and specific to human islets, which are deregulated in human islets from donors with different BMIs and with type 2 diabetes. These RNAs show an interesting regulation in cultured human islets under glucose stimulation and with induced β-cell death by cytokines. Aberrant expression of these lncRNAs was detected in the exosomes from the media of islets cultured with cytokines. Results of this study suggest that the islet specific lncRNAs are deregulated in human islet with β-cell death, hence important in diabetes. These lncRNAs might be important for human β-cell function and survival thus could be used as biomarkers and novel therapeutic targets for diabetes.

Keywords: β-cell, humanized mouse, pancreatic islet, LncRNAs

Procedia PDF Downloads 164
4806 Improved Cooperative Communication Scheme in the Edge of Cell Coverage

Authors: Myoung-Jin Kim, Yeong-Seop Ahn, Hyun-Jee Yang, Hyoung-Kyu Song

Abstract:

This paper proposes the new cooperative communication scheme for the wireless communication system. When the receiver is located in the edge of coverage, the signal from the transmitter is distorted by the inter-cell interference (ICI) and power reduction by distance. In order to improve communication performance, the proposed scheme adds the relay. By using the relay, the receiver receives the signal from the transmitter and relay at the same time. Therefore, the new cooperative communication scheme obtains diversity gain and is improved by the relay.

Keywords: cooperative communication, diversity gain, OFDM, MIMO

Procedia PDF Downloads 610
4805 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 601
4804 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 227
4803 Polyhydroxybutyrate (PHB): Highly Porous Scaffold for Biomedicine

Authors: Neda Sinaei, Davood Zare, Mehrdad Azin

Abstract:

Polyhydroxyalkanoates (PHAs) are biocompatible and biodegradable polymers produced by a wide range of bacterial strains. These biopolymers are significantly studied for drug delivery and tissue engineering applications because of their fascinating physicochemical properties. Polyhydroxybutyrate (PHB) scaffold that has been extracted from a novel bacteria using oil wastewater was selected to study. Some physical parameters affecting scaffold properties such as PHB concentration, solvent evaporation speed, and ultrasonic time were investigated. Scanning electron microscopy was used to evaluate the porosity. Afterward, the biocompatibility of PHB scaffold was assessed. Initial results showed the highly porous PHB scaffold structure with a variety of pore sizes. Subsequent results indicated that more unique pore sizes can be obtained by optimizing physical factors. It would be noticed that the morphology of the pore structure was accordingly affected by ultrasonic time. Hence, In vitro cell viability tests on the PHB scaffold using human foreskin fibroblasts revealed strong cell attachment and proliferation supports. Therefore, it can be concluded that the cost-effective PHB scaffold has the potential using as a biomaterial cell adhesion substrate in therapeutic applications.

Keywords: Polyhydroxybutyrate, biocompatible, scaffold, porous, tissue engineering

Procedia PDF Downloads 234
4802 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors

Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills

Abstract:

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.

Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO

Procedia PDF Downloads 470
4801 A Cross-Cultural Approach for Communication with Biological and Non-Biological Intelligences

Authors: Thomas Schalow

Abstract:

This paper posits the need to take a cross-cultural approach to communication with non-human cultures and intelligences in order to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with a discussion of how intelligence emerges. It disputes some common assumptions we maintain about consciousness, intention, and language. The paper next explores cross-cultural communication among humans, including non-sapiens species. The next argument made is that we need to become much more serious about communicating with the non-human, intelligent life forms that already exist around us here on Earth. There is an urgent need to broaden our definition of communication and reach out to the other sentient life forms that inhabit our world. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it has proven useful, even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised and based on the cross-cultural approach to communication proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences using a cross-cultural communication approach. This will present a serious challenge for humanity, as we have never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other human cultures can provide us with a framework for this communication. The basic assumptions behind intercultural communication can be applied to the many types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will prepare us to face the challenges posed by a future dominated by artificial intelligence.

Keywords: artificial intelligence, CETI, communication, culture, language

Procedia PDF Downloads 359
4800 Proteomics Associated with Colonization of Human Enteric Pathogen on Solanum lycopersicum

Authors: Neha Bhadauria, Indu Gaur, Shilpi Shilpi, Susmita Goswami, Prabir K. Paul

Abstract:

The aerial surface of plants colonized by Human Enteric Pathogens ()has been implicated in outbreaks of enteric diseases in humans. Practice of organic farming primarily using animal dung as manure and sewage water for irrigation are the most significant source of enteric pathogens on the surface of leaves, fruits and vegetables. The present work aims to have an insight into the molecular mechanism of interaction of Human Enteric Pathogens or their metabolites with cell wall receptors in plants. Tomato plants grown under aseptic conditions at 12 hours L/D photoperiod, 25±1°C and 75% RH were inoculated individually with S. fonticola and K. pneumonia. The leaves from treated plants were sampled after 24 and 48 hours of incubation. The cell wall and cytoplasmic proteins were extracted and isocratically separated on 1D SDS-PAGE. The sampled leaves were also subjected to formaldehyde treatment prior to isolation of cytoplasmic proteins to study protein-protein interactions induced by Human Enteric Pathogens. Protein bands extracted from the gel were subjected to MALDI-TOF-TOF MS analysis. The foremost interaction of Human Enteric Pathogens on the plant surface was found to be cell wall bound receptors which possibly set ups a wave a critical protein-protein interaction in cytoplasm. The study revealed the expression and suppression of specific cytoplasmic and cell wall-bound proteins, some of them being important components of signaling pathways. The results also demonstrated HEP induced rearrangement of signaling pathways which possibly are crucial for adaptation of these pathogens to plant surface. At the end of the study, it can be concluded that controlling the over-expression or suppression of these specific proteins rearrange the signaling pathway thus reduces the outbreaks of food-borne illness.

Keywords: cytoplasmic protein, cell wall-bound protein, Human Enteric Pathogen (HEP), protein-protein interaction

Procedia PDF Downloads 279
4799 Mechanism of Charge Transport in the Interface of CsSnI₃-FASnI₃ Perovskite Based Solar Cell

Authors: Seyedeh Mozhgan Seyed-Talebi, Weng-Kent Chan, Hsin-Yi Tiffany Chen

Abstract:

Lead-free perovskite photovoltaic (PV) technology employing non-toxic tin halide perovskite absorbers is pivotal for advancing perovskite solar cell (PSC) commercialization. Despite challenges posed by perovskite sensitivity to oxygen and humidity, our study utilizes DFT calculations using VASP and NanoDCAL software and SCAPS-1D simulations to elucidate the charge transport mechanism at the interface of CsSnI₃-FASnI₃ heterojunction. Results reveal how inherent electric fields facilitate efficient carrier transport, reducing recombination losses. We predict optimized power conversion efficiencies (PCEs) and highlight the potential of CsSnI3-FASnI3 heterojunctions for cost-effective and efficient charge transport layer-free (CTLF) photovoltaic devices. Our study provides insights into the future direction of recognizing more efficient, nontoxic heterojunction perovskite devices.

Keywords: charge transport layer free, CsSnI₃-FASnI₃ heterojunction, lead-free perovskite solar cell, tin halide perovskite., Charge transport layer free

Procedia PDF Downloads 48
4798 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 393
4797 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.

Keywords: logistic regression, decisions tree, random forest, VAR model

Procedia PDF Downloads 447
4796 Impact of Natural and Artificial Disasters, Lackadaisical and Semantic Approach in Risk Management, and Mitigation Implication for Sustainable Goals in Nigeria, from 2009 to 2022

Authors: Wisdom Robert Duruji, Moses Kanayochukwu Ifoh, Efeoghene Edward Esiemunobo

Abstract:

This study examines the impact of natural and artificial disasters, lackadaisical and semantic approach in risk management, and mitigation implication for sustainable development goals in Nigeria, from 2009 to 2022. The study utilizes a range of research methods to achieve its objectives. These include literature review, website knowledge, Google search, news media information, academic journals, field-work and on-site observations. These diverse methods allow for a comprehensive analysis on the impact and the implications being study. The study finds that paradigm shift from remediating seismic, flooding, environmental pollution and degradation natural disasters by Nigeria Emergency Management Agency (NEMA), to political and charity organization; has plunged risk reduction strategies to embezzling opportunities. However, this lackadaisical and semantic approach in natural disaster mitigation, invariably replicates artificial disasters in Nigeria through: Boko Haram terrorist organization, Fulani herdsmen and farmers conflicts, political violence, kidnapping for ransom, ethnic conflicts, Religious dichotomy, insurgency, secession protagonists, unknown-gun-men, and banditry. This study also, finds that some Africans still engage in self-imposed slavery through human trafficking, by nefariously stow-away to Europe; through Libya, Sahara desert and Mediterranean sea; in search for job opportunities, due to ineptitude in governance by their leaders; a perilous journey that enhanced artificial disasters in Nigeria. That artificial disaster fatality in Nigeria increased from about 5,655 in 2009 to 114,318 in 2018; and to 157,643 in 2022. However, financial and material loss of about $9.29 billion was incurred in Nigeria due to natural disaster, while about $70.59 billion was accrued due to artificial disaster; from 2009 to 2018. Although disaster risk mitigation and politics can synergistically support sustainable development goals; however, they are different entities, and need for distinct separations in Nigeria, as in reality and perception. This study concluded that referendum should be conducted in Nigeria, to ascertain its current status as a nation. Therefore it is recommended that Nigerian governments should refine its naturally endowed crude oil locally; to end fuel subsidy scam, corruption and poverty in Nigeria!

Keywords: corruption, crude oil, environmental risk analysis, Nigeria, referendum, terrorism

Procedia PDF Downloads 44
4795 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm

Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta

Abstract:

Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.

Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates

Procedia PDF Downloads 237
4794 Artificial Intelligence in Disease Diagnosis

Authors: Shalini Tripathi, Pardeep Kumar

Abstract:

The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.

Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications 

Procedia PDF Downloads 133
4793 Combinational Therapeutic Targeting of BRD4 and CDK7 Synergistically Induces Anticancer Effects in Hepatocellular Carcinoma

Authors: Xinxiu Li, Chuqian Zheng, Yanyan Qian, Hong Fan

Abstract:

Objectives: In hepatocellular carcinoma (HCC), oncogenes are continuously and robustly transcribed due to aberrant expression of essential components of the trans-acting super-enhancers (SE) complex. Preclinical and clinical trials are now being conducted on small-molecule inhibitors that target core-transcriptional components, including as transcriptional bromodomain protein 4 (BRD4) and cyclin-dependent kinase 7 (CDK7), in a number of malignant tumors. This study aims to explore whether co-overexpression of BRD4 and CDK7 is a potential marker of worse prognosis and a combined therapeutic target in HCC. Methods: The expression pattern of BRD4 and CDK7 and their correlation with prognosis in HCC were analyzed by RNA sequencing data and survival data of HCC patients from TCGA and GEO datasets. The protein levels of BRD4 and CDK7 were determined by immunohistochemistry (IHC), and survival data of patients were analyzed using the Kaplan-Meier method. The mRNA expression levels of genes in HCC cell lines were evaluated by quantitative PCR (q-PCR). CCK-8 and colony formation assays were conducted to assess cell proliferation of HCC upon treatment with BRD4 inhibitor JQ1 or/and CDK7 inhibitor THZ1. Results: It was shown that BRD4 and CDK7 were often overexpressed in HCCs and were associated with poor prognosis of HCC by analyzing the TCGA and GEO datasets. BRD4 or CDK7 overexpression was related to a lower survival rate. It's interesting to note that co-overexpression of CDK7 and BRD4 was a worse prognostic factor in HCC. Treatment with JQ1 or THZ1 alone had an inhibitory effect on cell proliferation; however, when JQ1 and THZ1 were combined, there was a more notable suppression of cell growth. At the same time, the combined use of JQ1 and THZ1 synergistically suppresses the expression of HCC driver genes. Conclusion: Our research revealed that BRD4 and CDK7 coupled can be a useful biomarker in HCC prognosis and the combination of JQ1 and THZ1 can be a promising therapeutic therapy against HCC.

Keywords: BRD4, CDK7, cell proliferation, combined inhibition

Procedia PDF Downloads 54
4792 Roughness Discrimination Using Bioinspired Tactile Sensors

Authors: Zhengkun Yi

Abstract:

Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.

Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination

Procedia PDF Downloads 313
4791 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners

Authors: Leila Najeh Bel'Kiry

Abstract:

Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.

Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners

Procedia PDF Downloads 65
4790 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems

Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang

Abstract:

The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.

Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes

Procedia PDF Downloads 612
4789 Synthesis and Biological Activity Evaluation of U Complexes

Authors: Mohammad Kazem Mohammadi

Abstract:

The use of anticancer agents forms an important part of the treatment of cancer of various types. Uranyl Complexes with DPHMP ligand have been used for the prevention and treatment of cancers. U(IV) metal complexes prepared by reaction of uranyl salt UO2 (NO3)2.6H2O with DPHMP in dry acetonitrile. Characterization of the ligand and its complexes was made by microanalyses, FT-IR, 1H NMR, 13C NMR and UV–Visible spectroscopy. These new complex showed excellent antitumor activity against two kinds of cancer cells that that are HT29:Haman colon adenocarcinoma cell line and T47D:human breast adenocarcinoma cell line.

Keywords: uranyl complexes, DPHMP ligand, antitumor activity, HT29, T47D

Procedia PDF Downloads 472
4788 Investigating Role of Novel Molecular Players in Forebrain Roof-Plate Midline Invagination

Authors: Mohd Ali Abbas Zaidi, Meenu Sachdeva, Jonaki Sen

Abstract:

In the vertebrate embryo, the forebrain anlagen develops from the anterior-most region of the neural tube which is the precursor of the central nervous system (CNS). The roof plate located at the dorsal midline region of the forebrain anlagen, acts as a source of several secreted molecules involved in patterning and morphogenesis of the forebrain. One such key morphogenetic event is the invagination of the forebrain roof plate which results in separation of the single forebrain vesicle into two cerebral hemispheres. Retinoic acid (RA) signaling plays a key role in this process. Blocking RA signaling at the dorsal forebrain midline inhibits dorsal invagination and results in the absence of certain key features of this region, such as thinning of the neuroepithelium and a lowering of cell proliferation. At present we are investigating the possibility of other signaling pathways acting in concert with RA signaling to regulate this process. We have focused on BMP signaling, which we found to be active in a mutually exclusive domain to that of RA signaling within the roof plate. We have also observed that there is a change in BMP signaling activity on modulation of RA signaling indicating an antagonistic relationship between the two. Moreover, constitutive activation of BMP signaling seems to completely inhibit thinning and partially affect invagination, leaving the lowering of cell proliferation in the midline unaffected. We are employing in-silico modeling as well as molecular manipulations to investigate the relative contribution if any, of regional differences in rates of cell proliferation and thinning of the neuroepithelium towards the process of invagination. We have found expression of certain cell adhesion molecules in forebrain roof-plate whose mRNA localization across the thickness of neuroepithelium is influenced by Bmp and RA signaling, giving regional rigidity to roof plate and assisting invagination. We also found expression of certain cytoskeleton modifiers in a localized small domains in invaginating forebrain roof plate suggesting that midline invagination is under control of many factors.

Keywords: bone morphogenetic signaling, cytoskeleton, cell adhesion molecules, forebrain roof plate, retinoic acid signaling

Procedia PDF Downloads 156
4787 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 417
4786 Investigation of Ezetimibe Administration on Cell Survival Markers in Kidney Ischemia

Authors: Zahra Heydari

Abstract:

Introduction: One of the major clinical issues is acute renal failure, which is caused by ischemia-reperfusion of the kidney and is associated with high mortality. Despite advances in this area, important issues such as tissue necrosis, cell apoptosis, and so on in damaged tissue are suggestive for more researches and study on this subject. Objective: Evaluation of the potential utility of Ezetimibe in reducing injuries and cell death induced by kidney ischemia/ reperfusion through inducing expression changes of different cellular pathways in adult Sprague-Dawley rats. Materials and methods: Forty rats weighing 180-200g were divided into 4 groups. For this purpose, the first right kidneys of the rats were removed during surgery. After 20 days, the left renal artery was closed with a soft clamp and reperfusion was performed. After 24 hours, blood samples were collected and sent to the laboratory with kidneys to measure bax and bcl-2 by Western blotting and histopathological tests. Results: Quantitative damage reviews of Kidney tissue indicates damage Acute and severe tubular lesions were observed in the ischemia group. Also, the amount of injury was significantly reduced in the treatment group. There was also a significant difference between the ischemia and sham groups. In general, the results show that a single dose of 1.2 mg/kg of ezetimibe can reduce the bax/ bcl-2 ratio compared to the ischemia group. In general, the results showed Ezetimibe is effective in reducing cell damage and death due to ischemia/ reperfusion after renal ischemia through changes in the expression of various cellular pathways in rats.

Keywords: acute renal failure, renal ischemia-reperfusion injury, ezetimibe, apoptosis

Procedia PDF Downloads 197