Search results for: academic learning stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12582

Search results for: academic learning stress

3162 Human Posture Estimation Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.

Keywords: multi-view, pose estimation, ST-GCN, joint fusion

Procedia PDF Downloads 70
3161 Evaluation of Serine and Branched Chain Amino Acid Levels in Depression and the Beneficial Effects of Exercise in Rats

Authors: V. A. Doss, R. Sowndarya, K. Juila Rose Mary

Abstract:

Objective: Amino acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. The objective of the present study was to identify the amino acids as possible metabolite biomarkers for depression using GCMS (Gas Chromatography Mass Spectrometry) before and after exercise regimen in brain samples of depression induced animal models. Methods: Depression-like behaviour was induced by Chronic Unpredictable mild stress (CUMS). Severity of depression was measured by forced swim test (FST) and sucrose consumption test (SCT). Swimming protocol was followed for 4 weeks of exercise treatment. Brain obtained from depressed and exercise treated rats were used for the metabolite analysis by GCMS. Subsequent statistical analysis obtained by ANOVA followed by post hoc test revealed significant metabolic changes. Results: Amino acids such as alanine, glycine, serine, glutamate, homocysteine, proline and branched chain aminoacids (BCAs) Leucine, Isoleucine, Valine were determined in brain samples of control, depressed and exercised groups. Among these amino acids, the levels of D-Serine and branched chain amino acids were found to be decreased in depression induced rats. After four weeks of swimming exercise regimen, there were improvements in the levels of serine and Branched chain amino acids. Conclusion: We suggest that Serine and BCAs may be investigated as potential metabolite markers using GCMS and their beneficial metabolic changes in Exercise.

Keywords: metabolomics, depression, forced swim test, exercise, amino acid metabolites, GCMS, biomarker

Procedia PDF Downloads 326
3160 Economic and Financial Crime, Forensic Accounting and Sustainable Developments Goals (SDGs). Bibliometric Analysis

Authors: Monica Violeta Achim, Sorin Nicolae Borlea

Abstract:

This aim of this work is to stress the needs for enhancing the role of forensic accounting in fighting economic and financial crime, in the context of the new international regulation movements in this area enhanced by the International Federation of Accountants (IFAC). Corruption, money laundering, tax evasion and other frauds significant hamper the economic growth and human development and, ultimately, the UN Sustainable Development Goals. The present paper also stresses the role of good governance in fighting the frauds, in order to achieve the most suitable sustainable development of the society. In this view, we made a bibliometric systematic review on forensic accounting and its contribution towards fraud detection and prevention and theirs relationship with good governance and Sustainable Developments Goals (SDGs). In this view, two powerful bibliometric visual software tools, VosViewer and CiteSpace are used in order to analyze published papers identifies in Scopus and Web of Science databases over the time. Our findings reveal the main red flags identified in literature as used tools by forensic accounting, the evolution in time of the interest of the topic, the distribution in space among world countries and connectivity with patterns of a good governance. Visual designs and scientific maps are useful to show these findings, in a visual way. Our findings are useful for managers and policy makers to provide important avenues that may help in reaching the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, in the area of using forensic accounting in preventing frauds.

Keywords: forensic accounting, frauds, red flags, SDGs

Procedia PDF Downloads 140
3159 Numerical Simulation of Footing on Reinforced Loose Sand

Authors: M. L. Burnwal, P. Raychowdhury

Abstract:

Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%.

Keywords: settlement, shallow foundation, SSI, continuum FEM

Procedia PDF Downloads 194
3158 Cognition Technique for Developing a World Music

Authors: Haider Javed Uppal, Javed Yunas Uppal

Abstract:

In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.

Keywords: cognition, world music, artificial intelligence, Thayer’s matrix

Procedia PDF Downloads 81
3157 Investigation on Remote Sense Surface Latent Heat Temperature Associated with Pre-Seismic Activities in Indian Region

Authors: Vijay S. Katta, Vinod Kushwah, Rudraksh Tiwari, Mulayam Singh Gaur, Priti Dimri, Ashok Kumar Sharma

Abstract:

The formation process of seismic activities because of abrupt slip on faults, tectonic plate moments due to accumulated stress in the Earth’s crust. The prediction of seismic activity is a very challenging task. We have studied the changes in surface latent heat temperatures which are observed prior to significant earthquakes have been investigated and could be considered for short term earthquake prediction. We analyzed the surface latent heat temperature (SLHT) variation for inland earthquakes occurred in Chamba, Himachal Pradesh (32.5 N, 76.1E, M-4.5, depth-5km) nearby the main boundary fault region, the data of SLHT have been taken from National Center for Environmental Prediction (NCEP). In this analysis, we have calculated daily variations with surface latent heat temperature (0C) in the range area 1⁰x1⁰ (~120/KM²) with the pixel covering epicenter of earthquake at the center for a three months period prior to and after the seismic activities. The mean value during that period has been considered in order to take account of the seasonal effect. The monthly mean has been subtracted from daily value to study anomalous behavior (∆SLHT) of SLHT during the earthquakes. The results found that the SLHTs adjacent the epicenters all are anomalous high value 3-5 days before the seismic activities. The abundant surface water and groundwater in the epicenter and its adjacent region can provide the necessary condition for the change of SLHT. To further confirm the reliability of SLHT anomaly, it is necessary to explore its physical mechanism in depth by more earthquakes cases.

Keywords: surface latent heat temperature, satellite data, earthquake, magnetic storm

Procedia PDF Downloads 134
3156 Dark Heritage Tourism and Visitor Behaviour: The Case of Elmina Castle, Ghana

Authors: Girish Prayag, Wantanee Suntikul, Elizabeth Agyeiwaah

Abstract:

Current research on dark tourism largely follows residents’ perspectives with limited evaluations of tourists’ experiences. Unravelling the case of a dark heritage site in Elmina, Ghana, this paper develops a theoretical model to understand the relationships among four constructs namely, motivation, tourism impacts, place attachment, and satisfaction. Based on a sample of 414 domestic tourists, PLS-SEM confirmed several relationships and inter-relationships among the four constructs. For example, motivation had a positive relationship with perceptions of positive and negative tourism impacts suggesting that the more tourists were motivated to visit the site for cultural/learning experiences, the more positive and negative tourism impacts they perceived. Implications for dark tourism and heritage site management are offered.

Keywords: dark tourism, motivation, place attachment, tourism impacts

Procedia PDF Downloads 432
3155 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi

Abstract:

Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress

Procedia PDF Downloads 164
3154 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate (V) at constant temperature gradient G (7.73 K/mm). The microstructures (flake spacings, λ), microhardness (HV), ultimate tensile strength, electrical resistivity and thermal properties enthalpy of fusion and specific heat and melting temperature) of the samples were measured. Influence of the growth rate and flake spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were experimentally obtained by using regression analysis. According to results, λ values decrease with increasing V, but microhardness, ultimate tensile strength, electrical resistivity values increase with increasing V. Variations of electrical resistivity for cast samples with the temperature in the range of 300-1200 K were also measured by using a standard dc four-point probe technique. The enthalpy of fusion and specific heat for the same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results obtained in this work were compared with the previous similar experimental results obtained for binary and ternary alloys.

Keywords: electrical resistivity, enthalpy, microhardness, solidification, tensile stress

Procedia PDF Downloads 376
3153 Relationships between Motivation Factors and English Language Proficiency of the Faculty of Management Sciences Students

Authors: Kawinphat Lertpongmanee

Abstract:

The purposes of this study were (1) investigate the English language learning motivation and the attainment of their English proficiency, (2) to find out how motivation and motivational variables of the high and low proficiency subjects are related to their English proficiency. The respondents were 80 fourth-year from Faculty of Management Sciences students in Rajabhat Suansunadha University. The instruments used for data collection were questionnaires. The statistically analyzed by using the SPSS program for frequency, percentage, arithmetic mean, standard deviation (SD), t-test, one-way analysis of variance (ANOVA), and Pearson correlation coefficient. The findings of this study are summarized as there was a significant difference in overall motivation between high and low proficiency groups of subjects at .05 (p < .05), but not in overall motivational variables. Additionally, the high proficiency group had a significantly higher level of intrinsic motivation than did the low proficiency group at .05 (p < .05).

Keywords: English language proficiency, faculty of management sciences, motivation factors, proficiency subjects

Procedia PDF Downloads 262
3152 Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge

Authors: Luisa Cabezas, Karol Leal, Harold Mendoza, Fabio Trochez, Angel Lozada

Abstract:

According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors.

Keywords: ancestral knowledge, climate change, medicinal plants, solar energy

Procedia PDF Downloads 235
3151 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 479
3150 Sulforaphane Attenuates Muscle Inflammation in Dystrophin-Deficient Mdx Mice via Nrf2/HO-1 Signaling Pathway

Authors: Chengcao Sun, Cuili Yang, Shujun Li, Ruilin Xue, Yongyong Xi, Liang Wang, Dejia Li

Abstract:

Backgrounds: Inflammation is widely distributed in patients with Duchenne muscular dystrophy (DMD), and ultimately leads to progressive deterioration of muscle function with the co-effects of chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzymes, heme oxygenase-1 (HO-1). However, whether Nrf2/HO-1 pathway can attenuate muscle inflammation on DMD remains unknown. The purpose of this study was to determine the anti-inflammatory effects of Sulforaphane (SFN) on DMD. Methods: 4-week-old male mdx mice were treated with SFN by gavage (2 mg/kg body weight per day) for 4 weeks. Gastrocnemius, tibial anterior and triceps brachii muscles were collected for related analysis. Immune cell infiltration in skeletal muscles was analyzed by H&E staining and immuno-histochemistry. Moreover, the expressions of inflammatory cytokines,pro-inflammatory cytokines and Nrf2/HO-1 pathway were detected by western blot, qRT-PCR, immunohistochemistry and immunofluorescence assays. Results: Our results demonstrated that SFN treatment increased the expression of muscle phase II enzymes HO-1 in Nrf2 dependent manner. Inflammation in mdx skeletal muscles was reduced by SFN treatment as indicated by decreased immune cell infiltration and lower expressions of the inflammatory cytokines CD45, pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the skeletal muscles of mdx mice. Conclusions: Collectively, these results show that SFN can ameliorate muscle inflammation in mdx mice by Nrf2/HO-1 pathway, which indicates Nrf2/HO-1 pathway may represent a new therapeutic target for DMD.

Keywords: sulforaphane, Nrf2, HO-1, inflammation

Procedia PDF Downloads 334
3149 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
3148 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 584
3147 A Qualitative Study of the Effect of Sibling and Parental Relationships on Coping Mechanisms in Families of Children with Autism Spectrum Disorder

Authors: Smriti Gour, Neelam Pandey

Abstract:

The objective of this study was to describe and analyse the mutual relationship between the coping mechanisms used by the families of a child with Autism Spectrum Disorder (ASD) and family dynamics and the effect sibling interactions have on the dynamics and coping mechanisms in an urban setup. In-depth interviews were conducted for 25 families, with 4 members each in the Delhi NCR area in India. The families who were interviewed had a younger child who had received a diagnosis of ASD between the ages of 5-12. The in-depth questionnaires contained open-ended questions and the interviews were conducted separately for the mother, father and the typically developing sibling. The key findings of the study suggested that lack of communication was a common factor in most families (n=19) leading to other difficulties like stress and relationship dysfunction. It also fostered a fallacious perception of the relationship dynamics in the family in most of the interviewed families and changed depending on the family member being interviewed. In families where the typically developing elder sibling had a good relationship with the autistic child, the family dynamics were found to be more stable, and the overall family well-being was better maintained. The coping mechanisms employed by the families were also more positive and tended to work better if the typically developing sibling maintained a positive and interactive relationship with the parents and the autistic child. The type of coping mechanisms had a major impact on the relationship between the parents and in dictating the dynamics of the family of the child with ASD. Spirituality, professional help, family support and household help emerged to be the most effective coping mechanisms for the families, with spirituality emerging to be the most positive and effective coping mechanism in the families interviewed.

Keywords: autism spectrum disorder, coping mechanism, family dynamics, parental relationships, siblings

Procedia PDF Downloads 318
3146 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites

Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal

Abstract:

Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.

Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures

Procedia PDF Downloads 274
3145 An Investigation of Prior Educational Achievement on Engineering Student Performance

Authors: Jovanca Smith, Derek Gay

Abstract:

All universities possess a standard by which students are assessed and administered into their programs. This paper considers the effect of the educational history of students, as measured by specific subject grades in Caribbean examinations, on overall performance in introductory engineering math and mechanics courses. Results reflect a correlation between the highest grade in the Caribbean examinations with a higher probability of successful advancement in the university courses. Alternatively, lower entrance grades are commensurate with underperformance in the university courses. Results also demonstrate that students matriculating with the Caribbean examinations will not necessarily possess a significant advantage over students entering through an alternative route, and while previous educational background of students is a significant indicator of tentative performance in the University level math and mechanics courses, it is not the sole factor.

Keywords: bimodal distribution, differential learning, engineering education, entrance qualification

Procedia PDF Downloads 362
3144 Understanding Co-Living Experience through University Residential Halls - A Pilot Study

Authors: Michelle W. T. Cheng, Yau Y.

Abstract:

Hong Kong continues to be ranked as the least affordable housing market in the world, making co-living a feasible alternative in this high-density city. Although the number of co-living residences has increased in Hong Kong, co-living as a housing typology is still a new concept for many. Little research has been conducted on this new housing typology, let alone the co-living experience. To address this gap, this study targeted student residents in university residential halls as it is a more controlled environment (e.g., with established rules and guidelines regarding the use of communal facilitates and housing management) for studying co-living experiences in Hong Kong. To date, no research study has systematically identified anti-social behavior (ASB) in co-living spaces. Since ASB can be influenced by factors such as social norms and individual interpretation, it has an elastic definition that results in different levels of acceptance. Unlike other types of housing, co-living spaces can be potentially more influenced by the neighborhood as residents share more time and space. As a pilot study, this research targeted one university residential hall to examine student co-living experiences. To clarify, the research question is focused on identifying the social factors that impact the residential satisfaction of those who co-living in residential halls. Quantitative data (n=100) were collected via a structured questionnaire to measure the residential environment, including ASB, social neighboring, community attachment, and perceived hall management efficacy. The survey was distributed at the end of the academic year to ensure that respondents had at least one year of first-hand experience living in a co-living space. To gather qualitative data, follow-up focus group interviews were conducted with 16 participants who completed the survey. The semi-structured interviews aimed to elicit the participants' perspectives on their co-living experience. Through analyzing their co-living experiences, the researcher identified factors that affected their residential satisfaction and provided recommendations to enhance their co-living experience.

Keywords: co-living, university residential hall, anti-social behabiour, neighbour relationship, community attachement

Procedia PDF Downloads 87
3143 A Hybrid Energy Storage Module for the Emergency Energy System of the Community Shelter in Yucatán, México

Authors: María Reveles-Miranda, Daniella Pacheco-Catalán

Abstract:

Sierra Papacal commissary is located north of Merida, Yucatan, México, where the indigenous Maya population predominates. Due to its location, the region has an elevation of fewer than 4.5 meters above sea level, with a high risk of flooding associated with storms and hurricanes and a high vulnerability of infrastructure and housing in the presence of strong gusts of wind. In environmental contingencies, the challenge is providing an autonomous electrical supply using renewable energy sources that cover vulnerable populations' health, food, and water pumping needs. To address this challenge, a hybrid energy storage module is proposed for the emergency photovoltaic (PV) system of the community shelter in Sierra Papacal, Yucatán, which combines high-energy-density batteries and high-power-density supercapacitors (SC) in a single module, providing a quick response to energy demand, reducing the thermal stress on batteries and extending their useful life. Incorporating SC in energy storage modules can provide fast response times to power variations and balanced energy extraction, ensuring a more extended period of electrical supply to vulnerable populations during contingencies. The implemented control strategy increases the module's overall performance by ensuring the optimal use of devices and balanced energy exploitation. The operation of the module with the control algorithm is validated with MATLAB/Simulink® and experimental tests.

Keywords: batteries, community shelter, environmental contingencies, hybrid energy storage, isolated photovoltaic system, supercapacitors

Procedia PDF Downloads 91
3142 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 478
3141 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures

Authors: Anny Zambrano, German Gonzalez, Yair Quintero

Abstract:

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.

Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness

Procedia PDF Downloads 343
3140 The Correlation between Clostridium Difficile Infection and Bronchial Lung Cancer Occurrence

Authors: Molnar Catalina, Lexi Frankel, Amalia Ardeljan, Enoch Kim, Marissa Dallara, Omar Rashid

Abstract:

Introduction: Clostridium difficile (C. diff) is a toxin-producing bacteria that can cause diarrhea and colitis. U.S. Center for Disease Control and Prevention revealed that C. difficile infection (CDI) has increased from 31 cases per 100,000 persons per year in 1996 to 61 per 100,000 in 2003. Approximately 500,000 cases per year occur in the United States. After exposure, the bacteria colonize the colon, where it adheres to the intestinal epithelium where it produces two toxins: TcdA and TcdB. TcdA affects the intestinal epithelium, causing fluid secretion, inflammation, and tissue necrosis, while TcdB acts as a cytotoxin purpose of this study was to evaluate the association between C diff infection and bronchial lung cancer development. Methods: Using ICD- 9 and ICD-10 codes, the data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to assess the patients infected with C diff as opposed to the non-infected patients. The Holy Cross Health, Fort Lauderdale, granted access to the database for the purpose of academic research. Patients were matched for age and Charlson Comorbidity Index (CCI). Standard statistical methods were used. Results: Bronchial lung cancer occurrence in the population not infected with C diff infection was 4741, as opposed to the population infected with C. diff, where 2039 cases of lung cancer were observed. The difference was statistically significant (p-value < 2.2x10^e-16), which reveals that C diff might be protective against bronchial lung cancer. The data was then matched by treatment to create to minimize the effect of treatment bias. Bronchial cancer incidence was 422 and 861 in infected vs. non-infected (p-value of < 2.2x10^e-16), which once more indicates that C diff infection could be beneficial in diminishing bronchial cancer development. Conclusion: This retrospective study conveys a statistical correlation between C diff infection and decreased incidence of lung bronchial cancer. Further studies are needed to comprehend the protective mechanisms of C. Diff infection on lung cancer.

Keywords: C. diff, lung cancer, protective, microbiology

Procedia PDF Downloads 235
3139 COVID-19 Infection in Children Admitted to Academic Hospitals in Central South Africa

Authors: Olive P. Khaliq, Stephen C. Brown, Boitumelo Pitso, Nomakhuwa E. Tabane

Abstract:

Context: The research focuses on the prevalence of SARS-CoV-2 infection in hospitalized children during the Omicron variant wave in South Africa, specifically in the Free State Province. Research Aim: This study aimed to investigate the prevalence of COVID-19 infection in asymptomatic, unvaccinated children during the Omicron variant wave in the Free State Province of South Africa. Methods: A prospective cross-sectional study was conducted on children aged 0-12 admitted to hospitals using nucleocapsid antibody rapid testing for SARS-CoV-2 presence. Data on parent/caregiver vaccination and patient conditions were collected. Results: 46.8% of hospitalized children tested positive for SARS-CoV-2, with the highest rates in neonates. Most infected children had unrelated conditions and were asymptomatic. The Omicron variant was characterized as highly infectious but less virulent, leading to mild disease. Theoretical Importance: The study highlights the significant SARS-CoV-2 infection rates in hospitalized children during the Omicron variant surge, emphasizing the variant's unique characteristics in causing mild or asymptomatic infections. Data Collection: Data were collected through nucleocapsid antibody rapid testing for SARS-CoV-2 and the compilation of parent/caregiver vaccination status and patient conditions. Analysis Procedures: The data were analyzed to determine the prevalence of SARS-CoV-2 infection in hospitalized children, focusing on demographics, infection rates, and associated conditions. Questions Addressed: The study addressed the prevalence of SARS-CoV-2 in hospitalized children, the impact of the Omicron variant, the asymptomatic nature of infections, and the potential role of vaccination status in transmission. Conclusion: The research revealed a high rate of SARS-CoV-2 infections among hospitalized children, mostly asymptomatic and with unrelated conditions, indicating the unique infectiousness and clinical presentation of the Omicron variant in this demographic.

Keywords: SARS-CoV-2, Omicron variant, antibodies, children, admission diagnosis

Procedia PDF Downloads 28
3138 Analysing the Creative Evolution of the Beatles

Authors: David Mason-Cox

Abstract:

Existing academic analyses of The Beatles cover a huge array of topics. This research explores one clear but multifaceted aspect of The Beatles: the development of their creativity. While its importance cannot be underestimated, a thorough appraisal of the roots of the group’s individual and collective artistic blossoming deserves more attention. This paper investigates the mechanisms that caused or enabled the group to eventually exert such an immense and long-lasting influence on popular music and culture. It suggests that the artistic inspiration of Astrid Kirchherr during their time in Hamburg may be much more far-reaching than has previously been credited. It further addresses the effect of the confluence of conditions and events which essentially ‘hot-housed’ the four working-class Liverpudlians, providing them with the incentives and the means to far exceed their apparent potential. Thirdly, it looks at the competitive nature of The Beatles, both as a group and as individuals, and how that competitive streak sparked them to improve as musicians, songwriters, and showmen. In viewing these triggers through the lens of creative theory, the research attempts to analyse what made The Beatles’ innovative ascendancy so extraordinary and why creativity can be misunderstood. This then is the tale of impressionable youths from post-war austerity Britain; the lure of an artist with strong aesthetic sensibilities in an exotic locale, the media boom of the early 1960s, the machinations of the music business, the national grief in the US following Kennedy’s assassination, and, finally the resilience and determination of four young men who were prepared to take advantage of every opportunity to prove, and improve, themselves -the harbingers of a new creative paradigm. This paper is part of a broader study which also examines how their growth toward artistic maturity informs The Beatles’ significance and impact on the culture and the counterculture during the 1960s and beyond. It will eventually combine critical textual analysis with a series of interviews of musicians, other creatives, and intellectuals. These will be conducted to advance the existing erudition and to develop a more accurate understanding of the group’s cultural influence upon real-world individuals.

Keywords: artistic influence, Beatles, competition, creative theory, new creative paradigm

Procedia PDF Downloads 102
3137 Linguistic and Cultural Human Rights for Indigenous Peoples in Education

Authors: David Hough

Abstract:

Indigenous peoples can generally be described as the original or first peoples of a land prior to colonization. While there is no single definition of indigenous peoples, the United Nations has developed a general understanding based on self-identification and historical continuity with pre-colonial societies. Indigenous peoples are often traditional holders of unique languages, knowledge systems and beliefs who possess valuable knowledge and practices which support sustainable management of natural resources. They often have social, economic, political systems, languages and cultures, which are distinct from dominant groups in the society or state where they live. They generally resist attempts by the dominant culture at assimilation and endeavour to maintain and reproduce their ancestral environments and systems as distinctive peoples and communities. In 2007, the United Nations General Assembly passed a declaration on the rights of indigenous peoples, known as UNDRIP. It (in addition to other international instruments such as ILO 169), sets out far-reaching guidelines, which – among other things – attempt to protect and promote indigenous languages and cultures. Paragraphs 13 and 14 of the declaration state the following regarding language, culture and education: Article 13, Paragraph 1: Indigenous peoples have the right to revitalize, use, develop and transmit for future generations their histories, languages, oral traditions, philosophies, writing systems, and literatures, and to designate and retain their own names for communities, places and persons. Article 14, Paragraph I: Indigenous peoples have the right to establish and control their educational systems and institutions providing education in their own languages, in a manner appropriate to their cultural methods of teaching and learning. These two paragraphs call for the right of self-determination in education. Paragraph 13 gives indigenous peoples the right to control the content of their teaching, while Paragraph 14 states that the teaching of this content should be based on methods of teaching and learning which are appropriate to indigenous peoples. This paper reviews an approach to furthering linguistic and cultural human rights for indigenous peoples in education, which supports UNDRIP. It has been employed in countries in Asia and the Pacific, including the Republic of the Marshall Islands, the Federated States of Micronesia, Far East Russia and Nepal. It is based on bottom-up community-based initiatives where students, teachers and local knowledge holders come together to produce classroom materials in their own languages that reflect their traditional beliefs and value systems. They may include such things as knowledge about herbal medicines and traditional healing practices, local history, numerical systems, weights and measures, astronomy and navigation, canoe building, weaving and mat making, life rituals, feasts, festivals, songs, poems, etc. Many of these materials can then be mainstreamed into math, science language arts and social studies classes.

Keywords: Indigenous peoples, linguistic and cultural human rights, materials development, teacher training, traditional knowledge

Procedia PDF Downloads 250
3136 Fijian Women’s Role in Disaster Risk Management: Climate Change

Authors: Priyatma Singh, Manpreet Kaur

Abstract:

Climate change is progressively being identified as a global crisis and this has immediate repercussions for Fiji Islands due to its geographical location being prone to natural disasters. In the Pacific, it is common to find significant differences between men and women, in terms of their roles and responsibilities. In the pursuit of prudent preparedness before disasters, Fijian women’s engagement is constrained due to socially constructed roles and expectation of women here in Fiji. This vulnerability is aggravated by viewing women as victims, rather than as key people who have vital information of their society, economy, and environment, as well as useful skills, which, when recognized and used, can be effective in disaster risk reduction. The focus of this study on disaster management is to outline ways in which Fijian women can be actively engaged in disaster risk management, articulating in decision-making, negating the perceived ideology of women’s constricted roles in Fiji and unveiling social constraints that limit women’s access to practical disaster management strategic plan. This paper outlines the importance of gender mainstreaming in disaster risk reduction and the ways of mainstreaming gender based on a literature review. It analyses theoretical study of academic literature as well as papers and reports produced by various national and international institutions and explores ways to better inform and engage women for climate change per ser disaster management in Fiji. The empowerment of women is believed to be a critical element in constructing disaster resilience as women are often considered to be the designers of community resilience at the local level. Gender mainstreaming as a way of bringing a gender perspective into climate related disasters can be applied to distinguish the varying needs and capacities of women, and integrate them into climate change adaptation strategies. This study will advocate women articulation in disaster risk management, thus giving equal standing to females in Fiji and also identify the gaps and inform national and local Disaster Risk Management authorities to implement processes that enhance gender equality and women’s empowerment towards a more equitable and effective disaster practice.

Keywords: disaster risk management, climate change, gender mainstreaming, women empowerment

Procedia PDF Downloads 388
3135 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100
3134 Outcome Evaluation of a Blended-Learning Mental Health Training Course in South African Public Health Facilities

Authors: F. Slaven, M. Uys, Y. Erasmus

Abstract:

The South African National Mental Health Education Programme (SANMHEP) was a National Department of Health (NDoH) initiative to strengthen mental health services in South Africa in collaboration with the Foundation for Professional Development (FPD), SANOFI and the various provincial departments of health. The programme was implemented against the backdrop of a number of challenges in the management of mental health in the country related to staff shortages and infrastructure, the intersection of mental health with the growing burden of non-communicable diseases and various forms of violence, and challenges around substance abuse and its relationship with mental health. The Mental Health Care Act (No. 17 of 2002) prescribes that mental health should be integrated into general health services including primary, secondary and tertiary levels to improve access to services and reduce stigma associated with mental illness. In order for the provisions of the Act to become a reality, and for the journey of mental health patients through the system to improve, sufficient and skilled health care providers are critical. SANMHEP specifically targeted Medical Doctors and Professional Nurses working within the facilities that are listed to conduct 72-hour assessments, as well as District Hospitals. The aim of the programme was to improve the clinical diagnosis and management of mental disorders/conditions and the understanding of and compliance with the Mental Health Care Act and related Regulations and Guidelines in the care, treatment and rehabilitation of mental health care users. The course used a blended-learning approach and trained 1 120 health care providers through 36 workshops between February and November 2019. Of those trained, 689 (61.52%) were Professional Nurses, 337 (30.09%) were Medical Doctors, and 91 (8.13%) indicated their occupation as ‘other’ (of these more than half were psychologists). The pre- and post-evaluation of the face-to-face training sessions indicated a marked improvement in knowledge and confidence level scores (both clinical and legislative) in the care, treatment and rehabilitation of mental health care users by participants in all the training sessions. There was a marked improvement in the knowledge and confidence of participants in performing certain mental health activities (on average the ratings increased by 2.72; or 27%) and in managing certain mental health conditions (on average the ratings increased by 2.55; or 25%). The course also required that participants obtain 70% or higher in their formal assessments as part of the online component. The 337 participants who completed and passed the course scored 90% on average. This illustrates that when participants attempted and completed the course, they did very well. To further assess the effect of the course on the knowledge and behaviour of the trained mental health care practitioners a mixed-method outcome evaluation is currently underway consisting of a survey with participants three months after completion, follow-up interviews with participants, and key informant interviews with department of health officials and course facilitators. This will enable a more detailed assessment of the impact of the training on participants' perceived ability to manage and treat mental health patients.

Keywords: mental health, public health facilities, South Africa, training

Procedia PDF Downloads 120
3133 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure

Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther

Abstract:

Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.

Keywords: aluminum alloy, fatigue performance, fracture, friction stir welding

Procedia PDF Downloads 153