Search results for: high relative accuracy
15000 Effect of Architecture and Operating Conditions of Vehicle on Bulb Lifetime in Automotive
Authors: Hatice Özbek, Caner Çil, Ahmet Rodoplu
Abstract:
Automotive lighting is the leading function in the configuration of vehicle architecture. Especially headlights and taillights from external lighting functions are among the structures that determine the stylistic character of the vehicle. At the same time, the fact that lighting functions are related to many other functions brings along difficulties in design. Customers expect maximum quality from the vehicle. In these circumstances, it is necessary to make designs that aim to keep the performance of bulbs with limited working lives at the highest level. With this study, the factors that influence the working lives of filament lamps were examined and bulb explosions that can occur sooner than anticipated in the future were prevented while the vehicle was still in the design phase by determining the relations with electrical, dynamical and static variables. Especially the filaments of the bulbs used in the front lighting of the vehicle are deformed in a shorter time due to the high voltage requirement. In addition to this, rear lighting lamps vibrate as a result of the tailgate opening and closing and cause the filaments to be exposed to high stress. With this study, the findings that cause bulb explosions were evaluated. Among the most important findings: 1. The structure of the cables to the lighting functions of the vehicle and the effect of the voltage values are drawn; 2. The effect of the vibration to bulb throughout the life of the vehicle; 3 The effect of the loads carried to bulb while the vehicle doors are opened and closed. At the end of the study, the maximum performance was established in the bulb lifetimes with the optimum changes made in the vehicle architecture based on the findings obtained.Keywords: vehicle architecture, automotive lighting functions, filament lamps, bulb lifetime
Procedia PDF Downloads 15714999 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 15214998 A Follow up Study on Indoor 222Rn, 220Rn and Their Decay Product Concentrations in a Mineralized Zone of Himachal Pradesh, India
Authors: B. S. Bajwa, Parminder Singh, Prabhjot Singh, Surinder Singh, B. K. Sahoo, B. K. Sapra
Abstract:
A follow up study was taken up in a mineralized zone situated in Hamirpur district, Himachal Pradesh, India to investigate high values of radon concentration reported in past studies as well to update the old radon data based on bare SSNTD technique. In the present investigation, indoor radon, thoron and their decay products concentrations have been measured using the newly developed Radon-Thoron discriminating diffusion chamber with single entry face, direct radon and thoron progeny sensors (DRPS/DTPS) respectively. The measurements have been carried out in seventy five dwellings of fourteen different villages. Houses were selected taking into consideration of the past data as well as the type of houses such as mud, concrete, brick etc. It was observed that high values of earlier reported radon concentrations were mainly because of thoron interference in the Solid State Nuclear Track Detector (LR-115 type II) exposed in bare mode. Now, the average concentration values and the estimated annual inhalation dose in these villages have been found to be within the reference level as recommended by the ICRP. The annual average indoor radon and thoron concentrations observed in these dwellings have been found to vary from 44±12-157±73 Bq m-3 and 44±11-240±125 Bq m-3 respectively. The equilibrium equivalent concentrations of radon and thoron decay products have been observed to be in the range of 10-63 Bq m-3 and 1-5 Bq m-3 respectively.Keywords: radon, thoron, progeny concentration, dosimeter
Procedia PDF Downloads 45914997 Gnss Aided Photogrammetry for Digital Mapping
Authors: Muhammad Usman Akram
Abstract:
This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry
Procedia PDF Downloads 3714996 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 15314995 Miracle Fruit Application in Sour Beverages: Effect of Different Concentrations on the Temporal Sensory Profile and Overall Linking
Authors: Jéssica F. Rodrigues, Amanda C. Andrade, Sabrina C. Bastos, Sandra B. Coelho, Ana Carla M. Pinheiro
Abstract:
Currently, there is a great demand for the use of natural sweeteners due to the harmful effects of the high sugar and artificial sweeteners consumption on the health. Miracle fruit, which is known for its unique ability to modify the sour taste in sweet taste, has been shown to be a good alternative sweetener. However, it has a high production cost, being important to optimize lower contents to be used. Thus, the aim of this study was to assess the effect of different miracle fruit contents on the temporal (Time-intensity - TI and Temporal Dominance of Sensations - TDS) sensory profile and overall linking of lemonade, to determine the better content to be used as a natural sweetener in sour beverages. TI and TDS results showed that the concentrations of 150 mg, 300 mg and 600 mg miracle fruit were effective in reducing the acidity and promoting the sweet perception in lemonade. Furthermore, the concentrations of 300 mg and 600 mg obtained similar profiles. Through the acceptance test, the concentration of 300 mg miracle fruit was shown to be an efficient substitute for sucrose and sucralose in lemonade, once they had similar hedonic values between ‘I liked it slightly’ and ‘I liked it moderately’. Therefore, 300mg miracle fruit consists in an adequate content to be used as a natural sweetener of lemonade. The results of this work will help the food industry on the efficient application of a new natural sweetener- the Miracle fruit extract in sour beverages, reducing costs and providing a product that meets the consumer desires.Keywords: acceptance, natural sweetener, temporal dominance of sensations, time-intensity
Procedia PDF Downloads 25314994 Nanocomplexes on the Base of Triterpene Saponins Isolated from Glycyrrhiza glabra and Saponaria officinalis Plants as an Efficient Adjuvants for Influenza Vaccine Use
Authors: Vladimir Berezin, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Aizhan Turmagambetova, Irina Zaitseva, Nadezhda Sokolova, Elmira Omirtaeva
Abstract:
Introduction: Triterpene saponins of plant origin are one of the most promising candidates for elaboration of novel adjuvants. Due to the combination of immunostimulating activity and the capacity interact with amphipathic molecules with formation of highly immunogenic nanocomplexes, triterpene saponins could serve as a good adjuvant/delivery system for vaccine use. In the research presented adjuvants on the base of nanocomplexes contained triterpene saponins isolated from Glycyrrhiza glabra and Saponaria officinalis plants indigenous to Kazakhstan were elaborated for influenza vaccine use. Methods: Purified triterpene saponins 'Glabilox' and 'SO1' with low toxicity and high immunostimulatory activity were isolated from plants Glycyrrhiza glabra L. and Saponaria officinalis L. by high-performance liquid chromatography (HPLC) and identified using electrospray ionization mass spectrometry (ESI-MS). Influenza virus A/St-Petersburg/5/09 (H1N1) propagated in 9-days old chicken embryos was concentrated and purified by centrifugation in sucrose gradient. Nanocomplexes contained lipids, and triterpene saponins Glabilox or SO1 were prepared by dialysis technique. Immunostimulating activity of experimental vaccine preparations was studied in vaccination/challenge experiments in mice. Results: Humoral and cellular immune responses and protection against influenza virus infection were examined after single subcutaneous and intranasal immunization. Mice were immunized subunit influenza vaccine (HA+NA) or whole virus inactivated influenza vaccine in doses 3.0/5.0/10.0 µg antigen/animal mixed with adjuvant in dose 15.0 µg/animal. Sera were taken 14-21 days following single immunization and mice challenged by A/St-Petersburg/5/09 influenza virus in dose 100 EID₅₀. Study of experimental influenza vaccine preparations in animal immunization experiments has shown that subcutaneous and intranasal immunization with subunit influenza vaccine mixed with nanocomplexes contained Glabilox or SO1 saponins stimulated high levels of humoral immune response (IgM, IgA, IgG1, IgG2a, and IgG2b antibody) and cellular immune response (IL-2, IL-4, IL-10, and IFN-γ cytokines) and resulted 80-90% protection against lethal influenza infection. Also, single intranasal and single subcutaneous immunization with whole virus inactivated influenza vaccine mixed with nanoparticulated adjuvants stimulated high levels of humoral and cellular immune responses and provided 100% protection against lethal influenza infection. Conclusion: The results of study have shown that nanocomplexes contained purified triterpene saponins Glabilox and SO1 isolated from plants indigenous to Kazakhstan can stimulate a broad spectrum of humoral and cellular immune responses and induce protection against lethal influenza infection. Both elaborated adjuvants are promising for incorporation to influenza vaccine intended for subcutaneous and intranasal routes of immunization.Keywords: influenza vaccine, adjuvants, triterpene saponins, immunostimulating activity
Procedia PDF Downloads 14114993 Comparison of an Anthropomorphic PRESAGE® Dosimeter and Radiochromic Film with a Commercial Radiation Treatment Planning System for Breast IMRT: A Feasibility Study
Authors: Khalid Iqbal
Abstract:
This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS-RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ± 3%/± 3 mm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/± 3 mm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.Keywords: 3D dosimetry, PRESAGE®, IMRT, QA, EBT2 GAFCHROMIC film
Procedia PDF Downloads 42014992 The Role of the Child's Previous Inventory in Verb Overgeneralization in Spanish Child Language: A Case Study
Authors: Mary Rosa Espinosa-Ochoa
Abstract:
The study of overgeneralization in inflectional morphology provides evidence for understanding how a child's mind works when applying linguistic patterns in a novel way. High-frequency inflectional forms in the input cause inappropriate use in contexts related to lower-frequency forms. Children learn verbs as lexical items and new forms develop only gradually, around their second year: most of the utterances that children produce are closely related to what they have previously produced. Spanish has a complex verbal system that inflects for person, mood, and tense. Approximately 200 verbs are irregular, and bare roots always require an inflected form, which represents a challenge for the memory. The aim of this research is to investigate i) what kinds of overgeneralization errors children make in verb production, ii) to what extent these errors are related to verb forms previously produced, and iii) whether the overgeneralized verb components are also frequent in children’s linguistic inventory. It consists of a high-density longitudinal study of a middle-class girl (1;11,24-2;02,24) from Mexico City, whose utterances were recorded almost daily for three months to compile a unique corpus in the Spanish language. Of the 358 types of inflected verbs produced by the child, 9.11% are overgeneralizations. Not only are inflected forms (verbal and pronominal clitics) overgeneralized, but also verbal roots. Each of the forms can be traced to previous utterances, and they show that the child is detecting morphological patterns. Neither verbal roots nor inflected forms are associated with high frequency patterns in her own speech. For example, the child alternates the bare roots of an irregular verb, cáye-te* and cáiga-te* (“fall down”), to express the imperative of the verb cá-e-te (fall down.IMPERATIVE-PRONOMINAL.CLITIC), although cay-ó (PAST.PERF.3SG) is the most frequent form of her previous complete inventory, and the combined frequency of caer (INF), cae (PRES.INDICATIVE.3SG), and caes (PRES.INDICATIVE.2SG) is the same as that of as caiga (PRES.SUBJ.1SG and 3SG). These results provide evidence that a) two forms of the same verb compete in the child’s memory, and b) although the child uses her own inventory to create new forms, these forms are not necessarily frequent in her memory storage, which means that her mind is more sensitive to external stimuli. Language acquisition is a developing process, given the sensitivity of the human mind to linguistic interaction with the outside world.Keywords: inflection, morphology, child language acquisition, Spanish
Procedia PDF Downloads 10514991 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial
Authors: Bhavana V. Mohite, Satish V. Patil
Abstract:
Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite
Procedia PDF Downloads 30414990 Highway Lighting of the 21st Century is Smart, but is it Cost Efficient?
Authors: Saurabh Gupta, Vanshdeep Parmar, Sri Harsha Reddy Yelly, Michele Baker, Elizabeth Bigler, Kunhee Choi
Abstract:
It is known that the adoption of solar powered LED highway lighting systems or sensory LED highway lighting systems can dramatically reduce energy consumption by 55 percent when compared to conventional on-grid High Pressure Sodium (HPS) lamps that are widely applied to most highways. However, an initial high installation cost for building the infrastructure of solar photovoltaic devices hampers a wider adoption of such technologies. This research aims to examine currently available state-of-the-art solar photovoltaic and sensory technologies, identify major obstacles, and analyze each technology to create a benchmarking metrics from the benefit-cost analysis perspective. The on-grid HPS lighting systems will serve as the baseline for this study to compare it with other lighting alternatives such as solar and sensory LED lighting systems. This research will test the validity of the research hypothesis that alternative LED lighting systems produce more favorable benefit-cost ratios and the added initial investment costs are recouped by the savings in the operation and maintenance cost. The payback period of the excess investment and projected savings over the life-cycle of the selected lighting systems will be analyzed by utilizing the concept of Net Present Value (NPV). Researchers believe that if this study validates the research hypothesis, it can promote a wider adoption of alternative lighting systems that will eventually save millions of taxpayer dollars in the long-run.Keywords: lighting systems, sensory and solar PV, benefit cost analysis, net present value
Procedia PDF Downloads 35514989 Effects of Inadequate Domestic Water Supply on Human Health in Selected Neighbourhoods of Lokoja, Kogi State
Authors: Folorunsho J. O., Umar M. A.
Abstract:
Access to potable water supply in both the rural and urban regions of the world has been neglected, and this has severely affected man and the aesthetics of the natural environment of man. This has further worsened the issue of diseases prevalence. This study considered the effects of inadequate domestic water supply on human health in selected neighbourhoods of Lokoja. The study used descriptive statistics such as relative frequencies, percentages and inferential statistics to analyse the data obtained through the use of structured questionnaire. The results revealed that the females and male constituted 56% and 44% of the respondents respectively; 62% of the respondents married and 32% are unmarried; respondents between ages 31 and 40 years constitute majority of the study population, while respondents with tertiary education constituted 35%, and those with secondary education were 32% of the total respondents. Furthermore, civil servants constituted 40% and unemployed 16% of the total respondents. In terms of monthly income, 40% of the respondents was found to earn between ₦31,000 - 40,000 monthly. On the perception of households on the availability and adequacy of domestic water supply, the study revealed that 64.7% of the respondents have pipe-borne water as their main source of water supply, with only 28.5% out of the 64.7% have pipe-borne water supply daily. On the relationship between water supply characteristics and health status among households, the result shows that 76% of the respondents perceived a strong relationship between water supply and health status. Cumulatively, 67% of the respondents confirm that both the quality and quantity of water supplied play a critical role in determining health status of residents of the study area. The respondents also reported skin diseases (96%), diarrhoea (96%), malaria (91%), cholera (67%), dysentery (67%), and respiratory diseases (67%) as the most perceived and experienced in the area, the disease rate in the prevalence order of malaria (81%), diarrhoea (61%), skin diseases (58%), cholera (34%), dysentery (31%) and respiratory disease (14%) respectively. Finally, the results further showed how households cope with inadequate water supply with 52% of the respondents confirm that they regularly treat their water before it was deployed for domestic uses, while 35%, 26%, 25%, 10% and 4% of the 52% respectively, adopted boiling, addition of alums, filtering with fabrics, chlorination and bleaching as the preferred treatment methods. The study thus recommended policy options that will aggressively launch adequate potable water supply infrastructure in the study area.Keywords: Potable Water, Supply, Human Health, Perception, ChlorinationKeywords: potable water, human health, perception, chlorination
Procedia PDF Downloads 7514988 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention
Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang
Abstract:
Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles
Procedia PDF Downloads 26414987 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase
Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia
Abstract:
Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.Keywords: bismuth-based superconductor, critical current density, phase formation, Sr(BO₂)₂ doping
Procedia PDF Downloads 24714986 Mechanical and Optical Properties of Doped Aluminum Nitride Thin Films
Authors: Padmalochan Panda, R. Ramaseshan
Abstract:
Aluminum nitride (AlN) is a potential candidate for semiconductor industry due to its wide band gap (6.2 eV), high thermal conductivity and low thermal coefficient of expansion. A-plane oriented AlN film finds an important role in deep UV-LED with higher isotropic light extraction efficiency. Also, Cr-doped AlN films exhibit dilute magnetic semiconductor property with high Curie temperature (300 K), and thus compatible with modern day microelectronics. In this work, highly a-axis oriented wurtzite AlN and Al1-xMxN (M = Cr, Ti) films have synthesized by reactive co-sputtering technique at different concentration. Crystal structure of these films is studied by Grazing incidence X-ray diffraction (GIXRD) and Transmission electron microscopy (TEM). Identification of binding energy and concentration (x) in these films is carried out by X-ray photoelectron spectroscopy (XPS). Local crystal structure around the Cr and Ti atom of these films are investigated by X-ray absorption spectroscopy (XAS). It is found that Cr and Ti replace the Al atom in AlN lattice and the bond lengths in first and second coordination sphere with N and Al, respectively, decrease concerning doping concentration due to strong p-d hybridization. The nano-indentation hardness of Cr and Ti-doped AlN films seems to increase from 17.5 GPa (AlN) to around 23 and 27.5 GPa, respectively. An-isotropic optical properties of these films are studied by the Spectroscopic Ellipsometry technique. Refractive index and extinction coefficient of these films are enhanced in normal dispersion region as compared to the parent AlN film. The optical band gap energies also seem to vary between deep UV to UV regions with the addition of Cr, thus by bringing out the usefulness of these films in the area of optoelectronic device applications.Keywords: ellipsometry, GIXRD, hardness, XAS
Procedia PDF Downloads 11814985 An Analysis of Employee Attitudes to Organisational Change Management Practices When Adopting New Technologies Within the Architectural, Engineering, and Construction Industry: A Case Study
Authors: Hannah O'Sullivan, Esther Quinn
Abstract:
Purpose: The Architectural, Engineering, and Construction (AEC) industry has historically struggled to adapt to change. Although the ability to innovate and successfully implement organizational change has been demonstrated to be critical in achieving a sustainable competitive advantage in the industry, many AEC organizations continue to struggle when affecting organizational change. One prominent area of organizational change that presents many challenges in the industry is the adoption of new forms of technology, for example, Building Information Modelling (BIM). Certain Organisational Change Management (OCM) practices have been proven to be effective in supporting organizations to adopt change, but little research has been carried out on diverging employee attitudes to change relative to their roles within the organization. The purpose of this research study is to examine how OCM practices influence employee attitudes to change when adopting new forms of technology and to analyze the diverging employee perspectives within an organization on the importance of different OCM strategies. Methodology: Adopting an interview-based approach, a case study was carried out on a large-sized, prominent Irish construction organization who are currently adopting a new technology platform for its projects. Qualitative methods were used to gain insight into differing perspectives on the utilization of various OCM practices and their efficacy when adopting a new form of technology on projects. Change agents implementing the organizational change gave insight into their intentions with the technology rollout strategy, while other employees were interviewed to understand how this rollout strategy was received and the challenges that were encountered. Findings: The results of this research study are currently being finalized. However, it is expected that employees in different roles will value different OCM practices above others. Findings and conclusions will be determined within the coming weeks. Value: This study will contribute to the body of knowledge relating to the introduction of new technologies, including BIM, to AEC organizations. It will also contribute to the field of organizational change management, providing insight into methods of introducing change that will be most effective for different employees based on their roles and levels of experience within the industry. The focus of this study steers away from traditional studies of the barriers to adopting BIM in its first instance at an organizational level and centers on the direct effect on employees when a company changes the technology platform being used.Keywords: architectural, engineering, and construction (AEC) industry, Building Information Modelling, case study, challenges, employee perspectives, organisational change management.
Procedia PDF Downloads 7514984 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 10614983 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project
Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen
Abstract:
This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project
Procedia PDF Downloads 17414982 Resilience Assessment of Mountain Cities from the Perspective of Disaster Prevention: Taking Chongqing as an Example
Abstract:
President Xi Jinping has clearly stated the need to more effectively advance the process of urbanization centered on people, striving to shape cities into spaces that are healthier, safer, and more livable. However, during the development and construction of mountainous cities, numerous uncertain disruptive factors have emerged, one after another, posing severe challenges to the city's overall development. Therefore, building resilient cities and creating high-quality urban ecosystems and safety systems have become the core and crux of achieving sustainable urban development. This paper takes the central urban area of Chongqing as the research object and establishes an urban resilience assessment indicator system from four dimensions: society, economy, ecology, and infrastructure. It employs the entropy weight method and TOPSIS model to assess the urban resilience level of the central urban area of Chongqing from 2019 to 2022. The results indicate that i. the resilience level of the central urban area of Chongqing is unevenly distributed, showing a spatial pattern of "high in the middle and low around"; it also demonstrates differentiation across different dimensions; ii. due to the impact of the COVID-19 pandemic, the overall resilience level of the central urban area of Chongqing has declined significantly, with low recovery capacity and slow improvement in urban resilience. Finally, based on the four selected dimensions, this paper proposes optimization strategies for urban resilience in mountainous cities, providing a basis for Chongqing to build a safe and livable new city.Keywords: mountainous urban areas, central urban area of chongqing, entropy weight method, TOPSIS model, ArcGIS
Procedia PDF Downloads 1414981 The Economic Benefits of the Graduates of Higher Education in Philippines
Authors: Christia C. Baltar
Abstract:
Everybody goes to primary education but not all proceed to secondary education because of poverty and it is evident in the Philippines. Moreover, the number goes down when they reach higher education. The researcher believes that higher education may improve the standard of living of the family looking at the economic benefits of it. Once one graduated from a particular degree, one may employ with higher wage than those who are non-degree holder. Every year the Philippines produce more than five hundred thousand graduates of higher education and it keeps on increasing every year. Thus, the competition in the employment is really high. It is then important to pursue higher education than settling to a high school graduate because a degree is what most of the employer is looking for. The Philippine government through the Department of Labor and Employment is offering job fairs to all cities as much as possible just to cater employment for those graduates away from urban areas like in Manila and even the privates sectors also proposing for job fairs. Researcher conducted a survey in her institution and she further used secondary information to strengthen the findings of her survey. Researcher used descriptive measures, chi-square test for independence, and the correlation coefficient to analyze the data in her survey. In the survey conducted results show that there was an increase on the income of the family of the graduates of higher education. The graduates believed that their standard of living improved because they were able to work in a better job. The data were analyzed and the results show that there was no significant relationship on sex, age and marital status of the graduates to their economic status but the degree program they enrolled in the tertiary education affects their economic status. The impact of earning higher education can be seen indirectly to the economic growth of the Philippines. Finally, researcher concludes that there is direct and indirect impact of the higher education to the economic status of the graduates.Keywords: economic, economic benefits, higher education, standard of living
Procedia PDF Downloads 29414980 Studying the Value-Added Chain for the Fish Distribution Process at Quang Binh Fishing Port in Vietnam
Authors: Van Chung Nguyen
Abstract:
The purpose of this study is to study the current status of the value chain for fish distribution at Quang Binh Fishing Port with 360 research samples in which the research subjects are fishermen, traders, retailers, and businesses. The research uses the approach of applying the value chain theoretical framework of Kaplinsky and Morris to quantify and describe market channels and actors participating in the value chain and analyze the value-added process of these companies according to market channels. The analysis results show that fishermen directly catch fish with high economic efficiency, but processing enterprises and, especially retailers, are the agents to obtain higher added value. Processing enterprises play a role that is not really clear due to outdated processing technology; in contrast, retailers have the highest added value. This shows that the added value of the fish supply chain at Quang Binh fishing port is still limited, leading to low output quality. Therefore, the selling price of fish to the market is still high compared to the abundant fish resources, leading to low consumption and limiting exports due to the quality of processing enterprises. This reduces demand and fishing capacity, and productivity is lower than potential. To improve the fish value chain at fishing ports, it is necessary to focus on improving product quality, strengthening linkages between actors, building brands and product consumption markets at the same time, improving the capacity of export processing enterprises.Keywords: Quang Binh fishing port, value chain, market, distributions channel
Procedia PDF Downloads 7714979 The Effect of Nanoclay on the Hydraulic Conductivity of Clayey Sand Soils
Authors: Javad Saeidaskari, Mohammad Hassan Baziar
Abstract:
Soil structures have been frequently damaged during piping, earthquake and other types of failures. As far as adverse circumstances were developed subsequent to piping or other similar failure types, hydraulic parameters of soil such as hydraulic conductivity should be considered. As a result, acquiring an approach to diminish soil permeability is inevitable. There are many ground improvement methods to reduce seepage, which are classified under soil treatment and stabilization methods. Recently, one of the soil improvement methods is known as nanogeotechnology. This study aims to investigate the influence of Cloisite 30B nanoclay on permeability of compacted clayey sand soils. The samples are prepared by mixing two soil types, including Kaolin clay and Firouzkooh sand, in 1:9 and 1:5 clay:sand (by mass) proportions. In experimental procedure, initially, the optimum water content and maximum dry unit weight of each samples were obtained for compaction. Then, series of permeability tests were conducted by triaxial apparatus on prepared specimens with identical relative density of 95% of maximum dry density and water content of 1% wet of optimum for different weight percentages of nanoclay (1% to 4%). Therefore, in this paper, the effect of time on treated specimen was appraised, as well as two approaches of manual mixing and ball milling were compared to reveal the importance of dispersion issue. The results show that adding nanoclay up to 3%, as its optimum content, causes notable reduction in permeability (1.60e-03 to 5.51e-05 cm/s and 3.32e-04 to 8.44e-07 cm/s in samples with 1:9 and 1:5 mixture proportions, respectively). The hydraulic conductivity of treated clayey sand (1:5 mixture proportion with 3% nanoclay) decreases gradually from 8.44e-07 to 3.00e-07 cm/s within 90 days and then tends to be consistent. The influence of mixing method on permeability results shows that the utilization of ball mill mixing effectively leads to lower values than those of manual mixing, in other words, by adding 3% nanoclay, hydraulic conductivity of specimen declines from 8.44e-07 to 2.00e-07 cm/s. In order to evaluate the interaction between soil particles and, to ensure proper dispersion of nanoparticles through clayey sand mixture, they were magnified by means of scanning electron microscope (SEM). In conclusion, the nanoclay particles in vicinity of moisture can cause soil stabilization to prevent water penetration, which eventually result in lower usage of clay and operation costs.Keywords: nanoclay, cloisite 30b, clayey sand, hydraulic conductivity
Procedia PDF Downloads 35314978 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.Keywords: bridge, construction, drones, infrastructure, information
Procedia PDF Downloads 12714977 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant
Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani
Abstract:
Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning
Procedia PDF Downloads 4314976 Consequential Effects of Coal Utilization on Urban Water Supply Sources – a Study of Ajali River in Enugu State Nigeria
Authors: Enebe Christian Chukwudi
Abstract:
Water bodies around the world notably underground water, ground water, rivers, streams, and seas, face degradation of their water quality as a result of activities associated with coal utilization including coal mining, coal processing, coal burning, waste storage and thermal pollution from coal plants which tend to contaminate these water bodies. This contamination results from heavy metals, presence of sulphate and iron, dissolved solids, mercury and other toxins contained in coal ash, sludge, and coal waste. These wastes sometimes find their way to sources of urban water supply and contaminate them. A major problem encountered in the supply of potable water to Enugu municipality is the contamination of Ajali River, the source of water supply to Enugu municipal by coal waste. Hydro geochemical analysis of Ajali water samples indicate high sulphate and iron content, high total dissolved solids(TDS), low pH (acidity values) and significant hardness in addition to presence of heavy metals, mercury, and other toxins. This is indicative of the following remedial measures: I. Proper disposal of mine wastes at designated disposal sites that are suitably prepared. II. Proper water treatment and III. Reduction of coal related contaminants taking advantage of clean coal technology.Keywords: effects, coal, utilization, water quality, sources, waste, contamination, treatment
Procedia PDF Downloads 42714975 Nematicidal Activity of the Cell Extract from Penicillium Sp EU0013 and Its Metabolite Profile Using High Performance Liquid Chromatograpy
Authors: Zafar Iqbal, Sana Irshad Khan
Abstract:
Organic extract from newly isolated plant growth promoting fungus (PGPF) Penicillium sp EU0013 was subjected to bioassays including anti fungal (disc diffusion) cytotoxicity (brine shrimp lethality), herbicidal (Lemna minor) and nematicidal activities. Metabolite profile of the extract was also assessed using HPLC analysis with the aim to identify bioactive natural products in the extract as new drug candidate(s). The extract showed anti fungal potential against tested fungal pathogens. Growth of the Wilt pathogen Fusarium oxyosproum was inhibited up to 63% when compared to negative reference. Activity against brine shrimps was weak and mortality up to 10% was observed at concentration of 200 µg. mL-1. The extract exhibited no toxicity against Lemna minor frond at 200 µg. mL-1. Nematicidal activity was observed very potent against root knot nematode and LC50 value was calculated as 52.5 ug. mL-1 using probit analysis. Methodically assessment of metabolites profile by HPLC showed the presence of kojic acid (Rt 1.4 min) and aflatoxin B1 (Rt 5.9 min) in the mycellial extract as compared with standards. The major unidentified metabolite was eluted at Rt 8.6 along with other minor peaks. The observed high toxicity against root knot nematode was attributed to the unidentified compounds that make fungal extract worthy of further exploration for isolation and structural characterization studies for development of future commercial nematicidal compound(s).Keywords: penicillium, nematicidal activity, metabolites, HPLC
Procedia PDF Downloads 45014974 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges
Authors: Ionel Botef
Abstract:
Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.Keywords: aerospace, aging aircraft, cold spray, materials
Procedia PDF Downloads 12414973 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing
Authors: Yohann R. J. Thomas, Sébastien Solan
Abstract:
Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes
Procedia PDF Downloads 25414972 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles
Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli
Abstract:
Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system
Procedia PDF Downloads 6214971 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data
Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu
Abstract:
Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq
Procedia PDF Downloads 146