Search results for: minimum fluidization velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3535

Search results for: minimum fluidization velocity

2635 Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models

Authors: Sina Gharevali

Abstract:

Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate.

Keywords: nanoparticles, copper, staphylococcus, aureus

Procedia PDF Downloads 96
2634 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model

Procedia PDF Downloads 207
2633 25 (OH)D3 Level and Obesity Type, and Its Effect on Renal Excretory Function in Patients with a Functioning Transplant

Authors: Magdalena Barbara Kaziuk, Waldemar Kosiba, Marek Jan Kuzniewski

Abstract:

Introduction: Vitamin D3 has a proven pleiotropic effect, not only responsible for calcium and phosphate management, but also influencing normal functioning of the whole body. Aim: Evaluation of vitamin D3 resources and its effect on a nutritional status, obesity type and glomerular filtration in kidney transplant recipients. Methods: Group of 152 (81 women and 71 men, average age 47.8 ± 11.6 years) patients with a functioning renal transplant their body composition was assessed using the bioimpendance method (BIA) and anthropometric measurements more than 3 months after the transplant. The nutritional status and the obesity type were determined with the Waist to Height Ratio (WHtR) and the Waist to Hip Ratio (WHR). 25- Hydroxyvitamin D3 (25 (OH)D3) was determined, together with its correlation with the obesity type and the glomerular filtration rate (eGFR) calculated with the MDRD formula. Results: The mean 25 (OH)D3 level was 20.4 ng/ml. 30ng/ml was considered as a minimum correct level 22,7% of patients from the study group were classified to be a correct body weight, 56,7% of participants had an android type and 20,6% had a gynoid type. Significant correlation was observed between 25 (OH)D3 deficiency and abdominal obesity (p < 0.005) in patients. Furthermore, a statistically significant relationship was demonstrated between the 25 (OH)D3 levels and eGFR in patients after a kidney transplant. Patients with an android body type had lower eGFR versus those with the gynoid body type (p=0.004). Conclusions: Correct diet in patients after a kidney transplant determines minimum recommended serum levels of vitamin D3. Excessive fatty tissue, low levels of 25 (OH)D3), may be a predictor for android obesity and renal injury; therefore, correct diet and pharmacological management together with physical activities adapted to the physical fitness level of a patient are necessary.

Keywords: kidney transplantation, glomerular filtration rate, obesity, vitamin D3

Procedia PDF Downloads 278
2632 Modelling and Simulation of Aero-Elastic Vibrations Using System Dynamic Approach

Authors: Cosmas Pandit Pagwiwoko, Ammar Khaled Abdelaziz Abdelsamia

Abstract:

Flutter as a phenomenon of flow-induced and self-excited vibration has to be recognized considering its harmful effect on the structure especially in a stage of aircraft design. This phenomenon is also important for a wind energy harvester based on the fluttering surface due to its effective operational velocity range. This multi-physics occurrence can be presented by two governing equations in both fluid and structure simultaneously in respecting certain boundary conditions on the surface of the body. In this work, the equations are resolved separately by two distinct solvers, one-time step of each domain. The modelling and simulation of this flow-structure interaction in ANSYS show the effectiveness of this loosely coupled method in representing flutter phenomenon however the process is time-consuming for design purposes. Therefore, another technique using the same weak coupled aero-structure is proposed by using system dynamics approach. In this technique, the aerodynamic forces were calculated using singularity function for a range of frequencies and certain natural mode shapes are transformed into time domain by employing an approximation model of fraction rational function in Laplace variable. The representation of structure in a multi-degree-of-freedom coupled with a transfer function of aerodynamic forces can then be simulated in time domain on a block-diagram platform such as Simulink MATLAB. The dynamic response of flutter at certain velocity can be evaluated with another established flutter calculation in frequency domain k-method. In this method, a parameter of artificial structural damping is inserted in the equation of motion to assure the energy balance of flow and vibrating structure. The simulation in time domain is particularly interested as it enables to apply the structural non-linear factors accurately. Experimental tests on a fluttering airfoil in the wind tunnel are also conducted to validate the method.

Keywords: flutter, flow-induced vibration, flow-structure interaction, non-linear structure

Procedia PDF Downloads 315
2631 Characterization of Ethanol-Air Combustion in a Constant Volume Combustion Bomb Under Cellularity Conditions

Authors: M. Reyes, R. Sastre, P. Gabana, F. V. Tinaut

Abstract:

In this work, an optical characterization of the ethanol-air laminar combustion is presented in order to investigate the origin of the instabilities developed during the combustion, the onset of the cellular structure and the laminar burning velocity. Experimental tests of ethanol-air have been developed in an optical cylindrical constant volume combustion bomb equipped with a Schlieren technique to record the flame development and the flame front surface wrinkling. With this procedure, it is possible to obtain the flame radius and characterize the time when the instabilities are visible through the cell's apparition and the cellular structure development. Ethanol is an aliphatic alcohol with interesting characteristics to be used as a fuel in Internal Combustion Engines and can be biologically synthesized from biomass. Laminar burning velocity is an important parameter used in simulations to obtain the turbulent flame speed, whereas the flame front structure and the instabilities developed during the combustion are important to understand the transition to turbulent combustion and characterize the increment in the flame propagation speed in premixed flames. The cellular structure is spontaneously generated by volume forces, diffusional-thermal and hydrodynamic instabilities. Many authors have studied the combustion of ethanol air and mixtures of ethanol with other fuels. However, there is a lack of works that investigate the instabilities and the development of a cellular structure in ethanol flames, a few works as characterized the ethanol-air combustion instabilities in spherical flames. In the present work, a parametrical study is made by varying the fuel/air equivalence ratio (0.8-1.4), initial pressure (0.15-0.3 MPa) and initial temperature (343-373K), using a design of experiments type I-optimal. In reach mixtures, it is possible to distinguish the cellular structure formed by the hydrodynamic effect and by from the thermo-diffusive. Results show that ethanol-air flames tend to stabilize as the equivalence ratio decreases in lean mixtures and develop a cellular structure with the increment of initial pressure and temperature.

Keywords: ethanol, instabilities, premixed combustion, schlieren technique, cellularity

Procedia PDF Downloads 66
2630 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique

Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich

Abstract:

In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.

Keywords: annular flow, disturbance waves, entrainment, flow development

Procedia PDF Downloads 251
2629 Graphene Transistors Based Microwave Amplifiers

Authors: Pejman Hosseinioun, Ali Safari, Hamed Sarbazi

Abstract:

Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers.

Keywords: graphene, microwave FETs, microwave amplifiers, transistors

Procedia PDF Downloads 493
2628 2D-Numerical Modelling of Local Scour around a Circular Pier in Steady Current

Authors: Mohamed Rajab Peer Mohamed, Thiruvenkatasamy Kannabiran

Abstract:

In the present investigation, the scour around a circular pier subjected to a steady current were studied numerically using two-dimensional MIKE21 Flow Model (FM) and Sand Transport (ST)Modulewhich is developed by Danish Hydraulic Institute (DHI), Denmark. The unstructured flexible mesh generated with rectangular flume dimension of 10 m wide, 1 m deep, and 30 m long. The grain size of the sand was d50 = 0.16 mm, sediment size, sediment gradation=1.16, pier diameter D= 30 mm and depth-averaged current velocity, U = 0.449 m/s are considered in the model. The estimated scour depth obtained from this model is validated and it is observed that the results of the model have good agreement with flume experimental results.In order to estimate the scour depth, several simulations were made for three cases viz., Case I:change in sediment transport model description in the numerical model viz, i) Engelund-Hansen model, ii) Engelund-Fredsøe model, and iii) Van Rijn model, Case II: change in current velocity for keeping constant pile diameter D=0.03 m and Case III:change in pier diameter for constant depth averaged current speed U=0.449 m/s.In case I simulations, the results indicate that the scour depth S/D is the order of 1.73 for Engelund-Hansen model, 0.64 for Engelund-Fredsøe model and 0.46 for VanRijn model. The scour depth estimates using Engelund-Hansen method compares well the experimental results.In case II, simulations show that the scour depth increases with increasing current component of the flow.In case III simulations, the results indicate that the scour depth increases with increase in pier diameter and it stabilize attains steady value when the Froude number> 2.71.All the results of the numerical simulations are clearly matches with reported values of the experimental results. Hence, this MIKE21 FM –Sand Transport model can be used as a suitable tool to estimate the scour depth for field applications. Moreover, to provide suitable scour protection methods, the maximum scour depth is to be predicted, Engelund-Hansen method can be adopted to estimate the scour depth in the steady current region.

Keywords: circular pier, MIKE21, numerical model, scour, sediment transport

Procedia PDF Downloads 317
2627 Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions

Authors: Abdenour Bourabaa, Malika Fekih, Mohamed Saighi

Abstract:

A numerical investigation of the fin efficiency and temperature distribution of an annular fin under dehumidification has been presented in this paper. The non-homogeneous second order differential equation that describes the temperature distribution from the fin base to the fin tip has been solved using the central finite difference method. The effects of variations in parameters including relative humidity, air temperature, air face velocity on temperature distribution and fin efficiency are investigated and compared with those under fully dry fin conditions. Also, the effect of fin pitch on the dimensionless temperature has been studied.

Keywords: annular fin, dehumidification, fin efficiency, heat and mass transfer, wet fin

Procedia PDF Downloads 480
2626 Effects of Sn and Al on Phase Stability and Mechanical Properties of Metastable Beta Ti Alloys

Authors: Yonosuke Murayama

Abstract:

We have developed and studied a metastable beta Ti alloy, which shows super-elasticity and low Young’s modulus according to the phase stability of its beta phase. The super-elasticity and low Young’s modulus are required in a wide range of applications in various industrial fields. For example, the metallic implant with low Young’s modulus and non-toxicity is desirable because the large difference of Young’s modulus between the human bone and the implant material may cause a stress-shielding phenomenon. We have investigated the role of Sn and Al in metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys. The metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys form during quenching from the beta field at high temperature. While Cr and V act as beta stabilizers, Sn and Al are considered as elements to suppress the athermal omega phase produced during quenching. The athermal omega phase degrades the properties of super-elasticity and Young’s modulus. Although Al and Sn as single elements are considered as an alpha stabilizer and neutral, respectively, Sn and Al acted also as beta stabilizers when added simultaneously with beta stabilized element of Cr or V in this experiment. The quenched microstructure of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys shifts from martensitic structure to beta single-phase structure with increasing Cr or V. The Young’s modulus of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys decreased and then increased with increasing Cr or V, each showing its own minimum value of Young's modulus respectively. The composition of the alloy with the minimum Young’s modulus is a near border composition where the quenched microstructure shifts from martensite to beta. The border composition of Ti-Cr-Sn and Ti-V-Sn alloys required only less amount of each beta stabilizer, Cr or V, than Ti-Cr-Al and Ti-V-Al alloys. This indicates that the effect of Sn as a beta stabilizer is stronger than Al. Sn and Al influenced the competitive relation between stress-induced martensitic transformation and slip deformation. Thus, super-elastic properties of metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys varied depending on the alloyed element, Sn or Al.

Keywords: metastable beta Ti alloy, super-elasticity, low Young’s modulus, stress-induced martensitic transformation, beta stabilized element

Procedia PDF Downloads 146
2625 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique

Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt

Abstract:

Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂

Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT

Procedia PDF Downloads 187
2624 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 66
2623 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks

Authors: Jérémie Ochin

Abstract:

Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.

Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition

Procedia PDF Downloads 24
2622 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 410
2621 Measuring Biobased Content of Building Materials Using Carbon-14 Testing

Authors: Haley Gershon

Abstract:

The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.

Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials

Procedia PDF Downloads 158
2620 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize

Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah

Abstract:

Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.

Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens

Procedia PDF Downloads 125
2619 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics

Authors: A. Kalaei, A. H. W. Ngan

Abstract:

In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.

Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress

Procedia PDF Downloads 123
2618 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 319
2617 The Effect of Particle Temperature on the Thickness of Thermally Sprayed Coatings

Authors: M. Jalali Azizpour, H.Mohammadi Majd

Abstract:

In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: HVOF, temperature, thickness, velocity, WC-12Co

Procedia PDF Downloads 403
2616 Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults

Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter

Abstract:

Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.

Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization

Procedia PDF Downloads 144
2615 Potential Effects of Climate Change on Streamflow, Based on the Occurrence of Severe Floods in Kelantan, East Coasts of Peninsular Malaysia River Basin

Authors: Muhd. Barzani Gasim, Mohd. Ekhwan Toriman, Mohd. Khairul Amri Kamarudin, Azman Azid, Siti Humaira Haron, Muhammad Hafiz Md. Saad

Abstract:

Malaysia is a country in Southeast Asia that constantly exposed to flooding and landslide. The disaster has caused some troubles such loss of property, loss of life and discomfort of people involved. This problem occurs as a result of climate change leading to increased stream flow rate as a result of disruption to regional hydrological cycles. The aim of the study is to determine hydrologic processes in the east coasts of Peninsular Malaysia, especially in Kelantan Basin. Parameterized to account for the spatial and temporal variability of basin characteristics and their responses to climate variability. For hydrological modeling of the basin, the Soil and Water Assessment Tool (SWAT) model such as relief, soil type, and its use, and historical daily time series of climate and river flow rates are studied. The interpretation of Landsat map/land uses will be applied in this study. The combined of SWAT and climate models, the system will be predicted an increase in future scenario climate precipitation, increase in surface runoff, increase in recharge and increase in the total water yield. As a result, this model has successfully developed the basin analysis by demonstrating analyzing hydrographs visually, good estimates of minimum and maximum flows and severe floods observed during calibration and validation periods.

Keywords: east coasts of Peninsular Malaysia, Kelantan river basin, minimum and maximum flows, severe floods, SWAT model

Procedia PDF Downloads 262
2614 Biotic Potential of Different Densities of Aphid Parasitoids, Diaeretiella rapae (Hymenoptera: Braconidae: Aphidiinae) Feeding on Brevicoryne brassicae

Authors: Muhammad Anjum Aqueel, Muhammad Jaffar Hussain, Abu Bakar Muhammad Raza

Abstract:

Diaeretiella rapae (M’Intosh) attack most of the aphid species. However, it is specialized in feeding on crucifer aphid, Brevicoryne brassicae. Biological potential of parasitoid is its density-dependency due to sharing of limited resources in few cases. The present study was carried out to check the biotic potential of D. rapae at its different densities (1, 2, 4, 8 and 10 pairs) on fixed number of B. brassicae (100 in number) as a host. The present study was performed under laboratory conditions (25 ± 2 ºC temperature and 65-70 % R.H.). Different biological parameters for parasitoid (e.g. percent parasitism, adult emergence, adult longevity and per pair parasitism) were evaluated to check its biotic potential. The present findings showed that maximum parasitism (43.09 % ± 0.63) was observed in highest density (10 pairs) and minimum parasitism (16.59 % ± 1.28) in lowest density (1 pair) of the parasitoid. Maximum adult emergence (80.31 % ± 1.33) was observed in highest density (10 pairs) and minimum parasitism (45.99 % ± 1.27) in lowest density (1 pair) of the parasitoid. In the case of adult longevity, highest (8.2 days ± 0.38) and lowest (6 days ± 0.32) longevity were observed in lowest (1 pair) and highest (10 pairs) densities of parasitoids respectively. However, per pair parasitism rate decreased with the increase in parasitoid densities due to intra-specific competition, developed between the parasitoids for parasitism. The positive but close relationship was observed between percent parasitism and adult emergence. The increase in parasitoid densities increased the percent parasitism and adult emergence of the parasitoid. So, we conclude that an inter-specific competition negatively affected the efficacy of parasitoids and may reduce the fitness of the emerging parasitoid.

Keywords: Diaeretiella rapae, Parasitoid densities, Percent parasitism, adult emergence

Procedia PDF Downloads 234
2613 Efficacy of Crystalline Admixtures in Self-Healing Capacity of Fibre Reinforced Concrete

Authors: Evangelia Tsampali, Evangelos Yfantidis, Andreas Ioakim, Maria Stefanidou

Abstract:

The purpose of this paper is the characterization of the effects of crystalline admixtures on concrete. Crystallites, aided by the presence of humidity, form idiomorphic crystals that block cracks and pores resulting in reduced porosity. In this project, two types of crystallines have been employed. The hydrophilic nature of crystalline admixtures helps the components to react with water and cement particles in the concrete to form calcium silicate hydrates and pore-blocking precipitates in the existing micro-cracks and capillaries. The underlying mechanism relies on the formation of calcium silicate hydrates and the resulting deposits of these crystals become integrally bound with the hydrated cement paste. The crystalline admixtures continue to activate throughout the life of the composite material when in the presence of moisture entering the concrete through hairline cracks, sealing additional gaps. The resulting concrete exhibits significantly increased resistance to water penetration under stress. Admixtures of calcium aluminates can also contribute to this healing mechanism in the same manner. However, this contribution is negligible compared to the calcium silicate hydrates due to the abundance of the latter. These crystalline deposits occur throughout the concrete volume and are a permanent part of the concrete mass. High-performance fibre reinforced cementitious composite (HPFRCC) were produced in the laboratory. The specimens were exposed in three healing conditions: water immersion until testing at 15 °C, sea water immersion until testing at 15 °C, and wet/dry cycles (immersion in tap water for 3 days and drying for 4 days). Specimens were pre-cracked at 28 days, and the achieved cracks width were in the range of 0.10–0.50 mm. Furthermore, microstructure observations and Ultrasonic Pulse Velocity tests have been conducted. Based on the outcomes, self-healing related indicators have also been defined. The results show almost perfect healing capability for specimens healed under seawater, better than for specimens healed in water while inadequate for the wet/dry exposure in both of the crystalline types.

Keywords: autogenous self-healing, concrete, crystalline admixtures, ultrasonic pulse velocity test

Procedia PDF Downloads 127
2612 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin

Authors: Hillary Mwongyera

Abstract:

The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.

Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring

Procedia PDF Downloads 531
2611 Climate Variability and Its Impacts on Rice (Oryza sativa) Productivity in Dass Local Government Area of Bauchi State, Nigeria

Authors: Auwal Garba, Rabiu Maijama’a, Abdullahi Muhammad Jalam

Abstract:

Variability in climate has affected the agricultural production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate variability is believed to have declining effects towards rice production in Nigeria. This study examined climate variability and its impact on rice productivity in Dass Local Government Area, Bauchi State, by employing Linear Trend Model (LTM), analysis of variance (ANOVA) and regression analysis. Annual seasonal data of the climatic variables for temperature (min. and max), rainfall, and solar radiation from 1990 to 2015 were used. Results confirmed that 74.4% of the total variation in rice yield in the study area was explained by the changes in the independent variables. That is to say, temperature (minimum and maximum), rainfall, and solar radiation explained rice yield with 74.4% in the study area. Rising mean maximum temperature would lead to reduction in rice production while moderate increase in mean minimum temperature would be advantageous towards rice production, and the persistent rise in the mean maximum temperature, in the long run, will have more negatively affect rice production in the future. It is, therefore, important to promote agro-meteorological advisory services, which will be useful in farm planning and yield sustainability. Closer collaboration among the meteorologist and agricultural scientist is needed to increase the awareness about the existing database, crop weather models among others, with a view to reaping the full benefits of research on specific problems and sustainable yield management and also there should be a special initiative by the ADPs (State Agricultural Development Programme) towards promoting best agricultural practices that are resilient to climate variability in rice production and yield sustainability.

Keywords: climate variability, impact, productivity, rice

Procedia PDF Downloads 102
2610 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation

Authors: Abhisek Sarkar, Abhimanyu Gaur

Abstract:

In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.

Keywords: bifurcation, attractor, intermittence, energy cascade, energy spectra, vortex stretching

Procedia PDF Downloads 398
2609 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings

Authors: M. Jalali Azizpour

Abstract:

In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: HVOF, temperature thickness, velocity, WC-12Co

Procedia PDF Downloads 241
2608 RANS Simulation of the LNG Ship Squat in Shallow Water

Authors: Mehdi Nakisa, Adi Maimun, Yasser M. Ahmed, Fatemeh Behrouzi

Abstract:

Squat is the reduction in under-keel clearance between a vessel at-rest and underway due to the increased flow of water past the moving body. The forward motion of the ship induces a relative velocity between the ship and the surrounding water that causes a water level depression in which the ship sinks. The problem of ship squat is one among the crucial factors affecting the navigation of ships in restricted waters. This article investigates the LNG ship squat, its effects on flow streamlines around the ship hull and ship behavior and motion using computational fluid dynamics which is applied by Ansys-Fluent.

Keywords: ship squat, CFD, confined, mechanic

Procedia PDF Downloads 620
2607 Study on the Effect of Coupling Fluid Compressible-Deformable Wall on the Flow of Molten Polymers

Authors: Mohamed Driouich, Kamal Gueraoui, Mohamed Sammouda

Abstract:

The main objective of this work is to establish a numerical code for studying the flow of molten polymers in deformable pipes. Using an iterative numerical method based on finite differences, we determine the profiles of the fluid velocity, the temperature and the apparent viscosity of the fluid. The numerical code presented can also be applied to other industrial applications.

Keywords: numerical code, molten polymers, deformable pipes, finite differences

Procedia PDF Downloads 574
2606 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 235