Search results for: surface modification of carbon dots
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9632

Search results for: surface modification of carbon dots

542 An Easy Approach for Fabrication of Macroporous Apatite-Based Bone Cement Used As Potential Trabecular Bone Substitute

Authors: Vimal Kumar Dewangan, T. S. Sampath Kumar, Mukesh Doble, Viju Daniel Varghese

Abstract:

The apatite-based, i.e., calcium-deficient hydroxyapatite (CDHAp) bone cement is well-known potential bone graft/substitute in orthopaedics due to its similar chemical composition with natural bone minerals. Therefore, an easy approach was attempted to fabricate the apatite-based (CDHAp) bone cement with improved injectability, bioresorbability, and macroporosity. In this study, the desired bone cement was developed by mixing the solid phase (consisting of wet chemically synthesized nanocrystalline hydroxyapatite and commercially available (synthetic) tricalcium phosphate) and the liquid phase (consisting of cement binding accelerator with few biopolymers in a dilute acidic solution) along with a liquid porogen as polysorbate or a solid porogen as mannitol (for comparison) in an optimized liquid-to-powder ratio. The fabricated cement sets within clinically preferred setting time (≤20 minutes) are better injectable (>70%) and also stable at ~7.3-7.4 (physiological pH). The CDHAp phased bone cement was resulted by immersing the fabricated after-set cement in phosphate buffer solution and other similar artificial body fluids and incubated at physiological conditions for seven days, confirmed through the X-ray diffraction and Fourier transform-infrared spectroscopy analyses. The so-formed synthetic apatite-based bone cement holds the acceptable compressive strength (within the range of trabecular bone) with average interconnected pores size falls in a macropores range (~50-200μm) inside the cement, verified by scanning electron microscopy (SEM), mercury intrusion porosimetry and micro-CT analysis techniques. Also, it is biodegradable (degrades ~19-22% within 10-12 weeks) when incubated in artificial body fluids under physiological conditions. The biocompatibility study of the bone cement, when incubated with MG63 cells, shows a significant increase in the cell viability after 3rd day of incubation compared with the control, and the cells were well-attached and spread completely on the surface of the bone cement, confirmed through SEM and fluorescence microscopy analyses. With this all, we can conclude that the developed synthetic macroporous apatite-based bone cement may have the potential to become promising material used as a trabecular bone substitute.

Keywords: calcium deficient hydroxyapatite, synthetic apatite-based bone cement, injectability, macroporosity, trabecular bone substitute

Procedia PDF Downloads 70
541 Study into the Interactions of Primary Limbal Epithelial Stem Cells and HTCEPI Using Tissue Engineered Cornea

Authors: Masoud Sakhinia, Sajjad Ahmad

Abstract:

Introduction: Though knowledge of the compositional makeup and structure of the limbal niche has progressed exponentially during the past decade, much is yet to be understood. Identifying the precise profile and role of the stromal makeup which spans the ocular surface may inform researchers of the most optimum conditions needed to effectively expand LESCs in vitro, whilst preserving their differentiation status and phenotype. Limbal fibroblasts, as opposed to corneal fibroblasts are thought to form an important component of the microenvironment where LESCs reside. Methods: The corneal stroma was tissue engineered in vitro using both limbal and corneal fibroblasts embedded within a tissue engineered 3D collagen matrix. The effect of these two different fibroblasts on LESCs and hTCEpi corneal epithelial cell line were then subsequently determined using phase contrast microscopy, histolological analysis and PCR for specific stem cell markers. The study aimed to develop an in vitro model which could be used to determine whether limbal, as opposed to corneal fibroblasts, maintained the stem cell phenotype of LESCs and hTCEpi cell line. Results: Tissue culture analysis was inconclusive and required further quantitative analysis for remarks on cell proliferation within the varying stroma. Histological analysis of the tissue-engineered cornea showed a comparable structure to that of the human cornea, though with limited epithelial stratification. PCR results for epithelial cell markers of cells cultured on limbal fibroblasts showed reduced expression of CK3, a negative marker for LESC’s, whilst also exhibiting a relatively low expression level of P63, a marker for undifferentiated LESCs. Conclusion: We have shown the potential for the construction of a tissue engineered human cornea using a 3D collagen matrix and described some preliminary results in the analysis of the effects of varying stroma consisting of limbal and corneal fibroblasts, respectively, on the proliferation of stem cell phenotype of primary LESCs and hTCEpi corneal epithelial cells. Although no definitive marker exists to conclusively illustrate the presence of LESCs, the combination of positive and negative stem cell markers in our study were inconclusive. Though it is less traslational to the human corneal model, the use of conditioned medium from that of limbal and corneal fibroblasts may provide a more simple avenue. Moreover, combinations of extracellular matrices could be used as a surrogate in these culture models.

Keywords: cornea, Limbal Stem Cells, tissue engineering, PCR

Procedia PDF Downloads 258
540 Porcelain Paste Processing by Robocasting 3D: Parameters Tuning

Authors: A. S. V. Carvalho, J. Luis, L. S. O. Pires, J. M. Oliveira

Abstract:

Additive manufacturing technologies (AM) experienced a remarkable growth in the latest years due to the development and diffusion of a wide range of three-dimensional (3D) printing techniques. Nowadays we can find techniques available for non-industrial users, like fused filament fabrication, but techniques like 3D printing, polyjet, selective laser sintering and stereolithography are mainly spread in the industry. Robocasting (R3D) shows a great potential due to its ability to shape materials with a wide range of viscosity. Industrial porcelain compositions showing different rheological behaviour can be prepared and used as candidate materials to be processed by R3D. The use of this AM technique in industry is very residual. In this work, a specific porcelain composition with suitable rheological properties will be processed by R3D, and a systematic study of the printing parameters tuning will be shown. The porcelain composition was formulated based on an industrial spray dried porcelain powder. The powder particle size and morphology was analysed. The powders were mixed with water and an organic binder on a ball mill at 200 rpm/min for 24 hours. The batch viscosity was adjusted by the addition of an acid solution and mixed again. The paste density, viscosity, zeta potential, particle size distribution and pH were determined. In a R3D system, different speed and pressure settings were studied to access their impact on the fabrication of porcelain models. These models were dried at 80 °C, during 24 hours and sintered in air at 1350 °C for 2 hours. The stability of the models, its walls and surface quality were studied and their physical properties were accessed. The microstructure and layer adhesion were observed by SEM. The studied processing parameters have a high impact on the models quality. Moreover, they have a high impact on the stacking of the filaments. The adequate tuning of the parameters has a huge influence on the final properties of the porcelain models. This work contributes to a better assimilation of AM technologies in ceramic industry. Acknowledgments: The RoboCer3D project – project of additive rapid manufacturing through 3D printing ceramic material (POCI-01-0247-FEDER-003350) financed by Compete 2020, PT 2020, European Regional Development Fund – FEDER through the International and Competitive Operational Program (POCI) under the PT2020 partnership agreement.

Keywords: additive manufacturing, porcelain, robocasting, R3D

Procedia PDF Downloads 145
539 Scope of Rainwater Harvesting in Residential Plots of Dhaka City

Authors: Jubaida Gulshan Ara, Zebun Nasreen Ahmed

Abstract:

Urban flood and drought has been a major problem of Dhaka city, particularly in recent years. Continuous increase of the city built up area, and limiting rainwater infiltration zone, are thought to be the main causes of the problem. Proper rainwater management, even at the individual plot level, might bring significant improvement in this regard. As residential use pattern occupies a significant portion of the city surface, the scope of rainwater harvesting (RWH) in residential buildings can be investigated. This paper reports on a research which explored the scope of rainwater harvesting in residential plots, with multifamily apartment buildings, in Dhaka city. The research investigated the basics of RWH, contextual information, i.e., hydro-geological, meteorological data of Dhaka city and the rules and legislations for residential building construction. The study also explored contemporary rainwater harvesting practices in the local and international contexts. On the basis of theoretical understanding, 21 sample case-studies, in different phases of construction, were selected from seven different categories of plot sizes, in different residential areas of Dhaka city. Primary data from the 21 case-study buildings were collected from a physical survey, from design drawings, accompanied by a questionnaire survey. All necessary secondary data were gathered from published and other relevant sources. Collected primary and secondary data were used to calculate and analyze the RWH needs for each case study, based on the theoretical understanding. The main findings have been compiled and compared, to observe residential development trends with regards to building rainwater harvesting system. The study has found that, in ‘Multifamily Apartment Building’ of Dhaka city, storage, and recharge structure size for rainwater harvesting, increases along with occupants’ number, and with the increasing size of the plot. Hence, demand vs. supply ratio remains almost the same for different sizes of plots, and consequently, the size of the storage structure increases significantly, in large-scale plots. It has been found that rainwater can meet only 12%-30% of the total restricted water demand of these residential buildings of Dhaka city. Therefore, artificial groundwater recharge might be the more suitable option for RWH, than storage. The study came up with this conclusion that, in multifamily residential apartments of Dhaka city, artificial groundwater recharge might be the more suitable option for RWH, than storing the rainwater on site.

Keywords: Dhaka city, rainwater harvesting, residential plots, urban flood

Procedia PDF Downloads 165
538 Assessment of the Change in Strength Properties of Biocomposites Based on PLA and PHA after 4 Years of Storage in a Highly Cooled Condition

Authors: Karolina Mazur, Stanislaw Kuciel

Abstract:

Polylactides (PLA) and polyhydroxyalkanoates (PHA) are the two groups of biodegradable and biocompatible thermoplastic polymers most commonly utilised in medicine and rehabilitation. The aim of this work is to determine the changes in the strength properties and the microstructures taking place in biodegradable polymer composites during their long-term storage in a highly cooled environment (i.e. a freezer at -24ºC) and to initially assess the durability of such biocomposites when used as single-use elements of rehabilitation or medical equipment. It is difficult to find any information relating to the feasibility of long-term storage of technical products made of PLA or PHA, but nonetheless, when using these materials to make products such as casings of hair dryers, laptops or mobile phones, it is safe to assume that without storing in optimal conditions their degradation time might last even several years. SEM images and the assessment of the strength properties (tensile, bending and impact testing) were carried out and the density and water sorption of two polymers, PLA and PHA (NaturePlast PLE 001 and PHE 001), filled with cellulose fibres (corncob grain – Rehofix MK100, Rettenmaier&Sohne) up to 10 and 20% mass were determined. The biocomposites had been stored at a temperature of -24ºC for 4 years. In order to find out the changes in the strength properties and the microstructure taking place after such a long time of storage, the results of the assessment have been compared with the results of the same research carried out 4 years before. Results shows a significant change in the manner of fractures – from ductile with developed surface for the PHA composite with corncob grain when the tensile testing was performed directly after the injection into a more brittle state after 4 years of storage, which is confirmed by the strength tests, where a decrease of deformation is observed at point of fracture. The research showed that there is a way of storing medical devices made out of PLA or PHA for a reasonably long time, as long as the required temperature of storage is met. The decrease of mechanical properties found during tensile testing and bending for PLA was less than 10% of the tensile strength, while the modulus of elasticity and deformation at fracturing slightly rose, which may implicate the beginning of degradation processes. The strength properties of PHA are even higher after 4 years of storage, although in that case the decrease of deformation at fracturing is significant, reaching even 40%, which suggests its degradation rate is higher than that of PLA. The addition of natural particles in both cases only slightly increases the biodegradation.

Keywords: biocomposites, PLA, PHA, storage

Procedia PDF Downloads 245
537 Temperature Dependent Magneto-Transport Properties of MnAl Binary Alloy Thin Films

Authors: Vineet Barwal, Sajid Husain, Nanhe Kumar Gupta, Soumyarup Hait, Sujeet Chaudhary

Abstract:

High perpendicular magnetic anisotropy (PMA) and low damping constant (α) in ferromagnets are one of the few necessary requirements for their potential applications in the field of spintronics. In this regards, ferromagnetic τ-phase of MnAl possesses the highest PMA (Ku > 107 erg/cc) at room temperature, high saturation magnetization (Ms~800 emu/cc) and a Curie temperature of ~395K. In this work, we have investigated the magnetotransport behaviour of this potentially useful binary system MnₓAl₁₋ₓ films were synthesized by co-sputtering (pulsed DC magnetron sputtering) on Si/SiO₂ (where SiO₂ is native oxide layer) substrate using 99.99% pure Mn and Al sputtering targets. Films of constant thickness (~25 nm) were deposited at the different growth temperature (Tₛ) viz. 30, 300, 400, 500, and 600 ºC with a deposition rate of ~5 nm/min. Prior to deposition, the chamber was pumped down to a base pressure of 2×10⁻⁷ Torr. During sputtering, the chamber was maintained at a pressure of 3.5×10⁻³ Torr with the 55 sccm Ar flow rate. Films were not capped for the purpose of electronic transport measurement, which leaves a possibility of metal oxide formation on the surface of MnAl (both Mn and Al have an affinity towards oxide formation). In-plane and out-of-plane transverse magnetoresistance (MR) measurements on films sputtered under optimized growth conditions revealed non-saturating behavior with MR values ~6% and 40% at 9T, respectively at 275 K. Resistivity shows a parabolic dependence on the field H, when the H is weak. At higher H, non-saturating positive MR that increases exponentially with the strength of magnetic field is observed, a typical character of hopping type conduction mechanism. An anomalous decrease in MR is observed on lowering the temperature. From the temperature dependence of reistivity, it is inferred that the two competing states are metallic and semiconducting, respectively and the energy scale of the phenomenon produces the most interesting effects, i.e., the metal-insulator transition and hence the maximum sensitivity to external fields, at room temperature. Theory of disordered 3D systems effectively explains the crossover temperature coefficient of resistivity from positive to negative with lowering of temperature. These preliminary findings on the MR behavior of MnAl thin films will be presented in detail. The anomalous large MR in mixed phase MnAl system is evidently useful for future spintronic applications.

Keywords: magnetoresistance, perpendicular magnetic anisotropy, spintronics, thin films

Procedia PDF Downloads 107
536 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 267
535 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models

Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble

Abstract:

Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.

Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate

Procedia PDF Downloads 192
534 Analysis in Mexico on Workers Performing Highly Repetitive Movements with Sensory Thermography in the Surface of the Wrist and Elbows

Authors: Sandra K. Enriquez, Claudia Camargo, Jesús E. Olguín, Juan A. López, German Galindo

Abstract:

Currently companies have increased the number of disorders of cumulative trauma (CTDs), these are increasing significantly due to the Highly Repetitive Movements (HRM) performed in workstations, which causes economic losses to businesses, due to temporary and permanent disabilities of workers. This analysis focuses on the prevention of disorders caused by: repeatability, duration and effort; And focuses on reducing cumulative trauma disorders such as occupational diseases using sensory thermography as a noninvasive method, the above is to evaluate the injuries could have workers to perform repetitive motions. Objectives: The aim is to define rest periods or job rotation before they generate a CTD, this sensory thermography by analyzing changes in temperature patterns on wrists and elbows when the worker is performing HRM over a period of time 2 hours and 30 minutes. Information on non-work variables such as wrist and elbow injuries, weight, gender, age, among others, and work variables such as temperature workspace, repetitiveness and duration also met. Methodology: The analysis to 4 industrial designers, 2 men and 2 women to be specific was conducted in a business in normal health for a period of 12 days, using the following time ranges: the first day for every 90 minutes continuous work were asked to rest 5 minutes, the second day for every 90 minutes of continuous work were asked to rest 10 minutes, the same to work 60 and 30 minutes straight. Each worker was tested with 6 different ranges at least twice. This analysis was performed in a controlled room temperature between 20 and 25 ° C, and a time to stabilize the temperature of the wrists and elbows than 20 minutes at the beginning and end of the analysis. Results: The range time of 90 minutes working continuous and a rest of 5 minutes of activity is where the maximum temperature (Tmax) was registered in the wrists and elbows in the office, we found the Tmax was 35.79 ° C with a difference of 2.79 ° C between the initial and final temperature of the left elbow presented at the individual 4 during the 86 minutes, in of range in 90 minutes continuously working and rested for 5 minutes of your activity. Conclusions: It is possible with this alternative technology is sensory thermography predict ranges of rotation or rest for the prevention of CTD to perform HRM work activities, obtaining with this reduce occupational disease, quotas by health agencies and increasing the quality of life of workers, taking this technology a cost-benefit acceptable in the future.

Keywords: sensory thermography, temperature, cumulative trauma disorder (CTD), highly repetitive movement (HRM)

Procedia PDF Downloads 414
533 Antibacterial Effect of Silver Diamine Fluoride Incorporated in Fissure Sealants

Authors: Nélio Veiga, Paula Ferreira, Tiago Correia, Maria J. Correia, Carlos Pereira, Odete Amaral, Ilídio J. Correia

Abstract:

Introduction: The application of fissure sealants is considered to be an important primary prevention method used in dental medicine. However, the formation of microleakage gaps between tooth enamel and the fissure sealant applied is one of the most common reasons of dental caries development in teeth with fissure sealants. The association between various dental biomaterials may limit the major disadvantages and limitations of biomaterials functioning in a complementary manner. The present study consists in the incorporation of a cariostatic agent – silver diamine fluoride (SDF) – in a resin-based fissure sealant followed by the study of release kinetics by spectrophotometry analysis of the association between both biomaterials and assessment of the inhibitory effect on the growth of the reference bacterial strain Streptococcus mutans (S. mutans) in an in vitro study. Materials and Methods: An experimental in vitro study was designed consisting in the entrapment of SDF (Cariestop® 12% and 30%) into a commercially available fissure sealant (Fissurit®), by photopolymerization and photocrosslinking. The same sealant, without SDF was used as a negative control. The effect of the sealants on the growth of S. mutans was determined by the presence of bacterial inhibitory halos in the cultures at the end of the incubation period. In order to confirm the absence of bacteria in the surface of the materials, Scanning Electron Microscopy (SEM) characterization was performed. Also, to analyze the release profile of SDF along time, spectrophotometry technique was applied. Results: The obtained results indicate that the association of SDF to a resin-based fissure sealant may be able to increase the inhibition of S. mutans growth. However, no SDF release was noticed during the in vitro release studies and no statistical significant difference was verified when comparing the inhibitory halo sizes obtained for test and control group.  Conclusions: In this study, the entrapment of SDF in the resin-based fissure sealant did not potentiate the antibacterial effect of the fissure sealant or avoid the immediate development of dental caries. The development of more laboratorial research and, afterwards, long-term clinical data are necessary in order to verify if this association between these biomaterials is effective and can be considered for being used in oral health management. Also, other methodologies for associating cariostatic agents and sealant should be addressed.

Keywords: biomaterial, fissure sealant, primary prevention, silver diamine fluoride

Procedia PDF Downloads 237
532 Biocontrol Potential of Trichoderma longibrachiatum as an Entomopathogenic Fungi against Bemisia tabaci

Authors: Waheed Anwar, Kiran Nawaz, Muhammad Saleem Haider, Ahmad Ali Shahid, Sehrish Iftikhar

Abstract:

The whitefly, Bemisia tabaci (Gennadius), is a complex insect species, including many cryptic species or biotypes. Whitefly causes damage to many ornamental and horticultural crops through directly feeding on phloem sap, resulting in sooty mould and critically decreases the rate of photosynthesis of many host plants. Biological control has emerged as one of the most important methods for the management of soil-borne plant pathogens. Among the natural enemies of insects different entomopathogenic fungi are mostly used as biological control of the pest. The purpose of this research was to find indigenous insect-associated fungi and their virulence against Bemisia tabaci. A detailed survey of cotton fields in sample collection was conducted during July and August 2013 from the central mixed zone of Punjab, Pakistan. For the isolation of T. longibrachiatum, sabouraud dextrose peptone yeast extract agar (SDAY) media was used and morphological characterization of isolated T. longibrachiatum was studied using different dichotomous keys. Molecular Identification of the pathogen was confirmed by amplifying the internal transcribed spacer region. Blastn analysis showed 100% homology with already reported sequences on the database. For these bioassays, two conidial concentrations 4 × 108/mL & 4 × 104/mL of T. longibrachiatum was sprayed in clip cages for nymph and adult B. tabaci respectively under controlled environmental conditions. The pathogenicity of T. longibrachiatum was tested on nymph and adult whitefly to check mortality. Mortality of B. tabaci at nymphal and adult stages were observed after 24-hour intervals. Percentage mortality of nymphs treated with 4 x 104/mL conidia of T. longibrachiatum was 20, 24, 36 and 40% after 48, 72, 96, 72, 96, 120 and 144 hours respectively. However, no considerable difference was recorded in percentage mortality of whitefly after 120 and 144 hours. There were great variations after 24, 48, 72 and 96 hours in the rate of mortality. The efficacy of T. longibrachiatum as entomopathogenic fungi was evaluated in adult and nymphal stages of whitefly. Trichoderma longibrachiatum showed maximum activity on nymphal stages of whitefly as compared to adult stages. The percentage of conidial germination was also recorded on the outer surface of adult and nymphal stages of B. tabaci. The present findings indicated that T. longibrachiatum is an entomopathogenic fungus against B. tabaci and many species of Trichoderma were already reported as an antagonistc organism against a wide range of bacterial and fungal pathogens.

Keywords: efficacy, Trichoderma, virulence, bioassay

Procedia PDF Downloads 262
531 Walking Cadence to Attain a Minimum of Moderate Aerobic Intensity in People at Risk of Cardiovascular Diseases

Authors: Fagner O. Serrano, Danielle R. Bouchard, Todd A. Duhame

Abstract:

Walking cadence (steps/min) is an effective way to prescribe exercise so an individual can reach a moderate intensity, which is recommended to optimize health benefits. To our knowledge, there is no study on the required walking cadence to reach a moderate intensity for people that present chronic conditions or risk factors for chronic conditions such as Cardiovascular Diseases (CVD). The objectives of this study were: 1- to identify the walking cadence needed for people at risk of CVD to a reach moderate intensity, and 2- to develop and test an equation using clinical variables to help professionals working with individuals at risk of CVD to estimate the walking cadence needed to reach moderate intensity. Ninety-one people presenting a minimum of two risk factors for CVD completed a medically supervised graded exercise test to assess maximum oxygen consumption at the first visit. The last visit consisted of recording walking cadence using a foot pod Garmin FR-60 and a Polar heart rate monitor, aiming to get participants to reach 40% of their maximal oxygen consumption using a portable metabolic cart on an indoor flat surface. The equation to predict the walking cadence needed to reach moderate intensity in this sample was developed as follows: The sample was randomly split in half and the equation was developed with one half of the participants, and validated using the other half. Body mass index, height, stride length, leg height, body weight, fitness level (VO2max), and self-selected cadence (over 200 meters) were measured using objective measured. Mean walking cadence to reach moderate intensity for people age 64.3 ± 10.3 years old at risk of CVD was 115.8  10.3 steps per minute. Body mass index, height, body weight, fitness level, and self-selected cadence were associated with walking cadence at moderate intensity when evaluated in bivariate analyses (r ranging from 0.22 to 0.52; all P values ≤0.05). Using linear regression analysis including all clinical variables associated in the bivariate analyses, body weight was the significant predictor of walking cadence for reaching a moderate intensity (ß=0.24; P=.018) explaining 13% of walking cadence to reach moderate intensity. The regression model created was Y = 134.4-0.24 X body weight (kg).Our findings suggest that people presenting two or more risk factors for CVD are reaching moderate intensity while walking at a cadence above the one officially recommended (116 steps per minute vs. 100 steps per minute) for healthy adults.

Keywords: cardiovascular disease, moderate intensity, older adults, walking cadence

Procedia PDF Downloads 424
530 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 457
529 Investigations into the in situ Enterococcus faecalis Biofilm Removal Efficacies of Passive and Active Sodium Hypochlorite Irrigant Delivered into Lateral Canal of a Simulated Root Canal Model

Authors: Saifalarab A. Mohmmed, Morgana E. Vianna, Jonathan C. Knowles

Abstract:

The issue of apical periodontitis has received considerable critical attention. Bacteria is integrated into communities, attached to surfaces and consequently form biofilm. The biofilm structure provides bacteria with a series protection skills against, antimicrobial agents and enhances pathogenicity (e.g. apical periodontitis). Sodium hypochlorite (NaOCl) has become the irrigant of choice for elimination of bacteria from the root canal system based on its antimicrobial findings. The aim of the study was to investigate the effect of different agitation techniques on the efficacy of 2.5% NaOCl to eliminate the biofilm from the surface of the lateral canal using the residual biofilm, and removal rate of biofilm as outcome measures. The effect of canal complexity (lateral canal) on the efficacy of the irrigation procedure was also assessed. Forty root canal models (n = 10 per group) were manufactured using 3D printing and resin materials. Each model consisted of two halves of an 18 mm length root canal with apical size 30 and taper 0.06, and a lateral canal of 3 mm length, 0.3 mm diameter located at 3 mm from the apical terminus. E. faecalis biofilms were grown on the apical 3 mm and lateral canal of the models for 10 days in Brain Heart Infusion broth. Biofilms were stained using crystal violet for visualisation. The model halves were reassembled, attached to an apparatus and tested under a fluorescence microscope. Syringe and needle irrigation protocol was performed using 9 mL of 2.5% NaOCl irrigant for 60 seconds. The irrigant was either left stagnant in the canal or activated for 30 seconds using manual (gutta-percha), sonic and ultrasonic methods. Images were then captured every second using an external camera. The percentages of residual biofilm were measured using image analysis software. The data were analysed using generalised linear mixed models. The greatest removal was associated with the ultrasonic group (66.76%) followed by sonic (45.49%), manual (43.97%), and passive irrigation group (control) (38.67%) respectively. No marked reduction in the efficiency of NaOCl to remove biofilm was found between the simple and complex anatomy models (p = 0.098). The removal efficacy of NaOCl on the biofilm was limited to the 1 mm level of the lateral canal. The agitation of NaOCl results in better penetration of the irrigant into the lateral canals. Ultrasonic agitation of NaOCl improved the removal of bacterial biofilm.

Keywords: 3D printing, biofilm, root canal irrigation, sodium hypochlorite

Procedia PDF Downloads 209
528 Comparative Study of Various Treatment Positioning Technique: A Site Specific Study-CA. Breast

Authors: Kamal Kaushik, Dandpani Epili, Ajay G. V., Ashutosh, S. Pradhaan

Abstract:

Introduction: Radiation therapy has come a long way over a period of decades, from 2-dimensional radiotherapy to intensity-modulated radiation therapy (IMRT) or VMAT. For advanced radiation therapy, we need better patient position reproducibility to deliver precise and quality treatment, which raises the need for better image guidance technologies for precise patient positioning. This study presents a two tattoo simulation with roll correction technique which is comparable to other advanced patient positioning techniques. Objective: This is a site-specific study is aimed to perform a comparison between various treatment positioning techniques used for the treatment of patients of Ca- Breast undergoing radiotherapy. In this study, we are comparing 5 different positioning methods used for the treatment of ca-breast, namely i) Vacloc with 3 tattoos, ii) Breast board with three tattoos, iii) Thermoplastic cast with three fiducials, iv) Breast board with a thermoplastic mask with 3 tattoo, v) Breast board with 2 tattoos – A roll correction method. Methods and material: All in one (AIO) solution immobilization was used in all patient positioning techniques for immobilization. The process of two tattoo simulations includes positioning of the patient with the help of a thoracic-abdomen wedge, armrest & knee rest. After proper patient positioning, we mark two tattoos on the treatment side of the patient. After positioning, place fiducials as per the clinical borders markers (1) sternum notch (lower border of clavicle head) (2) 2 cm below from contralateral breast (3) midline between 1 & 2 markers (4) mid axillary on the same axis of 3 markers (Marker 3 & 4 should be on the same axis). During plan implementation, a roll depth correction is applied as per the anterior and lateral positioning tattoos, followed by the shifts required for the Isocentre position. The shifts are then verified by SSD on the patient surface followed by radiographic verification using Cone Beam Computed Tomography (CBCT). Results: When all the five positioning techniques were compared all together, the produced shifts in Vertical, Longitudinal and lateral directions are as follows. The observations clearly suggest that the Longitudinal average shifts in two tattoo roll correction techniques are less than every other patient positioning technique. Vertical and lateral Shifts are also comparable to other modern positioning techniques. Concluded: The two tattoo simulation with roll correction technique provides us better patient setup with a technique that can be implemented easily in most of the radiotherapy centers across the developing nations where 3D verification techniques are not available along with delivery units as the shifts observed are quite minimal and are comparable to those with Vacloc and modern amenities.

Keywords: Ca. breast, breast board, roll correction technique, CBCT

Procedia PDF Downloads 110
527 Enhancement of Shelflife of Malta Fruit with Active Packaging

Authors: Rishi Richa, N. C. Shahi, J. P. Pandey, S. S. Kautkar

Abstract:

Citrus fruits rank third in area and production after banana and mango in India. Sweet oranges are the second largest citrus fruits cultivated in the country. Andhra Pradesh, Maharashtra, Karnataka, Punjab, Haryana, Rajasthan, and Uttarakhand are the main sweet orange-growing states. Citrus fruits occupy a leading position in the fruit trade of Uttarakhand, is casing about 14.38% of the total area under fruits and contributing nearly 17.75 % to the total fruit production. Malta is grown in most of the hill districts of the Uttarakhand. Malta common is having high acceptability due to its attractive colour, distinctive flavour, and taste. The excellent quality fruits are generally available for only one or two months. However due to its less shelf-life, Malta can not be stored for longer time under ambient conditions and cannot be transported to distant places. Continuous loss of water adversely affects the quality of Malta during storage and transportation. Method of picking, packaging, and cold storage has detrimental effects on moisture loss. The climatic condition such as ambient temperature, relative humidity, wind condition (aeration) and microbial attack greatly influences the rate of moisture loss and quality. Therefore, different agro-climatic zone will have different moisture loss pattern. The rate of moisture loss can be taken as one of the quality parameters in combination of one or more parameter such as RH, and aeration. The moisture contents of the fruits and vegetables determine their freshness. Hence, it is important to maintain initial moisture status of fruits and vegetable for prolonged period after the harvest. Keeping all points in views, effort was made to store Malta at ambient condition. In this study, the response surface method and experimental design were applied for optimization of independent variables to enhance the shelf life of four months stored malta. Box-Benkhen design, with, 12 factorial points and 5 replicates at the centre point were used to build a model for predicting and optimizing storage process parameters. The independent parameters, viz., scavenger (3, 4 and 5g), polythene thickness (75, 100 and 125 gauge) and fungicide concentration (100, 150 and 200ppm) were selected and analyzed. 5g scavenger, 125 gauge and 200ppm solution of fungicide are the optimized value for storage which may enhance life up to 4months.

Keywords: Malta fruit, scavenger, packaging, shelf life

Procedia PDF Downloads 266
526 Challenges to Ensure Food Safety through Sanitation and Hygiene Coverage in Bangladesh

Authors: Moshiur Rahman, Tahmida Jakia

Abstract:

Bangladesh, a densely populated South Asian country is home to more than 160 million people. In two decades ago, the people of this developing nation drank heavily contaminated surface water. Over the past thirty years, the country, and its development partners, has undertaken extensive efforts to provide microbiologically safe groundwater based drinking water through the use of tube-wells. About 85% of the people now drink tube-well water from about 11 million tube-wells/hand pumps. However, diarrhoeal and other water-related diseases are still reported among the major causes of morbidity and mortality among Bangladeshi children. This implies that the mode of transmission of pathogens through water and/or other modes continue. In addition, massive scale arsenic contamination has been recently reported in the ground water. Thirty five million people may be at risk of consuming arsenic contaminated water exceeding 0.05 mg/l in Bangladesh. Drinking of arsenic contaminated water has been linked with skin problems, cancer, cardiovascular diseases, neurological diseases, eye problems, cancer of the internal organs, and other diseases. In the study area, Narail district, recent investigations about existing water quality situations indicated presence of low to high levels of arsenic, salinity, iron, manganese and bacteriological contamination risks. As challenges for safe water exist; it is likely that sanitation and food hygiene practices are poor which lead threat to ensure food security.The main attempt of this study is to find out the challenges to ensure food security andprovide probable solutions to ensure food safety towards 0.7 million of people in study area. A survey has been conducted at Lohagara and Kalia sub district of Narail district with a pretested questionnaire. Primary data are collected through a questionnaire, while secondary data are collected from pertinent offices as well as academic journals. FGD has also been done to know the knowledge regarding water, sanitation as well as food preparation and consumption practice of community people in study area. The major focus of this study is to assess the state of sanitation and food hygiene condition of rural people. It is found that most of the villagers have lack of knowledge about food safety. Open defecation rate is high which lead threat to ensure food security.

Keywords: food safety, challenges, hygiene, Bangladesh

Procedia PDF Downloads 304
525 Design, Numerical Simulation, Fabrication and Physical Experimentation of the Tesla’s Cohesion Type Bladeless Turbine

Authors: M.Sivaramakrishnaiah, D. S .Nasan, P. V. Subhanjeneyulu, J. A. Sandeep Kumar, N. Sreenivasulu, B. V. Amarnath Reddy, B. Veeralingam

Abstract:

Design, numerical simulation, fabrication, and physical experimentation of the Tesla’s Bladeless centripetal turbine for generating electrical power are presented in this research paper. 29 Pressurized air combined with water via a nozzle system is made to pass tangentially through a set of parallel smooth discs surfaces, which impart rotational motion to the discs fastened common shaft for the power generation. The power generated depends upon the fluid speed parameter leaving the nozzle inlet. Physically due to laminar boundary layer phenomena at smooth disc surface, the high speed fluid layers away from the plate moving against the low speed fluid layers nearer to the plate develop a tangential drag from the viscous shear forces. This compels the nearer layers to drag along with the high layers causing the disc to spin. Solid Works design software and fluid mechanics and machine elements design theories was used to compute mechanical design specifications of turbine parts like 48 mm diameter discs, common shaft, central exhaust, plenum chamber, swappable nozzle inlets, etc. Also, ANSYS CFX 2018 was used for the numerical 2 simulation of the physical phenomena encountered in the turbine working. When various numerical simulation and physical experimental results were verified, there is good agreement between them 6, both quantitatively and qualitatively. The sources of input and size of the blades may affect the power generated and turbine efficiency, respectively. The results may change if there is a change in the fluid flowing between the discs. The inlet fluid pressure versus turbine efficiency and the number of discs versus turbine power studies based on both results were carried out to develop the 8 relationships between the inlet and outlet parameters of the turbine. The present research work obtained the turbine efficiency in the range of 7-10%, and for this range; the electrical power output generated was 50-60 W.

Keywords: tesla turbine, cohesion type bladeless turbine, boundary layer theory, cohesion type bladeless turbine, tangential fluid flow, viscous and adhesive forces, plenum chamber, pico hydro systems

Procedia PDF Downloads 65
524 Chemical, Physical and Microbiological Characteristics of a Texture-Modified Beef- Based 3D Printed Functional Product

Authors: Elvan G. Bulut, Betul Goksun, Tugba G. Gun, Ozge Sakiyan Demirkol, Kamuran Ayhan, Kezban Candogan

Abstract:

Dysphagia, difficulty in swallowing solid foods and thin liquids, is one of the common health threats among the elderly who require foods with modified texture in their diet. Although there are some commercial food formulations or hydrocolloids to thicken the liquid foods for dysphagic individuals, there is still a need for developing and offering new food products with enriched nutritional, textural and sensory characteristics to safely nourish these patients. 3D food printing is an appealing alternative in creating personalized foods for this purpose with attractive shape, soft and homogenous texture. In order to modify texture and prevent phase separation, hydrocolloids are generally used. In our laboratory, an optimized 3D printed beef-based formulation specifically for people with swallowing difficulties was developed based on the research project supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK Project # 218O017). The optimized formulation obtained from response surface methodology was 60% beef powder, 5.88% gelatin, and 0.74% kappa-carrageenan (all in a dry basis). This product was enriched with powders of freeze-dried beet, celery, and red capia pepper, butter, and whole milk. Proximate composition (moisture, fat, protein, and ash contents), pH value, CIE lightness (L*), redness (a*) and yellowness (b*), and color difference (ΔE*) values were determined. Counts of total mesophilic aerobic bacteria (TMAB), lactic acid bacteria (LAB), mold and yeast, total coliforms were conducted, and detection of coagulase positive S. aureus, E. coli, and Salmonella spp. were performed. The 3D printed products had 60.11% moisture, 16.51% fat, 13.68% protein, and 1.65% ash, and the pH value was 6.19, whereas the ΔE* value was 3.04. Counts of TMAB, LAB, mold and yeast and total coliforms before and after 3D printing were 5.23-5.41 log cfu/g, < 1 log cfu/g, < 1 log cfu/g, 2.39-2.15 log EMS/g, respectively. Coagulase positive S. aureus, E. coli, and Salmonella spp. were not detected in the products. The data obtained from this study based on determining some important product characteristics of functional beef-based formulation provides an encouraging basis for future research on the subject and should be useful in designing mass production of 3D printed products of similar composition.

Keywords: beef, dysphagia, product characteristics, texture-modified foods, 3D food printing

Procedia PDF Downloads 89
523 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana

Authors: Gautier Viaud, Paul-Henry Cournède

Abstract:

Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.

Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models

Procedia PDF Downloads 283
522 Factors Controlling Marine Shale Porosity: A Case Study between Lower Cambrian and Lower Silurian of Upper Yangtze Area, South China

Authors: Xin Li, Zhenxue Jiang, Zhuo Li

Abstract:

Generally, shale gas is trapped within shale systems with low porosity and ultralow permeability as free and adsorbing states. Its production is controlled by properties, in terms of occurrence phases, gas contents, and percolation characteristics. These properties are all influenced by porous features. In this paper, porosity differences of marine shales were explored between Lower Cambrian shale and Lower Silurian shale of Sichuan Basin, South China. Both the two shales were marine shales with abundant oil-prone kerogen and rich siliceous minerals. Whereas Lower Cambrian shale (3.56% Ro) possessed a higher thermal degree than that of Lower Silurian shale (2.31% Ro). Samples were measured by a combination of organic-chemistry geology measurement, organic matter (OM) isolation, X-ray diffraction (XRD), N2 adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). Lower Cambrian shale presented relatively low pore properties, with averaging 0.008ml/g pore volume (PV), averaging 7.99m²/g pore surface area (PSA) and averaging 5.94nm average pore diameter (APD). Lower Silurian shale showed as relatively high pore properties, with averaging 0.015ml/g PV, averaging 10.53m²/g PSA and averaging 18.60nm APD. Additionally, fractal analysis indicated that the two shales presented discrepant pore morphologies, mainly caused by differences in the combination of pore types between the two shales. More specifically, OM-hosted pores with pin-hole shape and dissolved pores with dead-end openings were the main types in Lower Cambrian shale, while OM-hosted pore with a cellular structure was the main type in Lower Silurian shale. Moreover, porous characteristics of isolated OM suggested that OM of Lower Silurian shale was more capable than that of Lower Cambrian shale in the aspect of pore contribution. PV of isolated OM in Lower Silurian shale was almost 6.6 times higher than that in Lower Cambrian shale, and PSA of isolated OM in Lower Silurian shale was almost 4.3 times higher than that in Lower Cambrian shale. However, no apparent differences existed among samples with various matrix compositions. At late diagenetic or metamorphic epoch, extensive diagenesis overprints the effects of minerals on pore properties and OM plays the dominant role in pore developments. Hence, differences of porous features between the two marine shales highlight the effect of diagenetic degree on OM-hosted pore development. Consequently, distinctive pore characteristics may be caused by the different degrees of diagenetic evolution, even with similar matrix basics.

Keywords: marine shale, lower Cambrian, lower Silurian, om isolation, pore properties, om-hosted pore

Procedia PDF Downloads 117
521 A Novel Approach to 3D Thrust Vectoring CFD via Mesh Morphing

Authors: Umut Yıldız, Berkin Kurtuluş, Yunus Emre Muslubaş

Abstract:

Thrust vectoring, especially in military aviation, is a concept that sees much use to improve maneuverability in already agile aircraft. As this concept is fairly new and cost intensive to design and test, computational methods are useful in easing the preliminary design process. Computational Fluid Dynamics (CFD) can be utilized in many forms to simulate nozzle flow, and there exist various CFD studies in both 2D mechanical and 3D injection based thrust vectoring, and yet, 3D mechanical thrust vectoring analyses, at this point in time, are lacking variety. Additionally, the freely available test data is constrained to limited pitch angles and geometries. In this study, based on a test case provided by NASA, both steady and unsteady 3D CFD simulations are conducted to examine the aerodynamic performance of a mechanical thrust vectoring nozzle model and to validate the utilized numerical model. Steady analyses are performed to verify the flow characteristics of the nozzle at pitch angles of 0, 10 and 20 degrees, and the results are compared with experimental data. It is observed that the pressure data obtained on the inner surface of the nozzle at each specified pitch angle and under different flow conditions with pressure ratios of 1.5, 2 and 4, as well as at azimuthal angle of 0, 45, 90, 135, and 180 degrees exhibited a high level of agreement with the corresponding experimental results. To validate the CFD model, the insights from the steady analyses are utilized, followed by unsteady analyses covering a wide range of pitch angles from 0 to 20 degrees. Throughout the simulations, a mesh morphing method using a carefully calculated mathematical shape deformation model that simulates the vectored nozzle shape exactly at each point of its travel is employed to dynamically alter the divergent part of the nozzle over time within this pitch angle range. The mesh morphing based vectored nozzle shapes were compared with the drawings provided by NASA, ensuring a complete match was achieved. This computational approach allowed for the creation of a comprehensive database of results without the need to generate separate solution domains. The database contains results at every 0.01° increment of nozzle pitch angle. The unsteady analyses, generated using the morphing method, are found to be in excellent agreement with experimental data, further confirming the accuracy of the CFD model.

Keywords: thrust vectoring, computational fluid dynamics, 3d mesh morphing, mathematical shape deformation model

Procedia PDF Downloads 62
520 Assessment of Drinking Water Contamination from the Water Source to the Consumer in Palapye Region, Botswana

Authors: Tshegofatso Galekgathege

Abstract:

Poor water quality is of great concern to human health as it can cause disease outbreaks. A standard practice today, in developed countries, is that people should be provided with safe-reliable drinking water, as safe drinking water is recognized as a basic human right and a cost effective measure of reducing diseases. Over 1.1 billion people worldwide lack access to a safe water supply and as a result, the majority are forced to use polluted surface or groundwater. It is widely accepted that our water supply systems are susceptible to the intentional or accidental contamination .Water quality degradation may occur anywhere in the path that water takes from the water source to the consumer. Chlorine is believed to be an effective tool in disinfecting water, but its concentration may decrease with time due to consumption by chemical reactions. This shows that we are at the risk of being infected by waterborne diseases if chlorine in water falls below the required level of 0.2-1mg/liter which should be maintained in water and some contaminants enter into the water distribution system. It is believed that the lack of adequate sanitation also contributes to the contamination of water globally. This study therefore, assesses drinking water contamination from the source to the consumer by identifying the point vulnerable to contamination from the source to the consumer in the study area .To identify the point vulnerable to contamination, water was sampled monthly from boreholes, water treatment plant, water distribution system (WDS), service reservoirs and consumer taps from all the twenty (20) villages of Palapye region. Sampled water was then taken to the laboratory for testing and analysis of microbiological and chemical parameters. Water quality analysis were then compared with Botswana drinking water quality standards (BOS32:2009) to see if they comply. Major sources of water contamination identified during site visits were the livestock which were found drinking stagnant water from leaking pipes in 90 percent of the villages. Soils structure around the area was negatively affected because of livestock movement even vegetation in the area. In conclusion microbiological parameters of water in the study area do not comply with drinking water standards, some microbiological parameters in water indicated that livestock do not only affect land degradation but also the quality of water. Chlorine has been applied to water over some years but it is not effective enough thus preventative measures have to be developed, to prevent contaminants from reaching water. Remember: Prevention is better than cure.

Keywords: land degradation, leaking systems, livestock, water contamination

Procedia PDF Downloads 338
519 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model

Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer

Abstract:

Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.

Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy

Procedia PDF Downloads 163
518 Familiarity with Flood and Engineering Solutions to Control It

Authors: Hamid Fallah

Abstract:

Undoubtedly, flood is known as a natural disaster, and in practice, flood is considered the most terrible natural disaster in the world both in terms of loss of life and financial losses. From 1988 to 1997, about 390,000 people were killed by natural disasters in the world, 58% of which were related to floods, 26% due to earthquakes, and 16% due to storms and other disasters. The total damages in these 10 years were about 700 billion dollars, which were 33, 29, 28% related to floods, storms and earthquakes, respectively. In this regard, the worrisome point has been the increasing trend of flood deaths and damages in the world in recent decades. The increase in population and assets in flood plains, changes in hydro systems and the destructive effects of human activities have been the main reasons for this increase. During rain and snow, some of the water is absorbed by the soil and plants. A percentage evaporates and the rest flows and is called runoff. Floods occur when the soil and plants cannot absorb the rainfall, and as a result, the natural river channel does not have the capacity to pass the generated runoff. On average, almost 30% of precipitation is converted into runoff, which increases with snow melting. Floods that occur differently create an area called flood plain around the river. River floods are often caused by heavy rains, which in some cases are accompanied by snow melt. A flood that flows in a river without warning or with little warning is called a flash flood. The casualties of these rapid floods that occur in small watersheds are generally more than the casualties of large river floods. Coastal areas are also subject to flooding caused by waves caused by strong storms on the surface of the oceans or waves caused by underground earthquakes. Floods not only cause damage to property and endanger the lives of humans and animals, but also leave other effects. Runoff caused by heavy rains causes soil erosion in the upstream and sedimentation problems in the downstream. The habitats of fish and other animals are often destroyed by floods. The high speed of the current increases the damage. Long-term floods stop traffic and prevent drainage and economic use of land. The supports of bridges, river banks, sewage outlets and other structures are damaged, and there is a disruption in shipping and hydropower generation. The economic losses of floods in the world are estimated at tens of billions of dollars annually.

Keywords: flood, hydrological engineering, gis, dam, small hydropower, suitablity

Procedia PDF Downloads 44
517 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria

Authors: Ayodele A. Otaiku

Abstract:

Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.

Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture

Procedia PDF Downloads 243
516 Doped TiO2 Thin Films Microstructural and Electrical Properties

Authors: Mantas Sriubas, Kristina Bockute, Darius Virbukas, Giedrius Laukaitis

Abstract:

In this work, the doped TiO2 (dopants – Ca, Mg) was investigated. The comparison between the physical vapour deposition methods as electron beam vapour deposition and magnetron sputtering was performed and the structural and electrical properties of the formed thin films were investigated. Thin films were deposited on different type of substrates: SiO2, Alloy 600 (Fe-Ni-Cr) and Al2O3 substrates. The structural properties were investigated using Ambios XP-200 profilometer, scanning electron microscope (SEM) Hitachi S-3400N, X-ray energy-dispersive spectroscope (EDS) Quad 5040 (Bruker AXS Microanalysis GmbH), X-ray diffractometer (XRD) D8 Discover (Bruker AXS GmbH) with glancing angles focusing geometry in a 20 – 70° range using the Cu Kα1 λ = 0.1540562 nm radiation). The impedance spectroscopy measurements were performed using Probostat® (NorECs AS) measurement cell in the frequency range from 10-1-106 Hz under reducing and oxidizing conditions in temperature range of 200 °C to 1200 °C. The investigation of the e-beam deposited Ca and Mg doped-TiO2 thin films shows that the thin films are dense without any visible pores and cavities and the thin films grow in zone T according Barna-Adamik SZM. Substrate temperature was kept 600 °C during the deposition and Ts/Tm ≈ 0.32 (substrate temperature (Ts) and coating material melting temperature (Tm)). The surface diffusion is high however, the grain boundary migration is strongly limited at this temperature. This means that structure is inhomogeneous and the columnar structure is mostly visible in the upper part of the films. According to XRD, the increasing of the Ca dopants’ concentration increases the crystallinity of the formed thin films and the crystallites size increase linearly and Ca dopants act as prohibitors. Thin films are comprised of anatase TiO2 phase with an exception of 2 % Ca doped TiO2, where a small peak of Ca arise. In the case of Mg doped-TiO2 the intensities of the XRD peaks decreases with increasing Mg molar concentration. It means that there are less diffraction planes of the particular orientation in thin films with higher impurities concentration. Thus, the crystallinity decreases with increasing Mg concentration and Mg dopants act as inhibitors. The impedance measurements show that the dopants changed the conductivity of the formed thin films. The conductivity varies from 10-3 S/cm to 10-4 S/cm at 800 °C under wet reducing conditions. The microstructure of the magnetron sputtered thin TiO2 films is different comparing to the thin films deposited using e-beam deposition therefore influencing other structural and electrical properties.

Keywords: electrical properties, electron beam deposition, magnetron sputtering, microstructure, titanium dioxide

Procedia PDF Downloads 276
515 Economic Impact of Drought on Agricultural Society: Evidence Based on a Village Study in Maharashtra, India

Authors: Harshan Tee Pee

Abstract:

Climate elements include surface temperatures, rainfall patterns, humidity, type and amount of cloudiness, air pressure and wind speed and direction. Change in one element can have an impact on the regional climate. The scientific predictions indicate that global climate change will increase the number of extreme events, leading to more frequent natural hazards. Global warming is likely to intensify the risk of drought in certain parts and also leading to increased rainfall in some other parts. Drought is a slow advancing disaster and creeping phenomenon– which accumulate slowly over a long period of time. Droughts are naturally linked with aridity. But droughts occur over most parts of the world (both wet and humid regions) and create severe impacts on agriculture, basic household welfare and ecosystems. Drought condition occurs at least every three years in India. India is one among the most vulnerable drought prone countries in the world. The economic impacts resulting from extreme environmental events and disasters are huge as a result of disruption in many economic activities. The focus of this paper is to develop a comprehensive understanding about the distributional impacts of disaster, especially impact of drought on agricultural production and income through a panel study (drought year and one year after the drought) in Raikhel village, Maharashtra, India. The major findings of the study indicate that cultivating area as well as the number of cultivating households reduced after the drought, indicating a shift in the livelihood- households moved from agriculture to non-agriculture. Decline in the gross cropped area and production of various crops depended on the negative income from these crops in the previous agriculture season. All the landholding categories of households except landlords had negative income in the drought year and also the income disparities between the households were higher in that year. In the drought year, the cost of cultivation was higher for all the landholding categories due to the increased cost for irrigation and input cost. In the drought year, agriculture products (50 per cent of the total products) were used for household consumption rather than selling in the market. It is evident from the study that livelihood which was based on natural resources became less attractive to the people to due to the risk involved in it and people were moving to less risk livelihood for their sustenance.

Keywords: climate change, drought, agriculture economics, disaster impact

Procedia PDF Downloads 92
514 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator

Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi

Abstract:

Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.

Keywords: equivalent doses, neutron contamination, neutron detector, photon energy

Procedia PDF Downloads 433
513 Study of the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration Using Microfluidics

Authors: Nishanth Venugopal Menon, Chuah Yon Jin, Samantha Phey, Wu Yingnan, Zhang Ying, Vincent Chan, Kang Yuejun

Abstract:

Cell Migration is a vital phenomenon that the cells undergo in various physiological processes like wound healing, disease progression, embryogenesis, etc. Cell migration depends primarily on the chemical and physical cues available in the cellular environment. The chemical cue involves the chemokines secreted and gradients generated in the environment while physical cues indicate the impact of matrix properties like nanotopography and stiffness on the cells. Mesenchymal Stem Cells (MSCs) have been shown to have a role wound healing in vivo and its migration to the site of the wound has been shown to have a therapeutic effect. In the field of stem cell based tissue regeneration of bones and cartilage, one approach has been to introduce scaffold laden with MSCs into the site of injury to enable tissue regeneration. In this work, we have studied the combinatorial impact of the substrate physical properties on MSC migration. A microfluidic in vitro model was created to perform the migration studies. The microfluidic model used is a three compartment device consisting of two cell seeding compartments and one migration compartment. Four different PDMS substrates with varying substrate roughness, stiffness and hydrophobicity were created. Its surface roughness and stiffness was measured using Atomic Force Microscopy (AFM) while its hydrphobicity was measured from the water contact angle using an optical tensiometer. These PDMS substrates are sealed to the microfluidic chip following which the MSCs are seeded and the cell migration is studied over the period of a week. Cell migration was quantified using fluorescence imaging of the cytoskeleton (F-actin) to find out the area covered by the cells inside the migration compartment. The impact of adhesion proteins on cell migration was also quantified using a real-time polymerase chain reaction (qRT PCR). These results suggested that the optimal substrate for cell migration would be one with an intermediate level of roughness, stiffness and hydrophobicity. A higher or lower value of these properties affected cell migration negatively. These observations have helped us in understanding that different substrate properties need to be considered in tandem, especially while designing scaffolds for tissue regeneration as cell migration is normally impacted by the combinatorial impact of the matrix. These observations may lead us to scaffold optimization in future tissue regeneration applications.

Keywords: cell migration, microfluidics, in vitro model, stem cell migration, scaffold, substrate properties

Procedia PDF Downloads 536