Search results for: zoospore inhibition assay
1152 PET/CT Patient Dosage Assay
Authors: Gulten Yilmaz, A. Beril Tugrul, Mustafa Demir, Dogan Yasar, Bayram Demir, Bulent Buyuk
Abstract:
A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.Keywords: PET/CT, TLD, MIRD, dose measurement, patient doses
Procedia PDF Downloads 5211151 Analyzing Antimicrobial Power of Cotula cinerea Essential Oil: Case of Western Algeria
Authors: A. Abdenbi, B. Dennai, B. Touati, M. Bouaaza, A. Saad
Abstract:
The essential oils of many plants have become popular in recent years and their bioactive principles have recently won several industry sectors, however their use as antibacterial and anti fungal agents has been reported. This study focuses on the physico chemical and phyto chemical with a study of the antimicrobial activity of essential oils of aromatic and medicinal plant of southwest Algeria, this essential oil was obtained by hydro-distillation of aerial parts of Cotula cinerea, belonging to the Asteraceae family, it is very extensive in the spring season in a region called Kenadza road, located 12km from Bechar. Variable anti fungal activity of the essential oil of Cotula cinerea (yield 2%) were revealed about four fungal strains, the minimum inhibitory concentrations of essential oils were determined by the method of dilution in agar. Significant fungal sensitivity of Penicillium sp with an inhibition of 32.3 mm area.Keywords: Cotula cinerea, essential oil, physico- chemical analysis and phyto- chemical, anti fungal power
Procedia PDF Downloads 4141150 Dual Role of Microalgae: Carbon Dioxide Capture Nutrients Removal
Authors: Mohamad Shurair, Fares Almomani, Simon Judd, Rahul Bhosale, Anand Kumar, Ujjal Gosh
Abstract:
This study evaluated the use of mixed indigenous microalgae (MIMA) as a treatment process for wastewaters and CO2 capturing technology at different temperatures. The study follows the growth rate of MIMA, removals of organic matter, removal of nutrients from synthetic wastewater and its effectiveness as CO2 capturing technology from flue gas. A noticeable difference between the growth patterns of MIMA was observed at different CO2 and different operational temperatures. MIMA showed the highest growth grate when injected with CO2 dosage of 10% and limited growth was observed for the systems injected with 5% and 15 % of CO2 at 30 ◦C. Ammonia and phosphorus removals for Spirulina were 69%, 75%, and 83%, and 20%, 45%, and 75% for the media injected with 0, 5 and 10% CO2. The results of this study show that simple and cost-effective microalgae-based wastewater treatment systems can be successfully employed at different temperatures as a successful CO2 capturing technology even with the small probability of inhibition at high temperaturesKeywords: greenhouse, climate change, CO2 capturing, green algae
Procedia PDF Downloads 3351149 Antimicrobial Activity of the Cyanobacteria spp. against Fish Pathogens in Aquaculture
Authors: I. Tulay Cagatay
Abstract:
Blue-green microalgae cyanobacteria, which are important photosynthetic organisms of aquatic ecosystems, are the primary sources of many bioactive compounds such as proteins, carbohydrates, lipids, vitamins and enzymes that can be used as antimicrobial and antiviral agents. Some of these organisms are nowadays used directly in the food, cosmetic and pharmaceutical industry, or in aquaculture and biotechnological approaches like biofuel or drug therapy. Finding the effective, environmental friendly chemotropic and antimicrobial agents to control fish pathogens are crucial in a country like Turkey which has a production capacity of about 240 thousand tons of cultured fish and has 2377 production farms and which is the second biggest producer in Europe. In our study, we tested the antimicrobial activity of cyanobacterium spp. against some fish pathogens Aeromonas hydrophila and Yersinia ruckeri that are important pathogens for rainbow trout farms. Agar disk diffusion test method was used for studying antimicrobial activity on pathogens. Both tested microorganisms have shown antimicrobial activity positively as the inhibition zones were 0.45 mm and 0.40 mm respectively.Keywords: fish pathogen, cyanobacteria, antimicrobial activity, trout
Procedia PDF Downloads 1671148 Wound Healing Process Studied on DC Non-Homogeneous Electric Fields
Authors: Marisa Rio, Sharanya Bola, Richard H. W. Funk, Gerald Gerlach
Abstract:
Cell migration, wound healing and regeneration are some of the physiological phenomena in which electric fields (EFs) have proven to have an important function. Physiologically, cells experience electrical signals in the form of transmembrane potentials, ion fluxes through protein channels as well as electric fields at their surface. As soon as a wound is created, the disruption of the epithelial layers generates an electric field of ca. 40-200 mV/mm, directing cell migration towards the wound site, starting the healing process. In vitro electrotaxis, experiments have shown cells respond to DC EFs polarizing and migrating towards one of the poles (cathode or anode). A standard electrotaxis experiment consists of an electrotaxis chamber where cells are cultured, a DC power source and agar salt bridges that help delaying toxic products from the electrodes to attain the cell surface. The electric field strengths used in such an experiment are uniform and homogeneous. In contrast, the endogenous electric field strength around a wound tend to be multi-field and non-homogeneous. In this study, we present a custom device that enables electrotaxis experiments in non-homogeneous DC electric fields. Its main feature involves the replacement of conventional metallic electrodes, separated from the electrotaxis channel by agarose gel bridges, through electrolyte-filled microchannels. The connection to the DC source is made by Ag/AgCl electrodes, incased in agarose gel and placed at the end of each microfluidic channel. An SU-8 membrane closes the fluidic channels and simultaneously serves as the single connection from each of them to the central electrotaxis chamber. The electric field distribution and current density were numerically simulated with the steady-state electric conduction module from ANSYS 16.0. Simulation data confirms the application of nonhomogeneous EF of physiological strength. To validate the biocompatibility of the device cellular viability of the photoreceptor-derived 661W cell line was accessed. The cells have not shown any signs of apoptosis, damage or detachment during stimulation. Furthermore, immunofluorescence staining, namely by vinculin and actin labelling, allowed the assessment of adhesion efficiency and orientation of the cytoskeleton, respectively. Cellular motility in the presence and absence of applied DC EFs was verified. The movement of individual cells was tracked for the duration of the experiments, confirming the EF-induced, cathodal-directed motility of the studied cell line. The in vitro monolayer wound assay, or “scratch assay” is a standard protocol to quantitatively access cell migration in vitro. It encompasses the growth of a confluent cell monolayer followed by the mechanic creation of a scratch, representing a wound. Hence, wound dynamics was monitored over time and compared for control and applied the electric field to quantify cellular population motility.Keywords: DC non-homogeneous electric fields, electrotaxis, microfluidic biochip, wound healing
Procedia PDF Downloads 2701147 Poly(N-Vinylcaprolactam) Based Degradable Microgels for Controlled Drug Delivery
Authors: G. Agrawal, R. Agrawal, A. Pich
Abstract:
The pH and temperature responsive biodegradable poly(N-vinylcaprolactam) (PVCL) based microgels functionalized with itaconic acid (IA) units are prepared via precipitation polymerization for drug delivery applications. Volume phase transition temperature (VPTT) of the obtained microgels is influenced by both IA content and pH of the surrounding medium. The developed microgels can be degraded under acidic conditions due to the presence of hydrazone based crosslinking points inside the microgel network. The microgel particles are able to effectively encapsulate doxorubicin (DOX) drug and exhibit low drug leakage under physiological conditions. At low pH, rapid DOX release is observed due to the changes in electrostatic interactions along with the degradation of particles. The results of the cytotoxicity assay further display that the DOX-loaded microgel exhibit effective antitumor activity against HeLa cells demonstrating their great potential as drug delivery carriers for cancer therapy.Keywords: degradable, drug delivery, hydrazone linkages, microgels, responsive
Procedia PDF Downloads 3141146 Activation of Caspase 3 by Terpenoids and Flavonoids in Cancer Cell Lines
Authors: Nusrat Masood, Vijaya Dubey, Suaib Luqman
Abstract:
Caspase 3, a member of cysteine-aspartic acid protease family, is an imperative indicator for cell death particularly when substantiating apoptosis. Thus, caspase 3 is an interesting target for the discovery and development of anticancer agent. We adopted a four level assessment of both terpenoids and flavonoids and thus experimentally performed the enzymatic assay in cell free system as well as in cancer cell line which was validated through real time expression and molecular interaction studies. A significant difference was observed with both the class of natural products indicating terpenoids as better activators of caspase 3 compared to flavonoids both in the cell free system as well as in cell lines. The expression analysis, activation constant and binding energy also correlate well with the enzyme activity. Overall, terpenoids had an unswerving effect on caspase 3 in all the tested system while flavonoids indirectly affect enzyme activity.Keywords: Caspase 3, terpenoids, flavonoids, activation constant, binding energy
Procedia PDF Downloads 2381145 Chitin Degradation in Pseudomonas fluorescens
Authors: Azhar Alhasawi, Vasu D. Appanna
Abstract:
Chitin, the second most abundant bio-polymer in nature after cellulose, composed of β (1→4) linked N-acetylglucosamine (GlcNAc), is a major structural component in the cell walls of fungi and the shells of crustaceans. Chitin and its derivatives are gaining importance of economic value due to its biological activity and its industrial and biomedical applications. There are several methods to hydrolyze chitin to NAG, but they are typically expensive and environmentally unfriendly. Chitinase which catalyzes the breakdown of chitin to NAG has received much attention owing to its various applications in biotechnology. The presented research examines the ability of the versatile soil microbe, Pseudomonas fluorescens grown in chitin medium to produce chitinase and a variety of value-added products under abiotic stress. We have found that with high pH, Pseudomonas fluorescens enable to metabolize chitin more than with neutral pH and the overexpression of chitinase was also increased. P-dimethylaminobenzaldehyde (DMAB) assay for NAG production will be monitored and a combination of sodium dodecyl polyacrylamide gels will be used to monitor the proteomic and metabolomic changes as a result of the abiotic stress. The bioreactor of chitinase will also be utilized.Keywords: Pseudomonas fluorescens, chitin, DMAB, chitinase
Procedia PDF Downloads 3551144 Antifungal Activity of Processed Sulfur Solution as Potential Eco-Friendly Disinfectant against Saprolegnia parasitica and Its Safety in Freshwater-Farmed Fish
Authors: Hye-Hyun Lee, Hyo-Kon Chun, Kyung-Hee Kim Kim, Mi-Hee Kim, Saet-Byul Chu, Sang-Jong Lee, Seung-Hyeop Lee, Seung-Won Yi
Abstract:
Some chemicals such as malachite green, methylene blue, and copper sulfate had been used frequently as disinfectants controlling fungal infection in aquaculture. However, their carcinogenicity, mutagenicity and teratogenicity were reported in mammals. After their accumulation in food fish and its consumers was confirmed, concerns about public health has resulted in enhanced monitoring and increased demand for eco-friendly treatments. Therefore, this study aimed to evaluate safety to fish and efficacy of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica, for use of a potential aquatic fungicidal disinfectant. The natural sulfur purchased from Kawah Ijen volcano, East Java, Indonesia was processed by the liquid mixture consisting of following twelve effective microorganisms (Rapha-el®; Lbiotech, Jeonnam, Korea), Lactobacillus parafarraginis, L. paracasei, L. harbinensis, L. buchneri, L. perolens, L. rhamnosus, L. vaccinostercus, Acetobacter lovaniensis, A. peroxydans, Pichia fermentans, Candida ethanolica, Saccharomycopsis schoenii isolated from fermentation process of oriental medicinal herbs including green tea, privet, and puer tea. The material was applied to in vitro antifungal activity test for Saprolegnia parasitica using agar dilution method. In addition, an acute toxicity test was performed on carp (Cyprinus carpio), eel (Anguilla japonica), and mud fish (Misgurnus mizolepis) for 96 hours. After three species of fish (n=15) were accustomed to experimental water environment for three days, the EM-PSS was added to each tank as final concentrations to be 0 to 500 ppm. The fish were taken into necropsy, and the histological sections of the gill, liver, and spleen were counter-stained with hematoxylin and eosin (H-E). And hence, no observed effect concentration (NOEC) of the solution was used for taking a medicinal bath for mudfish infected by Saprolegnia parasitica in practice. The result of in vitro antifungal activity test showed the growth inhibition of the fungus at 100 ppm, which and the lower concentrations occurred no fatal case in any fish species tested until the end of the examination. The 125 ppm of the solution, however, resulted in 13.3 %, 13.3 %, and 6.3 % of mortality in carp, eel, and mudfish, respectively. But both 250 and 500 ppm of the solution leaded lethality to all population of each fish species within 24 hours. Besides, H-E staining also showed no specific evidence for toxicity in fish at lesser than 100 ppm of EM-PSS. On the other hand, as a result of field application of the solution, no growth of fungal mycelium was found in fish bodies from gross observation 5 days post treatment. In conclusion, 100ppm of EM-PSS resulted in inhibition and treatment of Saprolegnia parasitica infection. In addition, the use of EM-PSS lower than 100 ppm is safe for fish. Therefore, EM-PSS could be used as aquatic fungicide, and also may be possible to be a potential eco-friendly disinfectant in aquaculture.Keywords: antifungal activity, effective microorganism, toxicity, saprolegnia, processed sulfur solution
Procedia PDF Downloads 2571143 Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes
Authors: Tian-Fang Kang, Chao-Nan Ge, Rui Li
Abstract:
An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility.Keywords: acetylcholinesterase, Au-Pd nanoparticles, electrochemical biosensors, parathion
Procedia PDF Downloads 4071142 Determination of the Inhibitory Effects of N-Methylpyrrole Derivatives on Glutathione Reductase Enzyme
Authors: Esma Kocaoglu, Oktay Talaz, Huseyin Cavdar, Murat Senturk, Deniz Eki̇nci̇
Abstract:
Glutathione reductase (GR) is a crucial antioxidant enzyme which is responsible for the maintenance of the antioxidant GSH (glutathione) molecule. Antimalarial effects of some chemical molecules are attributed to their inhibition of GR; thus inhibitors of this enzyme are expected to be promising candidates for the treatment of malaria. In this work, GR inhibitory properties of N-Methylpyrrole derivatives are reported. Firstly, GR was purified by means of affinity chromatography using 2’,5’-ADP-Sepharose 4B as ligand. Enzymatic activity was measured by Beutler’s method. Synthesis of the compounds was approved by thin layer chromatography and column chromatography. Different inhibitor concentrations were used and all compounds were tested in triplicate at each concentration used. It was found that all compounds have better inhibitory activity than the strong GR inhibitor N,N-bis(2-chloroethyl)-N-nitrosourea, especially three molecules, 8m, 8n, and 8q, are the best among them with low micromolar I₅₀ values. Findings of our study indicate that these Schiff base derivatives are strong GR inhibitors which can be used as leads for designation of novel antimalaria candidates.Keywords: glutathione reductase, antimalaria, inhibitor, enzyme
Procedia PDF Downloads 2711141 Development of Loop-Mediated Isothermal Amplification for Detection of Garlic in Food
Authors: Ting-Ying Su, Meng-Shiou Lee, Shyang-Chwen Sheu
Abstract:
Garlic is used commonly as a seasoning around the world. But some people suffer from allergy to garlic. Garlic may also cause burning of mouth, stomach, and throat. In some Buddhist traditions, consuming garlic is not allowed. The objective of this study is to develop a LAMP based method for detection of garlic in food. We designed specific primers targeted on ITS1-5.8S rRNA-ITS2 sequence of garlic DNA. The LAMP assay was performed using a set of four different primers F3, B3, FIP and BIP at 60˚C in less than 60 mins. Results showed that the primer was not cross-reactive to other commonly used spice including Chinese leek, Chinese onion, green onion, onion, pepper, basil, parsley, pepper and ginger. As low as 2% of garlic DNA could be detected. Garlic still could be detected by developed LAMP after boiled at 100˚C for 80 minutes and autoclaved at 121˚C for 60 minutes. Commercial products labeled with garlic ingredient could be identified by the developed method.Keywords: garlic, loop-mediated isothermal amplification, processing, DNA
Procedia PDF Downloads 3031140 Role of Vitamin-D in Reducing Need for Supplemental Oxygen Among COVID-19 Patients
Authors: Anita Bajpai, Sarah Duan, Ashlee Erskine, Shehzein Khan, Raymond Kramer
Abstract:
Introduction: This research focuses on exploring the beneficial effects if any, of Vitamin-D in reducing the need for supplemental oxygen among hospitalized COVID-19 patients. Two questions are investigated – Q1)Doeshaving a healthy level of baselineVitamin-D 25-OH (≥ 30ng/ml) help,andQ2) does administering Vitamin-D therapy after-the-factduring inpatient hospitalization help? Methods/Study Design: This is a comprehensive, retrospective, observational study of all inpatients at RUHS from March through December 2020 who tested positive for COVID-19 based on real-time reverse transcriptase–polymerase chain reaction assay of nasal and pharyngeal swabs and rapid assay antigen test. To address Q1, we looked atall N1=182 patients whose baseline plasma Vitamin-D 25-OH was known and who needed supplemental oxygen. Of this, a total of 121 patients had a healthy Vitamin-D level of ≥30 ng/mlwhile the remaining 61 patients had low or borderline (≤ 29.9ng/ml)level. Similarly, for Q2, we looked at a total of N2=893 patients who were given supplemental oxygen, of which713 were not given Vitamin-D and 180 were given Vitamin-D therapy. The numerical value of the maximum amount of oxygen flow rate(dependent variable) administered was recorded for each patient. The mean values and associated standard deviations for each group were calculated. Thesetwo sets of independent data served as the basis for independent, two-sample t-Test statistical analysis. To be accommodative of any reasonable benefitof Vitamin-D, ap-value of 0.10(α< 10%) was set as the cutoff point for statistical significance. Results: Given the large sample sizes, the calculated statistical power for both our studies exceeded the customary norm of 80% or better (β< 0.2). For Q1, the mean value for maximumoxygen flow rate for the group with healthybaseline level of Vitamin-D was 8.6 L/min vs.12.6L/min for those with low or borderline levels, yielding a p-value of 0.07 (p < 0.10) with the conclusion that those with a healthy level of baseline Vitamin-D needed statistically significant lower levels of supplemental oxygen. ForQ2, the mean value for a maximum oxygen flow rate for those not administered Vitamin-Dwas 12.5 L/min vs.12.8L/min for those given Vitamin-D, yielding a p-valueof 0.87 (p > 0.10). We thereforeconcludedthat there was no statistically significant difference in the use of oxygen therapy between those who were or were not administered Vitamin-D after-the-fact in the hospital. Discussion/Conclusion: We found that patients who had healthy levels of Vitamin-D at baseline needed statistically significant lower levels of supplemental oxygen. Vitamin-D is well documented, including in a recent article in the Lancet, for its anti-inflammatory role as an adjuvant in the regulation of cytokines and immune cells. Interestingly, we found no statistically significant advantage for giving Vitamin-D to hospitalized patients. It may be a case of “too little too late”. A randomized clinical trial reported in JAMA also did not find any reduction in hospital stay of patients given Vitamin-D. Such conclusions come with a caveat that any delayed marginal benefits may not have materialized promptly in the presence of a significant inflammatory condition. Since Vitamin-D is a low-cost, low-risk option, it may still be useful on an inpatient basis until more definitive findings are established.Keywords: COVID-19, vitamin-D, supplemental oxygen, vitamin-D in primary care
Procedia PDF Downloads 1541139 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)
Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri
Abstract:
Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI
Procedia PDF Downloads 541138 A Density Functional Theory Computational Study on the Inhibiting Action of Some Derivatives of 1,8-Bis(Benzylideneamino)Naphthalene against Aluminum Corrosion
Authors: Taher S. Ababneh, Taghreed M. A. Jazzazi, Tareq M. A. Alshboul
Abstract:
The inhibiting action against aluminum corrosion by three derivatives of 1,8-bis (benzylideneamino) naphthalene (BN) Schiff base has been investigated by means of DFT quantum chemical calculations at the B3LYP/6-31G(d) level of theory. The derivatives (CBN, NBN and MBN) were prepared from the condensation reaction of 1,8-diaminonaphthalene with substituted benzaldehyde (4-CN, 3-NO₂ and 3,4-(OMe)₂, respectively). Calculations were conducted to study the adsorption of each Schiff base on aluminum surface to evaluate its potential as a corrosion inhibitor. The computational structural features and electronic properties of each derivative such as relative energies and energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been reported. Thermodynamic functions and quantum chemical parameters such as the hardness of the inhibitor, the softness and the electrophilicity index were calculated to determine the derivative of the highest inhibition efficiency.Keywords: corrosion, aluminum, DFT calculation, 1, 8-diaminonaphthalene, benzaldehyde
Procedia PDF Downloads 3481137 Investigating the Expression of NR1/NR2 Receptors in Boys Between 6 to 16 with ADHD Compared to a Healthy Controlled Group
Authors: Sajad Haghshenas
Abstract:
Emerging evidence from clinical, genetic, and animal model studies suggests that the N-methyl-D-aspartate (NMDA) glutamate receptors (NMDAR) may contribute to the pathophysiology and aetiology of neurological and psychiatric disorders and the patients with impaired NMDR receptors experience psychological symptoms. Therefore, we hypothesised that NMDAR receptors play a key role in the development of attention deficit hyperactivity disorder (ADHD). In this comparative analytical study, we utilized western blotting method to assay the expression levels of NMDA subunits NR1 and NR2 in the blood plasma of 50 male individuals diagnosed with ADHD in comparison to 20 healthy controls. The findings from the western blotting analysis provide support for the hypothesis that individuals with ADHD exhibit significantly lower levels of NR1/2 receptors compared to those without the disorder. Further research is needed to explore the potential causal relationship between reduced NR1/NR2 receptor levels and the development of ADHD.Keywords: expression, glutamate receptors, NR1, NR2, ADHD
Procedia PDF Downloads 741136 Zinc (II) Complexes of Nitrogen, Oxygen and Sulfur Coordination Modes: Synthesis, Spectral Studies and Antibacterial Activities
Authors: Ayodele Odularu, Peter Ajibade, Albert Bolhuis
Abstract:
This study aimed at assessing the antibacterial activities of four zinc (II) complexes. Zinc (II) complexes of nitrogen, oxygen and sulfur coordination modes were synthesized using direct substitution reaction. The characterization techniques involved physicochemical properties (molar conductivity) and spectroscopic techniques. The molar conductivity gave the non-electrolytic nature of zinc (II) complexes. The spectral studies of zinc (II) complexes were done using electronic spectra (UV-Vis) and Fourier Transform Infra-red Spectroscopy (FT-IR). Spectral data from the spectroscopic studies confirmed the coordination of the mixed ligands with zinc (II) ion. The antibacterial activities of zinc(II) complexes of were all in supportive of Overtone’s concept and Tweedy’s theory of chelation for bacterial strains of S. aureus MRSA252 and E coli MC4100 because the zones of inhibition were greater than the corresponding ligands. In summary, all zinc (II) complexes of ZEPY, ZE1PH, ZE1PY and ZE135PY all have potentials for antibacterial activities.Keywords: antibacterial activities, spectral studies, syntheses, zinc(II) complexes
Procedia PDF Downloads 2821135 Preparation and Characterization of Cellulose Based Antimicrobial Food Packaging Materials
Authors: Memet Vezir Kahraman, Ferhat Sen
Abstract:
This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier Transform Infrared, carbon and proton Nuclear Magnetic Resonance spectroscopy. Its nitrogen content was determined by the Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by scanning electron microscope. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.Keywords: antimicrobial food packaging, cationic hydroxyethyl cellulose, polyelectrolyte, sodium alginate
Procedia PDF Downloads 1601134 Body Image, Anxiety, Depression and DNA Damage in Obese Egyptian Women
Authors: Ramy Mohamed, Moushira E. Zaki, Hala T. El-Bassyouni, Walaa Yousef, Safinaz El Toukhy, Samira Ismail
Abstract:
Obesity is a worldwide epidemic problem. This study investigates the role of obesity on body image, frequency of anxiety, depression disorders and DNA damage in a sample of Egyptian women. The study included 172 women, 84 were obese, and 88 were age-matched non-obese women. Obese women showed a significantly higher frequency of abnormal body image (77.4%) as compared with the non-obese (42%) (P < 0.0001). Moreover, they had significantly higher frequencies of severe anxiety (26.2%) and depression (41.7%) than non-obese women (2.3 and 18.2%, respectively) (P < 0.001). Leukocyte DNA damage was evaluated by comet assay and revealed high DNA damage in obese women. Obesity is a potential risk factor for abnormal body image, anxiety, depression, and DNA damage among Egyptian women. Identifying the psychological problems in obese women is essential to improve quality of life and promote management and prevention.Keywords: anxiety, body image, depression, DNA damage, obesity
Procedia PDF Downloads 91133 Bioactivity of Peptides from Two Mushrooms
Authors: Parisa Farzaneh, Azade Harati
Abstract:
Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing.Keywords: bio-peptide, mushrooms, gastrointestinal enzymes, bioactivity
Procedia PDF Downloads 601132 Microbial Metabolites with Ability of Anti-Free Radicals
Authors: Yu Pu, Chien-Ping Hsiao, Chien-Chang Huang, Chieh-Lun Cheng
Abstract:
Free radicals can accelerate aging on human skin by causing lipid oxidation, protein denaturation, and even DNA mutation. Substances with the ability of anti-free radicals can be used as functional components in cosmetic products. Research are attracted to develop new anti-free radical components for cosmetic application. This study was aimed to evaluate the microbial metabolites on free radical scavenging ability. Two microorganisms, PU-01 and PU-02, were isolated from soil of hot spring environment and grew in LB agar at 50°C for 24 h. The suspension was collected by centrifugation at 4800 g for 3 min, The anti-free radical activity was determined by DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging assay. The result showed that the growth medium of PU-01 presented a higher DPPH scavenging effect than that of PU-02. This study presented potential anti-free radical components from microbial metabolites that might be applied in anti-aging cosmetics.Keywords: anti-ageing, anti-free radical, biotechnology, microorganism
Procedia PDF Downloads 1641131 Very First Synthesis of Carbazole Conjugates with Efflux Pump Inhibitor as Dual Action Hybrids
Authors: Ghazala Yaqub, Zubi Sadiq, Almas Hamid, Saira Iqbal
Abstract:
This paper is the very first report of three dual action hybrids synthesized by covalent linkage of carbazole based novel antibacterial compounds with efflux pump inhibitors i.e., indole acetic acid/gallic acid. Novel carbazole based antibacterial compounds were prepared first and then these were covalently linked with efflux pump inhibitors which leads to the successful formation of hybrids. All prepared compounds were evaluated for their bacterial cell killing capability against Escherichia coli, Staphylococcus aureus, Pasteurella multocida and Bacillus subtilis. Compound were effective against all tested bacterial strains at different concentrations. But when these compounds were linked with efflux pump inhibitors they showed dramatic enhancement in their bacterial cell killing potential and minimum inhibitory concentration of all hybrids ranges from 7.250 µg/mL to 0.0283 µg/mL.Keywords: antimicrobial assay, carbazole, dual action hybrids, efflux pump inhibitors
Procedia PDF Downloads 21041130 Starch Incorporated Hydroxyapatite/Chitin Nanocomposite as a Novel Bone Construct
Authors: Reshma Jolly, Mohammad Shakir, Mohammad Shoeb Khan, Noor E. Iram
Abstract:
A nanocomposite system integrating hydroxyapatite, chitin and starch (n-HA/CT/ST) has been synthesized via co-precipitation approach at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for Bone tissue engineering. The interactions, crystallite size and surface morphology against n-HA/CT (nano-hydroxyapatite/chitin) nanocomposite have been obtained by correlating and comparing the results of FTIR, SEM, TEM and XRD. The comparative study of the bioactivity of n-HA/CT and n-HA/CT/ST nanocomposites revealed that the incorporation of starch as templating agent improved these properties in n-HA/CT/ST nanocomposite. The rise in thermal stability in n-HA/CT/ST nanocomposite as compared to n-HA/CT has been observed by comparing the TGA results. The comparison of SEM images of both the scaffolds indicated that the addition of ST influenced the surface morphology of n-HA/CT scaffold which appeared to be rougher and porous. The MTT assay on murine fibroblast L929 cells and in-vitro bioactivity of n-HA/CT/ST matrix referred superior non-toxic property of n-HA/CT/ST nanocomposite and higher possibility of osteo-integration in-vivo, respectively.Keywords: bioactive, chitin, hyroxyapatite, nanocomposite
Procedia PDF Downloads 4931129 New Method for the Determination of Montelukast in Human Plasma by Solid Phase Extraction Using Liquid Chromatography Tandem Mass Spectrometry
Authors: Vijayalakshmi Marella, NageswaraRaoPilli
Abstract:
This paper describes a simple, rapid and sensitive liquid chromatography / tandem mass spectrometry assay for the determination of montelukast in human plasma using montelukast d6 as an internal standard. Analyte and the internal standard were extracted from 50 µL of human plasma via solid phase extraction technique without evaporation, drying and reconstitution steps. The chromatographic separation was achieved on a C18 column by using a mixture of methanol and 5mM ammonium acetate (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min. Good linearity results were obtained during the entire course of validation. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. A run time of 2.5 min for each sample made it possible to analyze more number of samples in short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies.Keywords: Montelukast, tandem mass spectrometry, montelukast d6, FDA guidelines
Procedia PDF Downloads 3161128 Antitrypanosomal Activity of Stigmasterol: An in silico Approach
Authors: Mohammed Auwal Ibrahim, Aminu Mohammed
Abstract:
Stigmasterol has previously been reported to possess antitrypanosomal activity using in vitro and in vivo models. However, the mechanism of antitrypanosomal activity is yet to be elucidated. In the present study, molecular docking was used to decipher the mode of interaction and binding affinity of stigmasterol to three known antitrypanosomal drug targets viz; adenosine kinase, ornithine decarboxylase and triose phosphate isomerase. Stigmasterol was found to bind to the selected trypanosomal enzymes with minimum binding energy of -4.2, -6.5 and -6.6 kcal/mol for adenosine kinase, ornithine decarboxylase, and triose phosphate isomerase respectively. However, hydrogen bond was not involved in the interaction of stigmasterol with all the three enzymes, but hydrophobic interaction seemed to play a vital role in the binding phenomenon which was predicted to be non-competitive like type of inhibition. It was concluded that binding to the three selected enzymes, especially triose phosphate isomerase, might be involved in the antitrypanosomal activity of stigmasterol but not mediated via a hydrogen bond interaction.Keywords: antitrypanosomal, in silico, molecular docking, stigmasterol
Procedia PDF Downloads 2791127 Bioassay Guided Isolation of Cytotoxic and Antimicrobial Components from Ethyl Acetate Extracts of Cassia sieberiana D.C. (Fabaceae)
Authors: Sani Abubakar, Oumar Al-Mubarak Adoum
Abstract:
The leaves extracts of Cassia sieberiana D. C. were screened for antimicrobial bioassay against Staphylococcus aureus, Salmonella typhi, and Escherichia coli and cytotoxicity using Brine Shrimp Test (BST). The crude ethanol extract, Chloroform soluble fraction, aqueous soluble fraction, ethyl acetate soluble fraction, methanol soluble fraction, and n-hexane soluble fraction were tested against antimicrobial and cytotoxicity. The Ethyl acetate fraction obtained proved to be most active in inducing complete lethality at minimum doses in BST and also active on Salmonella typhi. The bioactivity result was used to guide the column chromatography, which led to the isolation of pure compound CSB-8, which was found active in the BST with an LC₅₀ value of 34(722-182)µg/ml and showed remarkable activity on Salmonella typhi (zone of inhibition 25mm) at 10,000µg/ml. The ¹H-NMR, ¹³C NMR, FTIR, and GC-MS spectra of the compound suggested the proposed structure to be 2-pentadecanone.Keywords: antimicrobial bioassay, cytotoxicity, column chromatagraphy, Cassia sieberiana D.C.
Procedia PDF Downloads 481126 Seed Germination and Recovery Responses of Suaeda Heterophylla to Abiotic Stresses
Authors: Abdul Hameed, Muhammad Zaheer Ahmed, Salman Gulzar, Bilquees Gul, Jan Alam, Ahmad K. Hegazy, Abdel Rehman A. Alatar, M. Ajmal Khan
Abstract:
Seed germination and recovery from salt stress of an annual halophyte Suaeda heterophylla (Kar. and Kir.) Bunge to different iso-osmotic concentrations (0, -0.46, -0.92, -1.38, -1.84, and -2.30 MPa) of NaCl and PEG-6000 at 15/25, 20/30 and 25/35°C in both 12-h temperature and light regimes and in complete darkness were studied. Maximum number of seeds germinated in distilled water and increase in concentrations of both NaCl and PEG-6000 decreased germination at all temperature regimes, light and dark conditions, with higher inhibition in NaCl than PEG-6000. Recovery of germination and viability of seeds were lower in NaCl than PEG-6000 both in the light and dark. Moderate alternate temperatures (20/30°C) and 12-h photoperiod were found to be the optimal for seed germination and recovery. Better seed germination of S. heterophylla when osmotic potential caused both by NaCl and PEG 6000 is lower, temperature regime of 20/30°C and light regime is for 12 h.Keywords: seed germination, abiotic stresses, Suaeda heterophylla, molecular biology
Procedia PDF Downloads 4401125 The Impact of the Genetic Groups of Microorganisms on the Production of Mousy-Compounds
Authors: Pierre Moulis, Markus Herderich, Doris Rauhut, Patricia Ballestra
Abstract:
Nowadays, it is starting to be more frequent to detect wines with mousy off-flavor. The reasons behind this could be the significant decrease in sulphur dioxide, the increase in pH, and the trend for spontaneous fermentation in wine. This off-flavor can be produced by Brettanomyces bruxellensis or some Lactic acid bacteria. So far there is no study working on the influence of the genetic group on the production of these microorganisms. Objectives: The objectives of this research are to increase knowledge and to have a better understanding of the microbiological phenomena related to the production of the mousy off-flavor in the wine. Methodologies: In this research, microorganisms were screened in an N-heterocycle assay medium (this medium contained all known precursors) and the production of mousy compounds was quantified by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry (SBSE-GC-MS). Main contributions: Brettanomyces bruxellensis and Oenococcus oeni could produce mousiness at a different amount depending on the strain. But there is no group effect.Keywords: mousy off-flavor, wine, Brettanomyces bruxellensis, Oenococcus oeni
Procedia PDF Downloads 1021124 Cytotoxic Activity Of Major Iridoids From Barleria Trispinosa (Forssk.) Vahl. Growing In Saudi Arabia
Authors: Hamza Assiry, Gamal A. Mohamed, Sabrin R. M. Ibrahim, Hossam M. Abdallah
Abstract:
Chemical investigation of the aerial parts of Barleria trispinosa(Forssk.) Vahl. resulted in isolation of four major iridoids that were identified as 6,8-O,O-diacetylshanhiside methyl ester (acetyl barlerin) (1), 8-O-acetylshanzhiside methyl ester (barlerin) (2), shanzhiside methyl ester (3), and 6- ⍺ -L-rhamnopyranosyl-8-O-acetylshanzihiside methyl ester (4). The isolated compounds were confirmed by detailed one and two-dimensional NMR. Isolated compounds were tested for their cytotoxic activity on breast cancer (MCF-7, MDA-MB-231) and colon cancer (LS174T) cell linesusing sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards MDA-MB-231 cell line with IC5016.7 ± 2.7µg / mL compared to doxorubicin whereas compounds 2, showed moderate cytotoxic potential with IC5021.2 ± 1.9µg / mL on MCF-7. The other compounds showed moderate activity on the tested cell lines.Keywords: acanthaceae, cytotoxicity, metabolites, barleria trispinosa
Procedia PDF Downloads 1491123 Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions
Authors: M. Abdel-Hamid, P. Saporito, R. V. Mateiu, A. Osman, E. Romeih, H. Jenssen
Abstract:
Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa.Keywords: camel milk, whey proteins, antibacterial peptide, anti-biofilm
Procedia PDF Downloads 221