Search results for: methane yield
1820 Heterologous Expression of Heat-Shock Protein Improves Butanol Yield in a High-Speedy Growing Clostridium acetobutylicum Mutant
Authors: Min-Shiuan Liou, Yi Shan Yang, Yang-Zhan Huang, Chia-Wen Hsieh
Abstract:
A high speed growing and butanol-tolerant Clostridium acetobutylicum HOL1 mutant was screened throughout continuous adaption culture with C. acetobutylicum ATCC 824. The HOL1 strain can grow well in 10 g/L butanol contained CGM medium and can produce about 12.8 g /L butanol during 24 hrs. The C. acetobutylicum HOL1 strain was able to produce 166 mM butanol with 21 mM acetone at pH 4.8, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.79, which is much higher than that (0.6) of the wild-type strain C. acetobutylicum ATCC 824. The acetate and butyrate accumulation were not observed during fermentation of the HOL1 strain. A hyper-butanol producing C. acetobutylicum HOL1 (pBPHS-3), which was created to overexpress the Bacillus psychrosaccharolyticus originated specific heat-shock protein gene, hspX, from a clostridial phosphotransbutyrylase promoter, was studied for its potential to produce a high titer of butanol. Overexpression of hspX resulted in increased final butanol yield 47% and 30% higher than those of the the ATCC824 and the HOL1 strains, respectively. The remarkable high-speed growth and butanol tolerance of strain HOL1 (pBPHS-3) demonstrates that overexpression of heterogeneous stress protein-encoding gene, hspX, could help C. acetobutylicum to effectively produce a high concentration of butanol.Keywords: Clostridium acetobutylicum, butanol, heat-shock protein, resistance
Procedia PDF Downloads 4351819 Bio-Oil Compounds Sorption Enhanced Steam Reforming
Authors: Esther Acha, Jose Cambra, De Chen
Abstract:
Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.Keywords: CO2 sorbent, enhanced steam reforming, hydrogen
Procedia PDF Downloads 5821818 An Investigation of Current Potato Nitrogen Fertility Programs' Contribution to Ground Water Contamination
Authors: Brian H. Marsh
Abstract:
Nitrogen fertility is an important component for optimum potato yield and quality. Best management practices are necessary in regards to N applications to achieve these goals without applying excess N with may contribute to ground water contamination. Eight potato fields in the Southern San Joaquin Valley were sampled for nitrogen inputs and uptake, tuber and vine dry matter and residual soil nitrate-N. The fields had substantial soil nitrate-N prior to the potato crop. Nitrogen fertilizer was applied prior to planting and in irrigation water as needed based on in-season petiole sampling in accordance with published recommendations. Average total nitrogen uptake was 237 kg ha-1 on 63.5 Mg ha-1 tuber yield and nitrogen use efficiency was very good at 81 percent. Sixty-nine percent of the plant nitrogen was removed in tubers. Soil nitrate-N increased 14 percent from pre-plant to post-harvest averaged across all fields and was generally situated in the upper soil profile. Irrigation timing and amount applied did not move water into the lower profile except for a single location where nitrate also moved into the lower soil profile. Pre-plant soil analysis is important information to be used. Rotation crops having deeper rooting growth would be able to utilize nitrogen that remained in the soil profile.Keywords: potato, nitrogen fertilization, irrigation management, leaching potential
Procedia PDF Downloads 4621817 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin
Authors: Mikhail O. Eremin
Abstract:
Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression
Procedia PDF Downloads 1781816 The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables
Authors: Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman
Abstract:
Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material.Keywords: conventional, ginger, non-environmentally, supercritical carbon dioxide, technology
Procedia PDF Downloads 1201815 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor
Authors: Ibrahim Makram Ibrahim Salib
Abstract:
Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income
Procedia PDF Downloads 791814 Effect of Cocoa Pod Ash and Poultry Manure on Soil Properties and Cocoyam Productivity of Nutrient-Depleted Tropical Alfisol
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
An experiment was carried out for three consecutive years at Owo, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of cocoyam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 7.5 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control), arranged in a randomized complete block design with three replications. Results showed that soil amendments significantly increased (p = 0.05) corm and cormel weights and growth of cocoyam, soil and leaf N, P, K, Ca and Mg, soil pH and organic carbon (OC) concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased corm and cormel weights, plant height and leaf area of cocoyam by 40, 39, 42, and 48%, respectively, compared with inorganic fertilizer (NPK) and 13, 12, 15 and 7%, respectively, compared with PM alone. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties compared with NPK and the NSF (control). The mixture of CPA+PM applied at 7.5 t ha-1 was the most effective treatment in improving cocoyam yield and growth parameters, soil and leaf nutrient composition.Keywords: Cocoa pod ash, cocoyam, poultry manure, soil and leaf nutrient composition.
Procedia PDF Downloads 3771813 Fusarium Wilt of Tomato: Plant Growth, Physiology and Biological Disease Management
Authors: Amna Shoaib, Sidrah Hanif, Rashid Mehmood
Abstract:
Current research work was carried out to check influence of farmyard manure (FYM) in Lycopersicon esculentum L. against Fusarium oxysporum f. sp. lycopersici (FO) in copper polluted soil. Silt-loam soil naturally enriched with 70 ppm of Cu was inoculated with 1 x 106 spore suspensions of FO and incorporated with 0%, 1%, 1.5% or 2% FYM. The multilateral interaction of host-pathogen-metal-organic amendment was assessed in terms of morphology, growth, yield, physiology, biochemistry and metal uptake in tomato plant after 30 and 60 days of sowing. When soil was inoculated with FO, plant growth and biomass were significantly increased during vegetative stage, while declining during flowering stage with substantial increase in productivity over control. Infected plants exhibited late wilting and disease severity was found on 26-50% of plant during reproductive stage. Incorporation of up to 1% FYM suppressed disease severity, improved plant growth and biomass, while it decreased yield. Rest of manure doses was found ineffective in suppressing disease. Content of total chlorophyll, sugar and protein were significantly declined in FO inoculated plants and incorporation of FYM caused significant reduction or no influence on sugar and chlorophyll content, and no pronounced difference among different FYM doses were observed. On the other hand, proline, peroxidase, catalase and nitrate reductase activity were found to be increased in infected plants and incorporation of 1-2% FYM further enhanced the activity of these enzymes. Tomato plant uptake of 30-40% of copper naturally present in the soil and incorporation of 1-2% FYM markedly decreased plant uptake of metal by 15-30%, while increased Cu retention in soil. Present study concludes that lower dose (1%) of FYM could be used to manage disease, increase growth and biomass, while being ineffective for yield and productivity in Cu-polluted soil. Altered physiology/biochemistry of plant in response to any treatment could be served as basis for resistant against pathogen and metal homeostasis in plants.Keywords: Lycopersicon esculentum, copper, Fusarium wilt, farm yard manure
Procedia PDF Downloads 4171812 Pectin Degrading Enzyme: Entrapment of Pectinase Using Different Synthetic and Non-Synthetic Polymers for Continuous Degradation of Pectin Polymer
Authors: Haneef Ur Rehman, Afsheen Aman, Abdul Hameed Baloch, Shah Ali Ul Qader
Abstract:
Pectinase is a heterogeneous group of enzymes that catalyze the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, pectinase from B. licheniformis KIBGE-IB21 was immobilized within different polymers (calcium alginate beads, polyacrylamide gel and agar-agar matrix) to enhance its catalytic properties. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield. While less immobilization yield was observed in case of calcium alginate beads that only retained 46 % activity. The reaction time for maximum pectinolytic activity was increased from 5.0 to 10 minutes after immobilization. The temperature of pectinase for maximum enzyme activity was increased from 45 °C to 50 °C and 55 °C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH of pectinase didn’t alter when it was immobilized within polyacrylamide gel and calcium alginate beads, but in case of agar-agar it was changed from pH 10 to pH 9.0. Thermal stability of pectinase was improved after immobilization and immobilized pectinase showed higher toleration against different temperatures as compared to free enzyme. It can be concluded that the entrapment is a simple, single step and promising procedure to immobilized pectinase within different synthetic and non-synthetic polymers and enhanced its catalytic properties.Keywords: pectinase, characterization immobilization, polyacrylamide, agar-agar, calcium alginate beads
Procedia PDF Downloads 6081811 Cybernetic Modeling of Growth Dynamics of Debaryomyces nepalensis NCYC 3413 and Xylitol Production in Batch Reactor
Authors: J. Sharon Mano Pappu, Sathyanarayana N. Gummadi
Abstract:
Growth of Debaryomyces nepalensis on mixed substrates in batch culture follows diauxic pattern of completely utilizing glucose during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming xylose. The present study deals with the development of cybernetic mathematical model for prediction of xylitol production and yield. Production of xylitol from xylose in batch fermentation is investigated in the presence of glucose as the co-substrate. Different ratios of glucose and xylose concentrations are assessed to study the impact of multi substrate on production of xylitol in batch reactors. The parameters in the model equations were estimated from experimental observations using integral method. The model equations were solved simultaneously by numerical technique using MATLAB. The developed cybernetic model of xylose fermentation in the presence of a co-substrate can provide answers about how the ratio of glucose to xylose influences the yield and rate of production of xylitol. This model is expected to accurately predict the growth of microorganism on mixed substrate, duration of intermediate lag phase, consumption of substrate, production of xylitol. The model developed based on cybernetic modelling framework can be helpful to simulate the dynamic competition between the metabolic pathways.Keywords: co-substrate, cybernetic model, diauxic growth, xylose, xylitol
Procedia PDF Downloads 3301810 Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production
Authors: Reda Abdel-Aziz
Abstract:
Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment.Keywords: agricultural waste, compost, chemical fertilizers, corn production, environment
Procedia PDF Downloads 3221809 Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree
Authors: Joe Modise, Bamidel Joseph Okoli, Nas Molefe, Imelda Ledwaba
Abstract:
The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner.Keywords: Acacia decurrens, antioxidant, DPPH, ABTS, hyperaccumulation, Menstruum, ICP-OES, GC-MS, UV/visible
Procedia PDF Downloads 3301808 Residual Affects of Humic Matter from Sub-Bituminous in Binding Aluminium at Oxisol to Increase Production of Upland Rice
Authors: Herviyanti, Gusnidar, M. Harianti
Abstract:
The objective of this research were: a) using low-rank coal (subbituminous) as main humate material sources because this material will not be anthracite, and cannot using to be an energy sources b) to examine residual effects of humic matter from subbituminous which was combined with P fertilizers to adsorp Al and Fe metal, improving soil fertility, and increasing P fertilizing efficiency and Oxisol productivity. Therefore, optimalization crop productivity of upland rice can be achieved. The experiment was designed using a 3 x 4 factorial with 3 replications in randomly groups design. The 1st factor was 3 ways incubating humate material with P-fertilizer, which are: I1 = Incubation of humate material 1 week, then incubation P-fertilizers 1 week; I2 = Incubation of humate materials and P fertilizers directly into the soil for 2 weeks; and I3 = humate material and P fertilizer mixed for 1 week, then incubation to the soil for 1 week. The 2nd factor was residual effects of humate material and P-fertilizer combination which are 4 doses H1 = 400 ppm (0.8 Mg/ha) + 100% R; H2 = 400 ppm + 75% R; H3 = 800 ppm (1.6 Mg/ha) + 100% R,; and H4 = 800 ppm + 75% R. The 2nd year research results showed that the best treatment was founded residue effect of 800 ppm humate material and 100% R P-fertilizer doses in I3 way incubation that is equal to 6.19 t ha-1 upland rice yield. However, this result is almost the same as residual effects of 800 ppm humate material + 75% R P-fertilizer doses and upland rice yield the 1st year. It was concluded that addition of humate material can given the efficiency of P-fertilizer using up to 25% until the 2nd season planted.Keywords: humate materials, P-fertilizer, subbituminous, upland rice
Procedia PDF Downloads 3971807 Product Quality and Profitability of Sea Bream Fish Farms in Greece
Authors: C. Nathanailides, S. Anastasiou, P. Logothetis, G. Kanlis
Abstract:
Production parameters of gilt head sea bream fish farm such as feeding regimes, mortalities, fish densities were used to calculate the economic efficiency of six different aquaculture sites from West Greece. Samples of farmed sea bream were collected and lipid content, microbial load and filleting yield of the samples were used as quality criteria. The results indicate that Lipid content, filleting yield and microbial load of fish originating from different fish farms varied significantly with improved quality exhibited in fish farms which exhibited improved Feed conversion rates and lower mortalities. Changes in feeding management practices such as feed quality and feeding regimes have a significant impact on the financial performance of sea bass farms. Fish farms which exhibited improved feeding conversion rates also exhibited increased profitability. Improvements in the FCR explained about 13.4 % of the difference in profitability of the different aquaculture sites. Lower mortality and higher growth rates were also exhibited by the fish farms which exhibited improved FCR. It is concluded that best feeding management practices resulted in improved product quality and profitability.Keywords: aquaculture economics, gilt head sea, production fish, feeding management
Procedia PDF Downloads 5081806 Efficiency of Microbial Metabolites on Quality Milk Production in Nili Ravi Breed of Buffalos
Authors: Sajjad Ur Rahman, Muhammad Tahir, Mukarram Bashir, Jawad, Aoun Muhammad, Muhammad Zohaib, Hannan Khan, Seemal Javaid, Mariam Azam
Abstract:
The efficiency of natural metabolites obtained from partially fermented soya hulls and wheat bran using Saccharomyces cerevisiae (DL-22 S/N) ensures a potential impact on the total milk yield and quality of milk production. On attaining a moderate number of Saccharomyces cerevisiae cells around 1×10⁹ CFU/ml, the concentrate was further elevated under in-vivo conditions to study the quality of milk production in lactating buffalo. Ten lactating buffalos of the Nili Ravi breed having the same physical factors were given 12 gm of microbial metabolites daily, along with the palleted feed having 22 % proteins. Another group of 10 lactating animals with the same characteristics was maintained without metabolites. The body score, overall health, incidence of mastitis, milk fat, milk proteins, ash and solid not fat (SNF) were elevated on a weekly basis up to thirty days of trial. It was recorded that the average total increase in quality milk production was 0.9 liter/h/d, whereas SNF in the milk was enhanced to 0.71, and fats were decreased to 0.09 %. Moreover, during all periods of the trial, the overall non-specific immunity of buffalo was increased, as indicated by less than 0.2 % of mastitis incidence compared to 1.8% in the untreated buffalos.Keywords: natural metabolites, quality milk, milk yield, microorganisms, fermentation, nonspecific immunity, better performing animals
Procedia PDF Downloads 951805 Yield and Physiological Evaluation of Coffee (Coffea arabica L.) in Response to Biochar Applications
Authors: Alefsi D. Sanchez-Reinoso, Leonardo Lombardini, Hermann Restrepo
Abstract:
Colombian coffee is recognized worldwide for its mild flavor and aroma. Its cultivation generates a large amount of waste, such as fresh pulp, which leads to environmental, health, and economic problems. Obtaining biochar (BC) by pyrolysis of coffee pulp and its incorporation to the soil can be a complement to the crop mineral nutrition. The objective was to evaluate the effect of the application of BC obtained from coffee pulp on the physiology and agronomic performance of the Castillo variety coffee crop (Coffea arabica L.). The research was developed in field condition experiment, using a three-year-old commercial coffee crop, carried out in Tolima. Four doses of BC (0, 4, 8 and 16 t ha-1) and four levels of chemical fertilization (CF) (0%, 33%, 66% and 100% of the nutritional requirements) were evaluated. Three groups of variables were recorded during the experiment: i) physiological parameters such as Gas exchange, the maximum quantum yield of PSII (Fv/Fm), biomass, and water status were measured; ii) physical and chemical characteristics of the soil in a commercial coffee crop, and iii) physiochemical and sensorial parameters of roasted beans and coffee beverages. The results indicated that a positive effect was found in plants with 8 t ha-1 BC and fertilization levels of 66 and 100%. Also, a positive effect was observed in coffee trees treated with 8 t ha-1 BC and 100%. In addition, the application of 16 t ha-1 BC increased the soil pHand microbial respiration; reduced the apparent density and state of aggregation of the soil compared to 0 t ha-1 BC. Applications of 8 and 16 t ha-1 BC and 66%-100% chemical fertilization registered greater sensitivity to the aromatic compounds of roasted coffee beans in the electronic nose. Amendments of BC between 8 and 16 t ha-1 and CF between 66% and 100% increased the content of total soluble solids (TSS), reduced the pH, and increased the titratable acidity in beverages of roasted coffee beans. In conclusion, 8 t ha-1 BC of the coffee pulp can be an alternative to supplement the nutrition of coffee seedlings and trees. Applications between 8 and 16 t ha-1 BC support coffee soil management strategies and help the use of solid waste. BC as a complement to chemical fertilization showed a positive effect on the aromatic profile obtained for roasted coffee beans and cup quality attributes.Keywords: crop yield, cup quality, mineral nutrition, pyrolysis, soil amendment
Procedia PDF Downloads 1171804 The Role of Temporary Migration as Coping Mechanism of Weather Shock: Evidence from Selected Semi-Arid Tropic Villages in India
Authors: Kalandi Charan Pradhan
Abstract:
In this study, we investigate does weather variation determine temporary labour migration using 210 sample households from six Semi-Arid Tropic (SAT) villages for the period of 2005-2014 in India. The study has made an attempt to examine how households use temporary labour migration as a coping mechanism to minimise the risk rather than maximize the utility of the households. The study employs panel Logit regression model to predict the probability of household having at least one temporary labour migrant. As per as econometrics result, it is found that along with demographic and socioeconomic factors; weather variation plays an important role to determine the decision of migration at household level. In order to capture the weather variation, the study uses mean crop yield deviation over the study periods. Based on the random effect logit regression result, the study found that there is a concave relationship between weather variation and decision of temporary labour migration. This argument supports the theory of New Economics of Labour Migration (NELM), which highlights the decision of labour migration not only maximise the households’ utility but it helps to minimise the risks.Keywords: temporary migration, socioeconomic factors, weather variation, crop yield, logit estimation
Procedia PDF Downloads 2271803 Biogas Separation, Alcohol Amine Solutions
Authors: Jingxiao Liang, David Rooneyman
Abstract:
Biogas, which is a valuable renewable energy source, can be produced by anaerobic fermentation of agricultural waste, manure, municipal waste, plant material, sewage, green waste, or food waste. It is composed of methane (CH4) and carbon dioxide (CO2) but also contains significant quantities of undesirable compounds such as hydrogen sulfide (H2S), ammonia (NH3), and siloxanes. Since typical raw biogas contains 25–45% CO2, The requirements for biogas quality depend on its further application. Before biogas is being used more efficiently, CO2 should be removed. One of the existing options for biogas separation technologies is based on chemical absorbents, in particular, mono-, di- and tri-alcohol amine solutions. Such amine solutions have been applied as highly efficient CO2 capturing agents. The benchmark in this experiment is N-methyldiethanolamine (MDEA) with piperazine (PZ) as an activator, from CO2 absorption Isotherm curve, optimization conditions are collected, such as activator percentage, temperature etc. This experiment makes new alcohol amines, which could have the same CO2 absorbing ability as activated MDEA, using glycidol as one of reactant, the result is quite satisfying.Keywords: biogas, CO2, MDEA, separation
Procedia PDF Downloads 6401802 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods
Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul
Abstract:
Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction
Procedia PDF Downloads 2361801 Experimental Characterization of Flowable Cement Pastes Made with Marble Waste
Authors: F. Messaoudi, O. Haddad, R. Bouras, S. Kaci
Abstract:
The development of self-compacting concrete (SCC) marks a huge step towards improved efficiency and working conditions on construction sites and in the precast industry. SCC flows easily into more complex shapes and through reinforcement bars, reduces the manpower required for the placement; no vibration is required to ensure correct compaction of concrete. This concrete contains a high volume of binder which is controlled by their rheological behavior. The paste consists of binders (Portland cement with or without supplementary cementitious materials), water, chemical admixtures and fillers. In this study, two series of tests were performed on self-compacting cement pastes made with marble waste additions as the mineral addition. The first series of this investigation was to determine the flow time of paste using Marsh cone, the second series was to determine the rheological parameters of the same paste namely yield stress and plastic viscosity using the rheometer Haake RheoStress 1. The results of this investigation allowed us to study the evolution of the yield stress, viscosity and the flow time Marsh cone paste as a function of the composition of the paste. A correlation between the results obtained on the flow test Marsh cone and those of the plastic viscosity on the mottled different cement pastes is proposed.Keywords: adjuvant, rheological parameter, self-compacting cement pastes, waste marble
Procedia PDF Downloads 2791800 Organic Fertilizers Mitigate Microplastics Toxicity in Agricultural Soil
Authors: Ghulam Abbas Shah, Maqsood Sadiq, Ahsan Yasin
Abstract:
Massive global plastic production, combined with poor degradation and recycling, leads to significant environmental pollution from microplastics, whose effects on plants in the soil remain understudied. Besides, effective mitigation strategies and their impact on ammonia (NH₃) emissions under varying fertilizer management practices remains sketchy. Therefore, the objectives of the study were (i) to determine the impact of organic fertilizers on the toxicity of microplastics in sorghum and physicochemical characteristics of microplastics-contaminated soil and (ii) to assess the impacts of these fertilizers on NH₃ emissions from this soil. A field experiment was conducted using sorghum as a test crop. Treatments were: (i) Control (C), (ii) Microplastics (MP), (iii) Inorganic fertilizer (IF), (iv) MPIF, (v) Farmyard manure (FM), (vi) MPFM, (vii) Biochar (BC), and (viii) MPBC, arranged in a randomized complete block design (RCBD) with three replicates. Microplastics of polyvinyl chloride (PVC) were applied at a rate of 1.5 tons ha-¹, and all fertilizers were applied at the recommended dose of 90 kg N ha-¹. Soil sampling was done before sowing and after harvesting the sorghum, with samples analyzed for chemical properties and microbial biomass. Crop growth and yield attributes were measured. In a parallel pot experiment, NH₃ emissions were measured using passive flux samplers over 72 hours following the application of treatments similar to those used in the field experiment. Application of MPFM, MPBC and MPIF reduced soil mineral nitrogen by 8, 20 and 38% compared to their sole treatments, respectively. Microbial biomass carbon (MBC) was reduced by 19, 25 and 59% in MPIF, MPBC and MPFM as compared to their sole application, respectively. Similarly, the respective reduction in microbial biomass nitrogen (MBN) was 10, 27 and 66%. The toxicity of microplastics was mitigated by MPFM and MPBC, each with only a 5% reduction in grain yield of sorghum relative to their sole treatments. The differences in nitrogen uptake between BC vs. MPBC, FM vs. MPFM, and IF vs. MPIF were 8, 10, and 12 kg N ha-¹, respectively, indicating that organic fertilizers mitigate microplastic toxicity in the soil. NH₃ emission was reduced by 5, 11 and 20% after application of MPFM, MPBC and MPIF than their sole treatments, respectively. The study concludes that organic fertilizers such as FM and BC can effectively mitigate the toxicity of microplastics in soil, leading to improved crop growth and yield.Keywords: microplastics, soil characteristics, crop n uptake, biochar, NH₃ emissions
Procedia PDF Downloads 481799 Use of Apple Pomace as a Source of Dietary Fibre in Mutton Nuggets
Authors: Aamina B. Hudaa, Rehana Akhtera, Massarat Hassana, Mir Monisab
Abstract:
Mutton nuggets produced with the addition of apple pomace at the levels of 0% (Control), 5% (Treatment 1), 10% (Treatment 2), and 15% (Treatment 3) were evaluated for emulsion stability, cooking yield, pH, proximate composition, texture analysis and sensory properties. Apple pomace addition resulted in significantly higher (p ≤ 0.05) emulsion stability and cooking yield of treatments in comparison to control and pH values were significantly higher (p ≤ 0.05) for the control as compared to treatments. Among the treatments, the product with 15% apple pomace had significantly (p ≤ 0.05) highest moisture content, and protein, ash and fat contents were significantly (p ≤ 0.05) higher in control than treatment groups. Crude fiber content of control was found significantly (p ≤ 0.05) lower in comparison to nuggets formulated with 5%, 10% and 15% apple pomace and was found to increase significantly (p ≤ 0.05) with the increasing levels of apple pomace. Hardness of the products significantly (p ≤ 0.05) decreased with addition of apple pomace, whereas springiness, cohesiveness, chewiness and gumminess showed a non-significant (p ≥ 0.05) decrease with the levels of apple pomace. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores were in the range of acceptability and T-1 showed better acceptability among apple pomace incorporated treatments.Keywords: Mutton nuggets, apple pomace, textural properties, sensory evaluation
Procedia PDF Downloads 3331798 Estimation of Carbon Losses in Rice: Wheat Cropping System of Punjab, Pakistan
Authors: Saeed Qaisrani
Abstract:
The study was conducted to observe carbon and nutrient loss by burning of rice residues on rice-wheat cropping system The rice crop was harvested to conduct the experiment in a randomized complete block design (RCBD) with factors and 4 replications with a net plot size of 10 m x 20 m. Rice stubbles were managed by two methods i.e. Incorporation & burning of rice residues. Soil samples were taken to a depth of 30 cm before sowing & after harvesting of wheat. Wheat was sown after harvesting of rice by three practices i.e. Conventional tillage, Minimum tillage and Zero tillage to observe best tillage practices. Laboratory and field experiments were conducted on wheat to assess best tillage practice and residues management method with estimation of carbon losses. Data on the following parameters; establishment count, plant height, spike length, number of grains per spike, biological yield, fat content, carbohydrate content, protein content, and harvest index were recorded to check wheat quality & ensuring food security in the region. Soil physico-chemical analysis i.e. pH, electrical conductivity, organic matter, nitrogen, phosphorus, potassium, and carbon were done in soil fertility laboratory. Substantial results were found on growth, yield and related parameters of wheat crop. The collected data were examined statistically with economic analysis to estimate the cost-benefit ratio of using different tillage techniques and residue management practices. Obtained results depicted that Zero tillage method have positive impacts on growth, yield and quality of wheat, Moreover, it is cost effective methodology. Similarly, Incorporation is suitable and beneficial method for soil due to more nutrients provision and reduce the need of fertilizers. Burning of rice stubbles has negative impact including air pollution, nutrient loss, microbes died and carbon loss. Recommended the zero tillage technology to reduce carbon losses along with food security in Pakistan.Keywords: agricultural agronomy, food security, carbon sequestration, rice-wheat cropping system
Procedia PDF Downloads 2801797 Heterothic Effect of Some Quantitative Traits in F1 Diallel Hybrids of Various Tobacco Types
Authors: Jane Aleksoski
Abstract:
The mode of inheritance and heterotic effect were studied in ten F1 crosses obtained by one-way diallel crossing between five parental genotypes: MV-1, P 76/86, Adiyaman, Basma-Djebel, and P 66 9 7. The following quantitative traits were studied: the number of leaves per stalk, length of leaves from the middle belt of the stalk, and yield of green leaf mass per stalk and per hectare. The trial was set up in the experimental field of Scientific Tobacco Institute - Prilep, using a randomized block design with four replications in the period 2018-2019. Traditional cultural practices were applied during the growing season of tobacco in the field. The aim of this work was to study the mode of inheritance of the quantitative traits, to detect heterosis in the F1 generation, and to assess its economic viability. Analysis of variance determined statistically significant differences in traits between parents and their hybrids in the two-year investigation. The most common way of trait inheritance is partial-dominant, then intermediate. The negative heterotic effect on the number of leaves per stalk has P 76/86 x P 66 9 7. The hybrids MV-1 x Adiyaman, P 76/86 x Basma-Djebel, P 76/86 x P 66 9 7, and Basma-Djebel x P 66 9 7 have a positive heterotic effect on the length of the leaves. Oriental hybrids, where one of the parents is variety P 66 9 7, have positive heterosis in the yield of green leaf mass per stalk. The investigation provides very useful guidance for future successive selection activities.Keywords: dominance, heterosis, inheritance, tobacco.
Procedia PDF Downloads 791796 A Feasibility Study of Producing Biofuels from Textile Sludge by Torrefaction Technology
Authors: Hua-Shan Tai, Yu-Ting Zeng
Abstract:
In modern and industrial society, enormous amounts of sludge from various of industries are constantly produced; currently, most of the sludge are treated by landfill and incineration. However, both treatments are not ideal because of the limited land for landfill and the secondary pollution caused by incineration. Consequently, treating industrial sludge appropriately has become an urgent issue of environmental protection. In order to solve the problem of the massive sludge, this study uses textile sludge which is the major source of waste sludge in Taiwan as raw material for torrefaction treatments. To investigate the feasibility of producing biofuels from textile sludge by torrefaction, the experiments were conducted with temperatures at 150, 200, 250, 300, and 350°C, with heating rates of 15, 20, 25 and 30°C/min, and with residence time of 30 and 60 minutes. The results revealed that the mass yields after torrefaction were approximately in the range of 54.9 to 93.4%. The energy densification ratios were approximately in the range of 0.84 to 1.10, and the energy yields were approximately in the range of 45.9 to 98.3%. The volumetric densities were approximately in the range of 0.78 to 1.14, and the volumetric energy densities were approximately in the range of 0.65 to 1.18. To sum up, the optimum energy yield (98.3%) can be reached with terminal temperature at 150 °C, heating rate of 20°C/min, and residence time of 30 minutes, and the mass yield, energy densification ratio as well as volumetric energy density were 92.2%, 1.07, and 1.15, respectively. These results indicated that the solid products after torrefaction are easy to preserve, which not only enhance the quality of the product, but also achieve the purpose of developing the material into fuel.Keywords: biofuel, biomass energy, textile sludge, torrefaction
Procedia PDF Downloads 3261795 Glycerol-Based Bio-Solvents for Organic Synthesis
Authors: Dorith Tavor, Adi Wolfson
Abstract:
In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.Keywords: glycerol, green chemistry, sustainability, catalysis
Procedia PDF Downloads 6261794 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase
Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi
Abstract:
Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability
Procedia PDF Downloads 3931793 Synthesis of Novel Uracil Non-nucleosides Analogues of the Reverse Transcriptase Inhibitors Emivirine and TNK-651
Authors: Nasser R. El-Brollosy, Roberta Loddo
Abstract:
6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (Emivirine) and its corresponding 1-benzyloxymethyl analogue (TNK-651) showed high activity against HIV-1. The present study describes synthesis of novel emivirine analogues by reaction of chloromethyl ethyl ether with uracils having 5-ethyl / isopropyl and 6-(3,5-dimethoxybenzyl) substituents. A series of new TNK-651 analogues substituted at N-1 with phenoxyethoxymethyl moiety was prepared on treatment of the corresponding uracils with bis(phenoxyethoxy) methane. The newly synthesized non-nucleosides were tested for biological activity against wild type HIV-1 IIIB as well as the resistant strains N119 (Y181C), A17 (K103N + Y181C), and the triple mutant EFVR (K103R + V179D + P225H) in MT-4 cells. Some of the tested compounds showed good activities. Among them 6-(3,5-dimethylbenzyl)-5-ethyl-1-[2-(phenoxyethyl) oxymethyl]uracil which showed inhibitory potency higher than emivirine against both wild type HIV-1 and the tested mutant strains.Keywords: Emivirine, HIV, non-nucleoside reverse transcriptase, uracils
Procedia PDF Downloads 2681792 Effect of Different Contaminants on Mineral Insulating Oil Characteristics
Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto
Abstract:
Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures
Procedia PDF Downloads 2311791 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model
Authors: Aminah Muchdar, Nuraeni, Eddy
Abstract:
The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE
Procedia PDF Downloads 185