Search results for: indigenous forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1648

Search results for: indigenous forest

778 Mother Tongues and the Death of Women: Applying Feminist Theory to Historically, Linguistically, and Philosophically Contextualize the Current Abortion Debate in Bolivia

Authors: Jennifer Zelmer

Abstract:

The debate regarding the morality, and therefore legality, of abortion has many social, political, and medical ramifications worldwide. In a developing country like Bolivia, carrying a pregnancy to delivery is incredibly risky. Given the very high maternal mortality rate in Bolivia, greater consideration has been given to the (de)criminalization of abortion – a contributing cause of maternal death. In the spring of 2017, the Bolivian government proposed to loosen restrictions on women’s access to receiving a safe abortion, which was met with harsh criticism from 'pro-vida' (pro-life) factions. Although the current Bolivian government Movimiento al Socialismo (Movement Toward Socialism) portrays an agenda of decolonization, or to seek a 'traditionally-modern' society, nevertheless, Bolivia still has one of the highest maternal mortality rates in the Americas, because of centuries of colonial and patriarchal order. Applying a feminist critique and using the abortion debate as the central point, this paper argues that the 'traditionally-modern' society Bolivia strives towards is a paradox, and in fact only contributes to the reciprocal process of the death of 'mother tongues' and the unnecessary death of women. This claim is supported by a critical analysis of historical texts about Spanish Colonialism in Bolivia; the linguistic reality of reproductive educational strategies, and the philosophical framework which the Bolivian government and its citizens implement. This analysis is demonstrated in the current state of women’s access to reproductive healthcare in Cochabamba, Bolivia based on recent fieldwork which included audits of clinics and hospitals, interviews, and participant observation. This paper has two major findings: 1) the language used by opponents of abortion in Bolivia is not consistent with the claim of being 'pro-life' but more accurately with being 'pro-potential'; 2) when the topic of reproductive health appears in Cochabamba, Bolivia, it is often found written in the Spanish language, and does not cater to the many indigenous communities that inhabit or visit this city. Finally, this paper considers the crucial role of public health documentation to better inform the abortion debate, as well as the necessity of expanding reproductive health information to more than text-based materials in Cochabamba. This may include more culturally appropriate messages and mediums that cater to the oral tradition of the indigenous communities, who historically and currently have some of the highest fertility rates. If the objective of one who opposes abortion is to save human lives, then preventing the death of women should equally be of paramount importance. But rather, the 'pro-life' movement in Bolivia is willing to risk the lives of to-be mothers, by judicial punishment or death, for the chance of a potential baby. Until abortion is fully legal, safe, and accessible, there will always be the vestiges of colonial and patriarchal order in Bolivia which only perpetuates the needless death of women.

Keywords: abortion, feminist theory, Quechua, reproductive health education

Procedia PDF Downloads 167
777 Preliminary Result on the Impact of Anthropogenic Noise on Understory Bird Population in Primary Forest of Gaya Island

Authors: Emily A. Gilbert, Jephte Sompud, Andy R. Mojiol, Cynthia B. Sompud, Alim Biun

Abstract:

Gaya Island of Sabah is known for its wildlife and marine biodiversity. It has marks itself as one of the hot destinations of tourists from all around the world. Gaya Island tourism activities have contributed to Sabah’s economy revenue with the high number of tourists visiting the island. However, it has led to the increased anthropogenic noise derived from tourism activities. This may greatly interfere with the animals such as understory birds that rely on acoustic signals as a tool for communication. Many studies in other parts of the regions reveal that anthropogenic noise does decrease species richness of avian community. However, in Malaysia, published research regarding the impact of anthropogenic noise on the understory birds is still very lacking. This study was conducted in order to fill up this gap. This study aims to investigate the anthropogenic noise’s impact towards understory bird population. There were three sites within the Primary forest of Gaya Island that were chosen to sample the level of anthropogenic noise in relation to the understory bird population. Noise mapping method was used to measure the anthropogenic noise level and identify the zone with high anthropogenic noise level (> 60dB) and zone with low anthropogenic noise level (< 60dB) based on the standard threshold of noise level. The methods that were used for this study was solely mist netting and ring banding. This method was chosen as it can determine the diversity of the understory bird population in Gaya Island. The preliminary study was conducted from 15th to 26th April and 5th to 10th May 2015 whereby there were 2 mist nets that were set up at each of the zones within the selected site. The data was analyzed by using the descriptive analysis, presence and absence analysis, diversity indices and diversity t-test. Meanwhile, PAST software was used to analyze the obtain data. The results from this study present a total of 60 individuals that consisted of 12 species from 7 families of understory birds were recorded in three of the sites in Gaya Island. The Shannon-Wiener index shows that diversity of species in high anthropogenic noise zone and low anthropogenic noise zone were 1.573 and 2.009, respectively. However, the statistical analysis shows that there was no significant difference between these zones. Nevertheless, based on the presence and absence analysis, it shows that the species at the low anthropogenic noise zone was higher as compared to the high anthropogenic noise zone. Thus, this result indicates that there is an impact of anthropogenic noise on the population diversity of understory birds. There is still an urgent need to conduct an in-depth study by increasing the sample size in the selected sites in order to fully understand the impact of anthropogenic noise towards the understory birds population so that it can then be in cooperated into the wildlife management for a sustainable environment in Gaya Island.

Keywords: anthropogenic noise, biodiversity, Gaya Island, understory bird

Procedia PDF Downloads 365
776 Fire Risk Information Harmonization for Transboundary Fire Events between Portugal and Spain

Authors: Domingos Viegas, Miguel Almeida, Carmen Rocha, Ilda Novo, Yolanda Luna

Abstract:

Forest fires along the more than 1200km of the Spanish-Portuguese border are more and more frequent, currently achieving around 2000 fire events per year. Some of these events develop to large international wildfire requiring concerted operations based on shared information between the two countries. The fire event of Valencia de Alcantara (2003) causing several fatalities and more than 13000ha burnt, is a reference example of these international events. Currently, Portugal and Spain have a specific cross-border cooperation protocol on wildfires response for a strip of about 30km (15 km for each side). It is recognized by public authorities the successfulness of this collaboration however it is also assumed that this cooperation should include more functionalities such as the development of a common risk information system for transboundary fire events. Since Portuguese and Spanish authorities use different approaches to determine the fire risk indexes inputs and different methodologies to assess the fire risk, sometimes the conjoint firefighting operations are jeopardized since the information is not harmonized and the understanding of the situation by the civil protection agents from both countries is not unique. Thus, a methodology aiming the harmonization of the fire risk calculation and perception by Portuguese and Spanish Civil protection authorities is hereby presented. The final results are presented as well. The fire risk index used in this work is the Canadian Fire Weather Index (FWI), which is based on meteorological data. The FWI is limited on its application as it does not take into account other important factors with great effect on the fire appearance and development. The combination of these factors is very complex since, besides the meteorology, it addresses several parameters of different topics, namely: sociology, topography, vegetation and soil cover. Therefore, the meaning of FWI values is different from region to region, according the specific characteristics of each region. In this work, a methodology for FWI calibration based on the number of fire occurrences and on the burnt area in the transboundary regions of Portugal and Spain, in order to assess the fire risk based on calibrated FWI values, is proposed. As previously mentioned, the cooperative firefighting operations require a common perception of the information shared. Therefore, a common classification of the fire risk for the fire events occurred in the transboundary strip is proposed with the objective of harmonizing this type of information. This work is integrated in the ECHO project SpitFire - Spanish-Portuguese Meteorological Information System for Transboundary Operations in Forest Fires, which aims the development of a web platform for the sharing of information and supporting decision tools to be used in international fire events involving Portugal and Spain.

Keywords: data harmonization, FWI, international collaboration, transboundary wildfires

Procedia PDF Downloads 254
775 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 97
774 Usurping the Potency of African Cultural Heritage via Western Civilization: A Major Bane on the Development of Nigerian Educational System

Authors: U. Obaje Gabriel

Abstract:

The overwhelming and intimidating presence of western civilization over our traditional edifice is rather sad and distressful. A careful observation of our prevailing situation would reveal to anyone what mess westernization has done to our cultural values and norms. Corruption, frivolity and moral decadence which are major hallmarks of this foreign ideology are seriously ravaging our society in general and our educational system in particular. The current trends in our schools are those of cultism, nudity in dressing, exam malpractices, corruption and general moral decadence. Against the background of these unwholesome practices in our schools, this paper intends to show the need for us to go back to our roots and harmonize the veritable aspects of our rich cultural heritage with those equally good aspects of western civilization. We believe that when this is done effectively, a very potent indigenous system of education will surely emerge, thereby solving the teething problem of fallen standard in our educational system.

Keywords: heritage, educational development, western civilization, performing arts studies

Procedia PDF Downloads 320
773 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 95
772 Role of Support, Experience and Education in Livelihood Resilience

Authors: Madhuri, H. R. Tewari, P. K. Bhowmick

Abstract:

The study attempts to find out the role of the community and the government support, flood experience, flood education, and education of the male-headed households in their livelihood resilience. The study is based on a randomly drawn sample of 472 households from the river basins of Ganga and Kosi in the district of Bhagalpur, Bihar. Structural equation modeling (SEM) and analysis of variance (ANOVA) methods are used to analyze the data. The findings of the study reveal that the role(s) of the community support though is found to be more significant in comparison to the government supports for its stand by position in rescue and livelihood resilience of the affected households whereas the government support arrives late and in far less quantity than what is required. However, the government's support is equally vital due its control over resources, which essentially needed in rescue and rehabilitation of the affected households. The study unravels the strategic value of households' indigenous knowledge and their flood experience in livelihood resilience.

Keywords: flood education, flood experience, livelihood resilience, community support, government support

Procedia PDF Downloads 507
771 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols

Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene

Abstract:

The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon

Procedia PDF Downloads 237
770 Genomic Adaptation to Local Climate Conditions in Native Cattle Using Whole Genome Sequencing Data

Authors: Rugang Tian

Abstract:

In this study, we generated whole-genome sequence (WGS) data from110 native cattle. Together with whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of different cattle populations. Our findings revealed clustering of cattle groups in line with their geographic locations. We identified noticeable genetic diversity between indigenous cattle breeds and commercial populations. Among all studied cattle groups, lower genetic diversity measures were found in commercial populations, however, high genetic diversity were detected in some local cattle, particularly in Rashoki and Mongolian breeds. Our search for potential genomic regions under selection in native cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis.

Keywords: cattle, whole-genome, population structure, adaptation

Procedia PDF Downloads 76
769 Harmonization of State Law and Local Laws in Coastal and Marine Areas Management

Authors: N. S. B. Ambarini, Tito Sofyan, Edra Satmaidi

Abstract:

Coastal and marine are two potential natural resource one of the pillars of the national economy. The Indonesian archipelago has marine and coastal which is quite spacious. Various important natural resources such as fisheries, mining and so on are in coastal areas and the sea, so that this region is a unique area with a variety of interests to exploit it. Therefore, to preserve a sustainable manner need good management and comprehensive. To the national and local level legal regulations have been published relating to the management of coastal and marine areas. However, in practice it has not been able to function optimally. Substantially has not touched the problems of the region, especially concerning the interests of local communities (local). This study is a legal non-doctrinal approach to socio-legal studies. Based on the results of research in some coastal and marine areas in Bengkulu province - Indonesia, there is a fact that the system of customary law and local wisdom began to weaken implementation. Therefore harmonization needs to be done in implementing laws and regulations that apply to the values of indigenous and local knowledge that exists in the community.

Keywords: coastal and marine, harmonization, law, local

Procedia PDF Downloads 347
768 Enactments of Global Citizenship Education: Social Justice in Public Spheres of Education

Authors: Sabrina Jafralie

Abstract:

This proposed chapter explains how civic religious literacy is a means to promote social justice in Canada. It will first present the specific conception of global citizenship education that will undergird the discussion in the chapter. Then, it will offer a conception of civic religious literacy that explains how it promotes social justice as a form of global citizenship education. To illustrate this point, I will list specific examples of social and political inequities in Canada, such as hate crime statistics from 2013-2018 across the country and in specific provinces and cities. I will also highlight different types of discrimination, such as that towards religious minorities, Indigenous peoples, and those that conflate race and religion, and other intersections of identity that civic religious literacy can address. To conclude this initial section of the chapter, I will cite international studies that discuss religious literacy as a means to promote characteristics and aims of global citizenship education.

Keywords: Civic Literacy, Pedagogy, Quebec, Social Justice

Procedia PDF Downloads 165
767 Morphometric Relationships of Unfarmed Puntius sophore, Collected from Chenab River, Punjab, Pakistan

Authors: Alina Zafar

Abstract:

In this particular research, various morphometric characters such as total length (TL), wet weight (WW), standard length (SL), fork length (FL), head length (HL), head width (HW), body depth (BD), body girth (BG), dorsal fin length (DFL), pelvic fin length (PelFL), pectoral fin length (PecFL), anal fin length (AFL), dorsal fin base (DFB), anal fin base (AFB), caudal fin length (CFL) and caudal fin width (CFW) of wild collected Puntius sophore were studied, to know the types of growth patterns and correlations in reference to length and weight, however, high significant relationships were recorded between total length and wet weight, as the correlation coefficient (r) possessed value of 0.989. The growth pattern was observed to be positively allometric as the value of ‘b’ was 3.22 (slightly higher than the ideal value, 3) with 95% confidence intervals ranging from 3.076 to 3.372. Wet weight and total length parameters showed high significant correlations (p < 0.001) with all other morphometric characters.

Keywords: Puntius sophore, length and weight relation, morphometrics, small indigenous species

Procedia PDF Downloads 107
766 Unpacking Systemic Racism Within Educational Leadership

Authors: Henry Lee, Daniel Shiu

Abstract:

Educational organizations are currently exploring ways to increase equity, diversity, and inclusion (EDI), and this is now evident within the K-12 school system, universities, and teacher unions. These organizations have been creating and implementing new EDI specific policies. Their goal is to provide the framework and supports needed to establish EDI into the organizational culture. However, the implementation of EDI policies does not always lead to the intended outcomes. The purpose of this paper is to explore some factors regarding why the implementation of EDI policies within educational organizations can be problematic. This includes how Whiteness is replicated, promoted, and celebrated in educational leadership. How Whiteness and White supremacy are operationalized by BIPOC leaders within educational spaces, and how EDI specific training fails to understand the different training needed for both IBPOC (Indigenous, Black, People of Colour) and non-IBPOC leaders. This paper also addresses the model minority myth and how this informs and guides IBPOC identity and leadership within a predominately White dominant leadership in education.

Keywords: critical race theory, equity & diversity & inclusion, educational leadership, intersectionality

Procedia PDF Downloads 133
765 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management

Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide

Abstract:

This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.

Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis

Procedia PDF Downloads 14
764 Dual Role of Microalgae: Carbon Dioxide Capture Nutrients Removal

Authors: Mohamad Shurair, Fares Almomani, Simon Judd, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

This study evaluated the use of mixed indigenous microalgae (MIMA) as a treatment process for wastewaters and CO2 capturing technology at different temperatures. The study follows the growth rate of MIMA, removals of organic matter, removal of nutrients from synthetic wastewater and its effectiveness as CO2 capturing technology from flue gas. A noticeable difference between the growth patterns of MIMA was observed at different CO2 and different operational temperatures. MIMA showed the highest growth grate when injected with CO2 dosage of 10% and limited growth was observed for the systems injected with 5% and 15 % of CO2 at 30 ◦C. Ammonia and phosphorus removals for Spirulina were 69%, 75%, and 83%, and 20%, 45%, and 75% for the media injected with 0, 5 and 10% CO2. The results of this study show that simple and cost-effective microalgae-based wastewater treatment systems can be successfully employed at different temperatures as a successful CO2 capturing technology even with the small probability of inhibition at high temperatures

Keywords: greenhouse, climate change, CO2 capturing, green algae

Procedia PDF Downloads 335
763 Pathology of the Partridge Gambra Alectoris barbara in a Semi-Captive Breeding in the Algiers Sahel

Authors: H. Saadi-Idouhar, A. Smai, S. Zenia, F. Haddadj, A. Saadi, M. Aissi, S. Doumandji

Abstract:

In Algeria, the Partridge gambra is a highly sought-after game species and is appreciated for its meat. Game birds are of interest because they play an important role for hunting federations and for the economy of a country. The breeding of indigenous breeds is necessary because it is of great economic interest. However, gambra breeding in the hunting centre of Zeralda (northern west of Algiers) is not easy, several diseases affecting Perdreaux and reproducing adults have been noted. Most of the diseases observed are parasitic in origin. This study is conducted during the 2010 breeding season. It is based on the autopsy of cadavers collected at the hunting centre and parasitic coprology. Indeed, the flotation enrichment method has identified several parasites such as Eimeria spp., Capillaria spp., and Ascaridia spp. Autopsied corpses show the importance of two major diseases, syngamosis caused to Syngamus trachea and histomonosis caused to Histomonas meleagridis.

Keywords: partridge, livestock, eggs, affections pathology

Procedia PDF Downloads 182
762 Nanocomplexes on the Base of Triterpene Saponins Isolated from Glycyrrhiza glabra and Saponaria officinalis Plants as an Efficient Adjuvants for Influenza Vaccine Use

Authors: Vladimir Berezin, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Aizhan Turmagambetova, Irina Zaitseva, Nadezhda Sokolova, Elmira Omirtaeva

Abstract:

Introduction: Triterpene saponins of plant origin are one of the most promising candidates for elaboration of novel adjuvants. Due to the combination of immunostimulating activity and the capacity interact with amphipathic molecules with formation of highly immunogenic nanocomplexes, triterpene saponins could serve as a good adjuvant/delivery system for vaccine use. In the research presented adjuvants on the base of nanocomplexes contained triterpene saponins isolated from Glycyrrhiza glabra and Saponaria officinalis plants indigenous to Kazakhstan were elaborated for influenza vaccine use. Methods: Purified triterpene saponins 'Glabilox' and 'SO1' with low toxicity and high immunostimulatory activity were isolated from plants Glycyrrhiza glabra L. and Saponaria officinalis L. by high-performance liquid chromatography (HPLC) and identified using electrospray ionization mass spectrometry (ESI-MS). Influenza virus A/St-Petersburg/5/09 (H1N1) propagated in 9-days old chicken embryos was concentrated and purified by centrifugation in sucrose gradient. Nanocomplexes contained lipids, and triterpene saponins Glabilox or SO1 were prepared by dialysis technique. Immunostimulating activity of experimental vaccine preparations was studied in vaccination/challenge experiments in mice. Results: Humoral and cellular immune responses and protection against influenza virus infection were examined after single subcutaneous and intranasal immunization. Mice were immunized subunit influenza vaccine (HA+NA) or whole virus inactivated influenza vaccine in doses 3.0/5.0/10.0 µg antigen/animal mixed with adjuvant in dose 15.0 µg/animal. Sera were taken 14-21 days following single immunization and mice challenged by A/St-Petersburg/5/09 influenza virus in dose 100 EID₅₀. Study of experimental influenza vaccine preparations in animal immunization experiments has shown that subcutaneous and intranasal immunization with subunit influenza vaccine mixed with nanocomplexes contained Glabilox or SO1 saponins stimulated high levels of humoral immune response (IgM, IgA, IgG1, IgG2a, and IgG2b antibody) and cellular immune response (IL-2, IL-4, IL-10, and IFN-γ cytokines) and resulted 80-90% protection against lethal influenza infection. Also, single intranasal and single subcutaneous immunization with whole virus inactivated influenza vaccine mixed with nanoparticulated adjuvants stimulated high levels of humoral and cellular immune responses and provided 100% protection against lethal influenza infection. Conclusion: The results of study have shown that nanocomplexes contained purified triterpene saponins Glabilox and SO1 isolated from plants indigenous to Kazakhstan can stimulate a broad spectrum of humoral and cellular immune responses and induce protection against lethal influenza infection. Both elaborated adjuvants are promising for incorporation to influenza vaccine intended for subcutaneous and intranasal routes of immunization.

Keywords: influenza vaccine, adjuvants, triterpene saponins, immunostimulating activity

Procedia PDF Downloads 137
761 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 157
760 Bacillus licheniformis sp. nov. PS-6, an Arsenic Tolerance Bacterium with Biotransforming Potential Isolated from Sediments of Pichavaram Mangroves of South India

Authors: Padmanabhan D, Kavitha S

Abstract:

The purpose of the study is to investigate arsenic resistance ability of indigenous microflora and its ability to utilize arsenic species form containing water source. PS-6 potential arsenic tolerance bacterium was screened from thirty isolates from Pichavaram Mangroves of India having tolerance to grow up to 1000 mg/l of As (V) and 800 mg/l of As (III) and arsenic utilization ability of 98 % of As (V) and 97% of As (III) with initial concentration of 3-5 mg/l within 48 hrs. Optimum pH and temperature was found to be ~7-7.4 and 37°C. Active growth of PS-6 in minimal salt media (MSB) helps in cost effective biomass production. Dry weight analysis of PS-6 has shown significant difference in biomass when exposed to As (III) and As (V). Protein level study of PS-6 after exposing to As (V) and As (III) shown modification in total protein concentration and variation in SDS-PAGE pattern. PS-6 was identified as Bacillus licheniformis based on partially sequenced of 16S rRNA using NCBI Blast. Further investigation will help in using this potential bacterium as a well-grounded source for urgency.

Keywords: arsenite, arsenate, Bacillus licheniformis, utilization

Procedia PDF Downloads 406
759 Nigcomsat-1r and Planned HTS Communication Satellite Critical Pillars for Nigeria’s National Digital Economy Policy and Strategy

Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Moshood Kareem, Samson Olufunmilayo Abodunrin, Muhammad Dokko Zubairu

Abstract:

The National Digital Economy Policy and Strategy, NDEPS document developed by Nigeria’s Federal Ministry of Communications & Digital Economy (FMoCDE) is anchored on 8 pillars for the acceleration of the National Digital Economy for a Digital Nigeria. NIGCOMSAT-1R and the planned HTS communication Satellite are critical assets for supporting the pillars in the drive for sustainable growth and development. This paper discusses on the gains and contribution of the strategy as a solid infrastructure. The paper also highlights these assets’ contribution as platform for Indigenous Content Development & Adoption, Digital Literacy & Skills, and Digital Services Development & Promotion.

Keywords: FMoCDE, HTS, NDEPS, nigcomsat!R, pillars

Procedia PDF Downloads 116
758 Antidiabetic and Antihyperlipaemic Effects of Aqueous Neem (Azadirachta Indica) Extract on Alloxan Diabetic Rabbits

Authors: Khalil Abdullah Ahmed Khalil, Elsadig Mohamed Ahmed

Abstract:

Extracts of various plants material capable of decreasing blood sugar have been tested in experimental animal models and their effects confirmed. Neem or Margose (Azadirachta Indica) is an indigenous plant believed to have antiviral, antifungal, antidiabetic and many other properties. This paper deals with a comparative study of the effect of aqueous Neem leaves extract alone or in combination with glibenclamide on alloxan diabetic rabbits. Administration of crude aqueous Neem extract (CANE) alone (1.5 ml/kg/day), as well as the combination of CANE (1.5 ml/kg/day) with glibenclamide (0.25 mg/kg/day) significantly, decreased (P<0.05) the concentrations of serum lipids, blood glucose and lipoprotein VLDL(very low-density lipoproteins) and LDL(low-density lipoproteins) but significantly increased (P<0.05) the concentration of HDL(high-density lipoprotein). The change was observed significantly greater when the treatment was given in combination of CANE and glibenclamid than with CANE alone.

Keywords: neem, hypoglycemic, hypolipidemic, cholesterol

Procedia PDF Downloads 266
757 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
756 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction

Procedia PDF Downloads 408
755 The Reuse of Household Waste in Natural Dyeing as a Tool for Upcycling

Authors: Juliana Bastos dos Santos, Francisca Dantas Mendes, Abdul Jabbar Mohammad Khatri, Adam Abdul Jabbar Khatri

Abstract:

This research aims to describe the experimentation of color extraction from household waste, for the application of the natural vegetable dyeing technique, as a more sustainable option for the upcycling process. Based on the research of the case study, this article intends to record the process of collecting the materials, extracting the colors and their applicability. The study aims to deepen the knowledge about possible alternatives that generate less impact on the environment throughout the process of plant stamping and, also, to spread the concepts of sustainability in fashion. Therefore, this content becomes relevant for valuing an artisanal production process, reconnecting with ancestral knowledge. This article also intends to serve as a record of ancestral artisanal processes, based on the indigenous and African matrices that are pillars of Brazilian culture.

Keywords: natural dyeing, sustainability, organic residue, fashion, reuse

Procedia PDF Downloads 179
754 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand

Authors: Waraporn Wimuktalop

Abstract:

This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.

Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding

Procedia PDF Downloads 236
753 Flavonoid Content and Antioxidant Potential of White and Brown Sesame Seed Oils

Authors: Fatima Bello, Ibrahim Sani

Abstract:

Medicinal plants are the most important sources of life saving drugs for the majority of world’s population. People of all continents have used hundreds to thousands of indigenous plants in curing and management of many diseases. Sesame (Sesamum indicum L.) is one of the most widely cultivated species for its nutritious and medicinal seeds and oil. This research was carried out to determine the flavonoid content and antioxidant potential of two varieties of sesame seeds oil. Oil extraction was done using Soxhlet apparatus. The percentage oil yield for white and brown seeds were 47.85% and 20.72%, respectively. Flavonoid was present in both seeds with concentration of 480 mg/g and 360 mg/g in white and brown sesame seeds, respectively. The antioxidant potential was determined at different oil volume; 1.00, 0.75, 0.50 and 0.25ml. The results for the white and brown sesame seed oils were 96.8 and 70.7, 91.0 and 65.2, 83.1 and 55.4, 77.9 and 50.2, respectively. The white seed oil has higher oil yield than the brown seed oil. Likewise, the white seed oil has more flavonoid content than the brown seed oil and also better reducing power than the brown seed oil.

Keywords: antioxidant potential, brown sesame seeds, flavonoid content, sesame seed oil, Sesamum indicum L., white sesame seeds

Procedia PDF Downloads 459
752 In situ Biodegradation of Endosulfan, Imidacloprid, and Carbendazim Using Indigenous Bacterial Cultures of Agriculture Fields of Uttarakhand, India

Authors: Geeta Negi, Pankaj, Anjana Srivastava, Anita Sharma

Abstract:

In the present study, the presence of endosulfan, imidacloprid, carbendazim, in the soil /vegetables/cereals and water samples was observed in agriculture fields of Uttarakhand. In view of biodegradation of these pesticides, nine bacterial isolates were recovered from the soil samples of the fields which tolerated endosulfan, imidacloprid, carbendazim from 100 to 200 µg/ml. Three bacterial consortia used for in vitro bioremediation experiments were three bacterial isolates for carbendazim, imidacloprid and endosulfan, respectively. Maximum degradation (87 and 83%) of α and β endosulfan respectively was observed in soil slurry by consortium. Degradation of Imidacloprid and carbendazim under similar conditions was 88.4 and 77.5% respectively. FT-IR analysis of biodegraded samples of pesticides in liquid media showed stretching of various bonds. GC-MS of biodegraded endosulfan sample in soil slurry showed the presence of non-toxic intermediates. A pot trial with Bacterial treatments lowered down the uptake of pesticides in onion plants.

Keywords: biodegradation, carbendazim, consortium, endosulfan

Procedia PDF Downloads 375
751 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 128
750 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 9
749 Transformable Lightweight Structures for Short-term Stay

Authors: Anna Daskalaki, Andreas Ashikalis

Abstract:

This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.

Keywords: lightweight structures, timber, transformable, tent

Procedia PDF Downloads 171