Search results for: emissions into atmosphere
1271 Synthesis of CeF3:Sm3+ Nanophosphor for Biological Applications
Authors: Mayuri Gandhi, Nayan Agrawal, Harshita Bhatia
Abstract:
In the present work, cerium fluoride (CeF3) was selected as the host material because of its high density, fast response and high radiation resistance, efficient absorption and energy transfer by host (to activator). For the synthesis of CeF3 nanoparticles doped with Sm3+ ion, co-precipitation route was employed. Thus for optimum results, concentration dependent studies of the fluorescence of Sm3+ was carried out. The photoluminescence gave emissions in both visible as well as the NIR region and therefore it can have its application in solar cells, where it can absorb a large spectrum of energy. CeF3:Sm3+ nanoparticles were carefully incorporated in a suitable polymer matrix in order to demonstrate a variety of applications to improve the performance of the polymer materials and use it to develop high grade optoelectronic devices such as LEDs, security labelling, lasers, displays, biological imaging, etc.Keywords: bioimaging, cerium fluoride, NIR emission, samarium
Procedia PDF Downloads 4221270 The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine
Authors: Hanbey Hazar
Abstract:
An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased.Keywords: diesel engine, dimethyl adipate (DMA), exhaust emissions, coating
Procedia PDF Downloads 2761269 Microplastics in Urban Environment – Coimbra City Case Study
Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen
Abstract:
Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.Keywords: microplastics, cities, sources, pathways, vegetation
Procedia PDF Downloads 601268 Observational Study Reveals Inverse Relationship: Rising PM₂.₅ Concentrations Linked to Decreasing Muon Flux
Authors: Yashas Mattur, Jensen Coonradt
Abstract:
Muon flux, the rate of muons reaching Earth from the atmosphere, is impacted by various factors such as air pressure, temperature, and humidity. However, the influence of concentrations of PM₂.₅ (particulate matter with diameters 2.5 mm or smaller) on muon detection rates remains unexplored. During the summer of 2023, smoke from Canadian wildfires (containing significant amounts of particulate matter) blew over regions in the Northern US, introducing huge fluctuations in PM₂.₅ concentrations, thus inspiring our experiment to investigate the correlation of PM₂.₅ concentrations and muon rates. To investigate this correlation, muon collision rates were measured and analyzed alongside PM₂.₅ concentration data over the periods of both light and heavy smoke. Other confounding variables, including temperature, humidity, and atmospheric pressure, were also considered. The results reveal a statistically significant inverse correlation between muon flux and PM₂.₅ concentrations, indicating that particulate matter has an impact on the rate of muons reaching the earth’s surface.Keywords: Muon Flux, atmospheric effects on muons, PM₂.₅, airborne particulate matter
Procedia PDF Downloads 751267 Nearly Zero Energy Building: Analysis on How End-Users Affect Energy Savings Targets
Authors: Margarida Plana
Abstract:
One of the most important energy challenge of the European policies is the transition to a Net Zero Energy Building (NZEB) model. A NZEB is a new concept of building that has the aim of reducing both the energy consumption and the carbon emissions to nearly zero of the course of a year. To achieve this nearly zero consumption, apart from being buildings with high efficiency levels, the energy consumed by the building has to be produced on-site. This paper is focused on presenting the results of the analysis developed on basis of real projects’ data in order to quantify the impact of end-users behavior. The analysis is focused on how the behavior of building’s occupants can vary the achievement of the energy savings targets and how they can be limited. The results obtained show that on this kind of project, with very high energy performance, is required to limit the end-users interaction with the system operation to be able to reach the targets fixed.Keywords: end-users impacts, energy efficiency, energy savings, NZEB model
Procedia PDF Downloads 3741266 Improvement of Soft Clay Soil with Biopolymer
Authors: Majid Bagherinia
Abstract:
Lime and cement are frequently used as binders in the Deep Mixing Method (DMM) to improve soft clay soils. The most significant disadvantages of these materials are carbon dioxide emissions and the consumption of natural resources. In this study, three different biopolymers, guar gum, locust bean gum, and sodium alginate, were investigated for the improvement of soft clay using DMM. In the experimental study, the effects of the additive ratio and curing time on the Unconfined Compressive Strength (UCS) of stabilized specimens were investigated. According to the results, the UCS values of the specimens increased as the additive ratio and curing time increased. The most effective additive was sodium alginate, and the highest strength was obtained after 28 days.Keywords: deep mixing method, soft clays, ground improvement, biopolymers, unconfined compressive strength
Procedia PDF Downloads 801265 Mathematical Modeling and Algorithms for the Capacitated Facility Location and Allocation Problem with Emission Restriction
Authors: Sagar Hedaoo, Fazle Baki, Ahmed Azab
Abstract:
In supply chain management, network design for scalable manufacturing facilities is an emerging field of research. Facility location allocation assigns facilities to customers to optimize the overall cost of the supply chain. To further optimize the costs, capacities of these facilities can be changed in accordance with customer demands. A mathematical model is formulated to fully express the problem at hand and to solve small-to-mid range instances. A dedicated constraint has been developed to restrict emissions in line with the Kyoto protocol. This problem is NP-Hard; hence, a simulated annealing metaheuristic has been developed to solve larger instances. A case study on the USA-Canada cross border crossing is used.Keywords: emission, mixed integer linear programming, metaheuristic, simulated annealing
Procedia PDF Downloads 3111264 An Integrated Framework for Engaging Stakeholders in the Circular Economy Processes Using Building Information Modeling and Virtual Reality
Authors: Erisasadat Sahebzamani, Núria Forcada, Francisco Lendinez
Abstract:
Global climate change has become increasingly problematic over the past few decades. The construction industry has contributed to greenhouse gas emissions in recent decades. Considering these issues and the high demand for materials in the construction industry, Circular Economy (CE) is considered necessary to keep materials in the loop and extend their useful lives. By providing tangible benefits, Construction 4.0 facilitates the adoption of CE by reducing waste, updating standard work, sharing knowledge, and increasing transparency and stability. This study aims to present a framework for integrating CE and digital tools like Building Information Modeling (BIM) and Virtual Reality (VR) to examine the impact on the construction industry based on stakeholders' perspectives.Keywords: circular economy, building information modeling, virtual reality, stakeholder engagement
Procedia PDF Downloads 1111263 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System
Authors: Iman Janghorban Esfahani
Abstract:
Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy
Procedia PDF Downloads 1381262 Application of Acoustic Emissions Related to Drought Can Elicit Antioxidant Responses and Capsaicinoids Content in Chili Pepper Plants
Authors: Laura Helena Caicedo Lopez, Luis Miguel Contreras Medina, Ramon Gerardo Guevara Gonzales, Juan E. Andrade
Abstract:
In this study, we evaluated the effect of three different hydric stress conditions: Low (LHS), medium (MHS), and high (HHS) on capsaicinoid content and enzyme regulation of C. annuum plants. Five main peaks were detected using a 2 Hz resolution vibrometer laser (Polytec-B&K). These peaks or “characteristic frequencies” were used as acoustic emissions (AEs) treatment, transforming these signals into audible sound with the frequency (Hz) content of each hydric stress. Capsaicinoids (CAPs) are the main, secondary metabolites of chili pepper plants and are known to increase during hydric stress conditions or short drought-periods. The AEs treatments were applied in two plant stages: the first one was in the pre-anthesis stage to evaluate the genes that encode the transcription of enzymes responsible for diverse metabolic activities of C. annuum plants. For example, the antioxidant responses such as peroxidase (POD), superoxide dismutase (Mn-SOD). Also, phenyl-alanine ammonia-lyase (PAL) involved in the biosynthesis of the phenylpropanoid compounds. The chalcone synthase (CHS) related to the natural defense mechanisms and species-specific aquaporin (CAPIP-1) that regulate the flow of water into and out of cells. The second stage was at 40 days after flowering (DAF) to evaluate the biochemical effect of AEs related to hydric stress on capsaicinoids production. These two experiments were conducted to identify the molecular responses of C. annuum plants to AE. Moreover, to define AEs could elicit any increase in the capsaicinoids content after a one-week exposition to AEs treatments. The results show that all AEs treatment signals (LHS, MHS, and HHS) were significantly different compared to the non-acoustic emission control (NAE). Also, the AEs induced the up-regulation of POD (~2.8, 2.9, and 3.6, respectively). The gene expression of another antioxidant response was particularly treatment-dependent. The HHS induced and overexpression of Mn-SOD (~0.23) and PAL (~0.33). As well, the MHS only induced an up-regulation of the CHs gene (~0.63). On the other hand, CAPIP-1 gene gas down-regulated by all AEs treatments LHS, MHS, and HHS ~ (-2.4, -0.43 and -6.4, respectively). Likewise, the down-regulation showed particularities depending on the treatment. LHS and MHS induced downregulation of the SOD gene ~ (-1.26 and -1.20 respectively) and PAL (-4.36 and 2.05, respectively). Correspondingly, the LHS and HHS showed the same tendency in the CHs gene, respectively ~ (-1.12 and -1.02, respectively). Regarding the elicitation effect of AE on the capsaicinoids content, additional treatment controls were included. A white noise treatment (WN) to prove the frequency-selectiveness of signals and a hydric stressed group (HS) to compare the CAPs content. Our findings suggest that WN and NAE did not present differences statically. Conversely, HS and all AEs treatments induced a significant increase of capsaicin (Cap) and dihydrocapsaicin (Dcap) after one-week of a treatment. Specifically, the HS plants showed an increase of 8.33 times compared to the NAE and WN treatments and 1.4 times higher than the MHS, which was the AEs treatment with a larger induction of Capsaicinoids among treatments (5.88) and compared to the controls.Keywords: acoustic emission, capsaicinoids, elicitors, hydric stress, plant signaling
Procedia PDF Downloads 1731261 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport
Authors: C. Hall, J. Ramos, V. Ramasamy
Abstract:
Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model
Procedia PDF Downloads 991260 Expectation and Satisfaction of Health Spa Business Service, Ranong Province, Thailand
Authors: Supattra Pranee
Abstract:
The purposes of this research are to study the current business of health spa and to study the customers’ level of expectation as well as level of satisfaction of the health spa business in Ranong, Thailand. This paper drew upon data collected from health spa customers by using questionnaire. In addition, an in-depth interview was utilized to collect data from health spa entrepreneurs. The findings revealed that the health spa business is growing very fast and the coming ASEAN Economic Community (AEC) will ameliorate the business growth and increase the customer base. There is a need to improve staff’s ability to communicate in English. However, the economic size of Ranong province is still small which has resulted in the hesitation of investors to increase their investment in this business. The findings also revealed four categories of level of expectation and satisfaction as follows: (1) Service: overall, customers had a high expectation with a mean of 3.80 and 0.873 SD and a high level of satisfaction with a mean of 3.66 and 0.704 SD. (2) Staff: overall, customers had a high expectation with a mean of 3.95 and 0.865 SD and a high level of satisfaction with a mean of 3.84 and 0.783 SD. (3) Product, Equipment, and Tools: overall, customers had a high expectation with a mean of 4.02 and 0.913 SD and a high level of satisfaction with a mean of 3.88 and 0.772 SD. (4) Place, Atmosphere, and Environment: overall, customers had a high expectation with a mean of 3.95 and 0.906 SD and a high level of satisfaction with a mean of 3.86 and 0.785 SD.Keywords: expectation, health spa business, satisfaction, ranong province
Procedia PDF Downloads 3031259 Life Cycle Assessment of a Parabolic Solar Cooker
Authors: Bastien Sanglard, Lou Magnat, Ligia Barna, Julian Carrey, Sébastien Lachaize
Abstract:
Cooking is a primary need for humans, several techniques being used around the globe based on different sources of energy: electricity, solid fuel (wood, coal...), fuel or liquefied petroleum gas. However, all of them leads to direct or indirect greenhouse gas emissions and sometimes health damage in household. Therefore, the solar concentrated power represent a great option to lower the damages because of a cleaner using phase. Nevertheless, the construction phase of the solar cooker still requires primary energy and materials, which leads to environmental impacts. The aims of this work is to analyse the ecological impacts of a commercialaluminium parabola and to compare it with other means of cooking, taking the boiling of 2 litres of water three times a day during 40 years as the functional unit. Life cycle assessment was performed using the software Umberto and the EcoInvent database. Calculations were realized over more than 13 criteria using two methods: the international panel on climate change method and the ReCiPe method. For the reflector itself, different aluminium provenances were compared, as well as the use of recycled aluminium. For the structure, aluminium was compared to iron (primary and recycled) and wood. Results show that climate impacts of the studied parabola was 0.0353 kgCO2eq/kWh when built with Chinese aluminium and can be reduced by 4 using aluminium from Canada. Assessment also showed that using 32% of recycled aluminium would reduce the impact by 1.33 and 1.43 compared to the use of primary Canadian aluminium and primary Chinese aluminium, respectively. The exclusive use of recycled aluminium lower the impact by 17. Besides, the use of iron (recycled or primary) or wood for the structure supporting the reflector significantly lowers the impact. The impact categories of the ReCiPe method show that the parabola made from Chinese aluminium has the heaviest impact - except for metal resource depletion - compared to aluminium from Canada, recycled aluminium or iron. Impact of solar cooking was then compared to gas stove and induction. The gas stove model was a cast iron tripod that supports the cooking pot, and the induction plate was as well a single spot plate. Results show the parabolic solar cooker has the lowest ecological impact over the 13 criteria of the ReCiPe method and over the global warming potential compared to the two other technologies. The climate impact of gas cooking is 0.628kgCO2/kWh when used with natural gas and 0.723 kgCO2/kWh when used with a bottle of gas. In each case, the main part of emissions came from gas burning. Induction cooking has a global warming potential of 0.12 kgCO2eq/kWh with the electricity mix of France, 96.3% of the impact being due to electricity production. Therefore, the electricity mix is a key factor for this impact: for instance, with the electricity mix of Germany and Poland, impacts are 0.81kgCO2eq/kWh and 1.39 kgCO2eq/kWh, respectively. Therefore, the parabolic solar cooker has a real ecological advantages compared to both gas stove and induction plate.Keywords: life cycle assessement, solar concentration, cooking, sustainability
Procedia PDF Downloads 1861258 Multi-Dimensional Experience of Processing Textual and Visual Information: Case Study of Allocations to Places in the Mind’s Eye Based on Individual’s Semantic Knowledge Base
Authors: Joanna Wielochowska, Aneta Wielochowska
Abstract:
Whilst the relationship between scientific areas such as cognitive psychology, neurobiology and philosophy of mind has been emphasized in recent decades of scientific research, concepts and discoveries made in both fields overlap and complement each other in their quest for answers to similar questions. The object of the following case study is to describe, analyze and illustrate the nature and characteristics of a certain cognitive experience which appears to display features of synaesthesia, or rather high-level synaesthesia (ideasthesia). The following research has been conducted on the subject of two authors, monozygotic twins (both polysynaesthetes) experiencing involuntary associations of identical nature. Authors made attempts to identify which cognitive and conceptual dependencies may guide this experience. Operating on self-introduced nomenclature, the described phenomenon- multi-dimensional processing of textual and visual information- aims to define a relationship that involuntarily and immediately couples the content introduced by means of text or image a sensation of appearing in a certain place in the mind’s eye. More precisely: (I) defining a concept introduced by means of textual content during activity of reading or writing, or (II) defining a concept introduced by means of visual content during activity of looking at image(s) with simultaneous sensation of being allocated to a given place in the mind’s eye. A place can be then defined as a cognitive representation of a certain concept. During the activity of processing information, a person has an immediate and involuntary feel of appearing in a certain place themselves, just like a character of a story, ‘observing’ a venue or a scenery from one or more perspectives and angles. That forms a unique and unified experience, constituting a background mental landscape of text or image being looked at. We came to a conclusion that semantic allocations to a given place could be divided and classified into the categories and subcategories and are naturally linked with an individual’s semantic knowledge-base. A place can be defined as a representation one’s unique idea of a given concept that has been established in their semantic knowledge base. A multi-level structure of selectivity of places in the mind’s eye, as a reaction to a given information (one stimuli), draws comparisons to structures and patterns found in botany. Double-flowered varieties of flowers and a whorl system (arrangement) which is characteristic to components of some flower species were given as an illustrative example. A composition of petals that fan out from one single point and wrap around a stem inspired an idea that, just like in nature, in philosophy of mind there are patterns driven by the logic specific to a given phenomenon. The study intertwines terms perceived through the philosophical lens, such as definition of meaning, subjectivity of meaning, mental atmosphere of places, and others. Analysis of this rare experience aims to contribute to constantly developing theoretical framework of the philosophy of mind and influence the way human semantic knowledge base and processing given content in terms of distinguishing between information and meaning is researched.Keywords: information and meaning, information processing, mental atmosphere of places, patterns in nature, philosophy of mind, selectivity, semantic knowledge base, senses, synaesthesia
Procedia PDF Downloads 1261257 Canned Sealless Pumps for Hazardous Applications
Authors: Shuja Alharbi
Abstract:
Oil and Gas industry has many applications considered as toxic or hazardous, where process fluid leakage is not permitted and leads to health, safety, and environmental impacts. Caustic/Acidic applications, High Benzene Concentrations, Hydrogen sulfide rich oil/gas as well as liquids operating above their auto-ignition temperatures are examples of such liquids that pose as a risk to the industry operation, and for those, special arrangements are in place to allow for the safe operation environment. Pumps in the industry requires special attention, specifically in the interface between the fluid and the environment, where the potential of leakages are foreseen. Mechanical Seals are used to contain the fluid within the equipment, but the prices are ever increasing for such seals, along with maintenance, design, and operating requirements. Several alternatives to seals are being employed nowadays, such as Sealless systems, which is hermitically sealed from the atmosphere and does not require sealing. This technology is considered relatively new and requires more studies to understand the limitations and factors associated from an owner and design perspective. Things like financial factors, maintenance factors, and design limitation should be studies further in order to have a mature and reliable technical solution available to end users.Keywords: pump, sealless, selection, failure
Procedia PDF Downloads 1011256 Reduction and Smelting of Magnetic Fraction Obtained by Magnetic-Gravimetric-Separation (MGS) of Electric Arc Furnace Dust
Authors: Sara Scolari, Davide Mombelli, Gianluca Dall'Osto, Jasna Kastivnik, Gašper Tavčar, Carlo Mapelli
Abstract:
The EIT Raw Materials RIS-DustRec-II project aims to transform Electric Arc Furnace Dust (EAFD) into a valuable resource by overcoming the challenges associated with traditional recycling approaches. EAFD, a zinc-rich industrial by-product typically recycled by the Waelz process, contains complex oxides such as franklinite (ZnFe₂O₄), which hinder the efficient extraction of zinc, by also introducing other valuable elements (Fe, Ni, Cr, Cu, …) in the slag. The project aims to develop a multistage multidisciplinary approach to separate EAFD into two streams: a magnetic and non-magnetic one. In this paper the production of self-reducing briquettes from the magnetic stream of EAFD with a reducing agent, aiming to drive carbothermic reduction and recover iron as a usable alloy, was investigated. Research was focused on optimizing the magnetic and subsequent gravimetric separation (MGS) processes, followed by high-temperature smelting to evaluate reduction efficiency and phase separation. The characterization of selected two different raw EAFD samples and their magnetic-gravitational separation to isolate zinc- and iron-rich fractions was performed by X-ray diffraction and scanning electron microscope. The iron-enriched concentrates were then agglomerated into self-reducing briquettes by mixing them with either biochar (olive pomace pyrolyzed at 350 and 750°C and wood chips pyrolyzed at 750 °C) and a Cupola Furnace dust as reducing agents, combined with gelatinized corn starch as a binder. Cylindrical briquettes were produced and cured for 14 days to ensure structural integrity during subsequent thermal treatments. Smelting tests were carried out at 1400 °C in an inert argon atmosphere to assess the metallization efficiency and the separation between metal and slag phases. A carbon/oxides mass ratio of 0.262 (C/(ZnO+Fe₂O₃)) was used in these tests to maintain continuity with previous studies and to standardize reduction conditions. The magnetic and gravimetric separations effectively isolated zinc- and iron-enriched fractions, particularly for one of the two EAFD, where the concentration of Zn in the concentration fraction was reduced by 8 wt.% while Fe reached 45 wt.%. The reduction tests conducted at 1400 °C showed that the chosen carbon/oxides ratio was sufficient for the smelting of the reducible oxides within the briquettes. However, an important limitation became apparent: the amount of carbon, exceeding the stochiometric value, proved to be excessive for the effective coalescence of metal droplets, preventing clear metal-slag separation. To address this, further smelting tests were carried out in an air atmosphere rather than inert conditions to burn off excess carbon. This paper demonstrates the potential of controlled carbothermic reduction for EAFD recycling. By carefully optimizing the C/(ZnO+Fe₂O₃) ratio, the process can maximize metal recovery while achieving better separation of the metal and slag phases. This approach offers a promising alternative to traditional EAFD recycling methods, with further studies recommended to refine the parameters for industrial application.Keywords: biochars, electrical arc furnace dust, metallization, smelting
Procedia PDF Downloads 141255 Slope Effect in Emission Evaluation to Assess Real Pollutant Factors
Authors: G. Meccariello, L. Della Ragione
Abstract:
The exposure to outdoor air pollution causes lung cancer and increases the risk of bladder cancer. Because air pollution in urban areas is mainly caused by transportation, it is necessary to evaluate pollutant exhaust emissions from vehicles during their real-world use. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. A particular attention was given to the slope variability along the streets during each journey performed by the instrumented vehicle. In this paper we dealt with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars. Finally the slope analysis can be correlated to the emission and consumption values in a specific road position, and it could be evaluated its influence on their behaviour.Keywords: air pollution, driving cycles, GPS signal, slope, emission factor, fuel consumption
Procedia PDF Downloads 3931254 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites
Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim
Abstract:
In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite
Procedia PDF Downloads 3191253 Evaluating the Energy Efficiency Measures for an Educational Building in a Hot-Humid Region
Authors: Rafia Akbar
Abstract:
This paper assesses different Energy Efficiency Measures (EEMs) and their impact on energy consumption and carbon footprint of an educational building located in Islamabad. A base case was first developed in accordance with typical construction practices in Pakistan. Several EEMs were separately applied to the baseline design to quantify their impact on operational energy reduction of the building and the resultant carbon emissions. Results indicate that by applying these measures, there is a potential to reduce energy consumption up to 49% as compared to the base case. It was observed that energy efficient ceiling fans and lights, insulation of the walls and roof and an efficient air conditioning system for the building can provide significant energy savings. The results further indicate that the initial investment cost of these energy efficiency measures can be recovered within 6 to 7 years of building’s service life.Keywords: CO2 savings, educational building, energy efficiency measures, payback period
Procedia PDF Downloads 1681252 Effect of Powder Shape on Physical Properties of Porous Coatings
Authors: M. Moayeri, A. Kaflou
Abstract:
Decreasing the size of heat exchangers in industries is favorable due to a reduction in the initial costs and maintenance. This can be achieved generally by increasing the heat transfer coefficient, which can be done by increasing tube surface by passive methods named “porous coat”. Since these coatings are often in contact with the fluid, mechanical strength of coatings should be considered as main concept beside permeability and porosity in design, especially in high velocity services. Powder shape affected mechanical property more than other factors. So in this study, the Copper powder with three different shapes (spherical, dendritic and irregular) was coated on Cu-Ni base metal with thickness of ~300µm in a reduction atmosphere (5% H2-N2) and programmable furnace. The morphology and physical properties of coatings, such as porosity, permeability and mechanical strength were investigated. Results show although irregular particle have maximum porosity and permeability but strength level close to spherical powder, in addition, mentioned particle has low production cost, so for creating porous coats in high velocity services these powder recommended.Keywords: porous coat, permeability, mechanical strength, porosity
Procedia PDF Downloads 3551251 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing
Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park
Abstract:
Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete
Procedia PDF Downloads 3311250 LEED Empirical Evidence in Northern and Southern Europe
Authors: Svetlana Pushkar
Abstract:
The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe.Keywords: green building, Europe, LEED, leadership in energy and environmental design, regional priority points
Procedia PDF Downloads 2521249 Photocatalytic Hydrogen Production from Butanol over Ag/TiO2
Authors: Thabelo Nelushi, Michael Scurrell, Tumelo Seadira
Abstract:
Global warming is one of the most important environmental issues which arise from occurrence of gases such as carbon dioxide (CO2) and methane (CH4) in the atmosphere. Exposure to these greenhouse gases results in health risk. Hydrogen is regarded as an alternative energy source which is a clean energy carrier for the future. There are different methods to produce hydrogen such as steam reforming, coal gasification etc., however the challenge with these processes is that they emit CO and CO2 gases and are costly. Photocatalytic reforming is a substitute process which is fascinating due to the combination of solar energy and renewable sources and the use of semiconductor materials such as catalysts. TiO2 is regarded as the most promising catalysts. TiO2 nanoparticles prepared by hydrothermal method and Ag/TiO2 are being investigated for photocatalytic production of hydrogen from butanol. The samples were characterized by raman spectroscopy, TEM/SEM, XRD, XPS, EDAX, DRS and BET surface area. 2 wt% Ag-doped TiO2 nanoparticle showed enhanced hydrogen production compared to a non-doped TiO2. The results of characterization and photoactivity shows that TiO2 nanoparticles play a very important role in producing high hydrogen by utilizing solar irradiation.Keywords: butanol, hydrogen production, silver particles, TiO2 nanoparticles
Procedia PDF Downloads 2111248 Seismic Retrofits – A Catalyst for Minimizing the Building Sector’s Carbon Footprint
Authors: Juliane Spaak
Abstract:
A life-cycle assessment was performed, looking at seven retrofit projects in New Zealand using LCAQuickV3.5. The study found that retrofits save up to 80% of embodied carbon emissions for the structural elements compared to a new building. In other words, it is only a 20% carbon investment to transform and extend a building’s life. In addition, the systems were evaluated by looking at environmental impacts over the design life of these buildings and resilience using FEMA P58 and PACT software. With the increasing interest in Zero Carbon targets, significant changes in the building and construction sector are required. Emissions for buildings arise from both embodied carbon and operations. Based on the significant advancements in building energy technology, the focus is moving more toward embodied carbon, a large portion of which is associated with the structure. Since older buildings make up most of the real estate stock of our cities around the world, their reuse through structural retrofit and wider refurbishment plays an important role in extending the life of a building’s embodied carbon. New Zealand’s building owners and engineers have learned a lot about seismic issues following a decade of significant earthquakes. Recent earthquakes have brought to light the necessity to move away from constructing code-minimum structures that are designed for life safety but are frequently ‘disposable’ after a moderate earthquake event, especially in relation to a structure’s ability to minimize damage. This means weaker buildings sit as ‘carbon liabilities’, with considerably more carbon likely to be expended remediating damage after a shake. Renovating and retrofitting older assets plays a big part in reducing the carbon profile of the buildings sector, as breathing new life into a building’s structure is vastly more sustainable than the highest quality ‘green’ new builds, which are inherently more carbon-intensive. The demolition of viable older buildings (often including heritage buildings) is increasingly at odds with society’s desire for a lower carbon economy. Bringing seismic resilience and carbon best practice together in decision-making can open the door to commercially attractive outcomes, with retrofits that include structural and sustainability upgrades transforming the asset’s revenue generation. Across the global real estate market, tenants are increasingly demanding the buildings they occupy be resilient and aligned with their own climate targets. The relationship between seismic performance and ‘sustainable design’ has yet to fully mature, yet in a wider context is of profound consequence. A whole-of-life carbon perspective on a building means designing for the likely natural hazards within the asset’s expected lifespan, be that earthquake, storms, damage, bushfires, fires, and so on, ¬with financial mitigation (e.g., insurance) part, but not all, of the picture.Keywords: retrofit, sustainability, earthquake, reuse, carbon, resilient
Procedia PDF Downloads 731247 Rare Earth Doped Alkali Halide Crystals for Thermoluminescence Dosimetry Application
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
The Europium (Eu) doped (0.02-0.1 wt %) lithium fluoride (LiF) crystal in the form of multicrystalline sheet was gown by the edge defined film fed growth (EFG) technique. Crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. The systematic incorporation of Eu inside the host LiF lattice was confirmed by X-ray diffractometry. Thermoluminescence (TL) glow curve was recorded on annealed (AN) crystals after irradiation with a gamma dose of 15 Gy. The effect of different concentration of Eu in enhancing the thermoluminescence (TL) intensity of LiF was studied. The normalized peak height of the Eu-doped LiF crystal was nearly 12 times that of the LiF crystals. The optimized concentration of Eu in LiF was found to be 0.05wt% at which maximum TL intensity was observed with main TL peak positioned at 185 °C. At higher concentration TL intensity decreases due to the formation of precipitates in the form of clusters or aggregates. The nature of the energy traps in Eu doped LiF was analysed through glow curve deconvolution. The trap depth was found to be in the range of 0.2 – 0.5 eV. These results showed that doping with Eu enhances the TL intensity by creating more defect sites for capturing of electron and holes during irradiation which might be useful for dosimetry application.Keywords: thermoluminescence, defects, gamma radiation, crystals
Procedia PDF Downloads 3301246 Clean Technology: Hype or Need to Have
Authors: Dirk V. H. K. Franco
Abstract:
For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.Keywords: clean technologies, catastrophic, climate, possible solutions
Procedia PDF Downloads 5001245 Characterization of Gamma Irradiated PVDF and PVDF/Graphene Oxide Composites by Spectroscopic Techniques
Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria
Abstract:
The combination of the properties of graphene oxide (OG) and PVDF homopolymer makes their combined composite materials as multifunctional systems with great potential. Knowledge of the molecular structure is essential for better use. In this work, the degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to degradation of PVDF/OG composites. The samples were irradiated with a Co-60 source at constant dose rate, with doses ranging from 100 kGy to 1,000 kGy. In FTIR data shown that the formation of oxidation products was at the both samples with formation of carbonyl and hydroxyl groups amongst the most prevalent products in the pure PVDF samples. In the other hand, the composites samples exhibit less presence of degradation products with predominant formation of carbonyl groups, these results also seen in the UV-Vis analysis. The results show that the samples of composites may have greater resistance to the irradiation process, since they have less degradation products than pure PVDF samples seen by spectroscopic techniques.Keywords: gamma irradiation, PVDF, PVDF/OG composites, spectroscopic techniques
Procedia PDF Downloads 5721244 Nanoarchitectures Cu2S Functions as Effective Surface-Enhanced Raman Scattering Substrates for Molecular Detection Application
Authors: Yu-Kuei Hsu, Ying-Chu Chen, Yan-Gu Lin
Abstract:
The hierarchical Cu2S nano structural film is successfully fabricated via an electroplated ZnO nanorod array as a template and subsequently chemical solution process for the growth of Cu2S in the application of surface-enhanced Raman scattering (SERS) detection. The as-grown Cu2S nano structures were thermally treated at temperature of 150-300 oC under nitrogen atmosphere to improve the crystal quality and unexpectedly induce the Cu nano particles on surface of Cu2S. The structure and composition of thermally treated Cu2S nano structures were carefully analyzed by SEM, XRD, XPS, and XAS. Using 4-aminothiophenol (4-ATP) as probing molecules, the SERS experiments showed that the thermally treated Cu2S nano structures exhibit excellent detecting performance, which could be used as active and cost-effective SERS substrate for ultra sensitive detecting. Additionally, this novel hierarchical SERS substrates show good reproducibility and a linear dependence between analyte concentrations and intensities, revealing the advantage of this method for easily scale-up production.Keywords: cuprous sulfide, copper, nanostructures, surface-enhanced raman scattering
Procedia PDF Downloads 4081243 Fabrication of Hollow Germanium Spheres by Dropping Method
Authors: Kunal D. Bhagat, Truong V. Vu, John C. Wells, Hideyuki Takakura, Yu Kawano, Fumio Ogawa
Abstract:
Hollow germanium alloy quasi-spheres of diameters 1 to 2 mm with a relatively smooth inner and outer surface have been produced. The germanium was first melted at around 1273 K and then exuded from a coaxial nozzle into an inert atmosphere by argon gas supplied to the inner nozzle. The falling spheres were cooled by water spray and collected in a bucket. The spheres had a horn type of structure on the outer surface, which might be caused by volume expansion induced by the density difference between solid and gas phase. The frequency of the sphere formation was determined from the videos to be about 133 Hz. The outer diameter varied in the range of 1.3 to 1.8 mm with a wall thickness in the range of 0.2 to 0.5 mm. Solid silicon spheres are used for spherical silicon solar cells (S₃CS), which have various attractive features. Hollow S₃CS promise substantially higher energy conversion efficiency if their wall thickness can be kept to 0.1–0.2 mm and the inner surface can be passivated. Our production of hollow germanium spheres is a significant step towards the production of hollow S₃CS with, we hope, higher efficiency and lower material cost than solid S₃CS.Keywords: hollow spheres, semiconductor, compound jet, dropping method
Procedia PDF Downloads 2081242 A Comparison of Kinetic and Mechanical Properties between Graphene Oxide (GO) and Carbon Nanotubes (CNT)-Epoxy Nanocomposites
Authors: Marina Borgert Moraes, Gilmar Patrocinio Thim
Abstract:
It is still unknown how the presence of nanoparticles such as graphene oxide (GO) or carbon nanotubes (CNT) influence the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA as well as mechanical tests. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80 °C + 2h 120 °C; 3h 80 °C + 2h 120 °C; 5h 80 °C) and samples with different times at constant temperature (120 °C). Mechanical tests were performed according to ASTM D638 and D790. Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites, and the GO reinforced samples had a slightly bigger improvement compared to functionalized CNT.Keywords: carbon nanotube, epoxy resin, graphene oxide, nanocomposite
Procedia PDF Downloads 264