Search results for: dust removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1898

Search results for: dust removal

1028 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 272
1027 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding

Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed

Abstract:

The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.

Keywords: bleeding, asphalt film thickness differential, Anfis Modeling

Procedia PDF Downloads 269
1026 Environmental Quality On-Line Monitoring Based on Enterprises Resource Planning on Implementation ISO 14001:2004

Authors: Ahmad Badawi Saluy

Abstract:

This study aims to develop strategies for the prevention or elimination of environmental pollution as well as changes in external variables of the environment in order to implement the environmental management system ISO 14001:2004 by integrating analysis of environmental issues data, RKL-RPL transactional data and regulation as part of ERP on the management dashboard. This research uses a quantitative descriptive approach with analysis method comparing with air quality standard (PP 42/1999, LH 21/2008), water quality standard (permenkes RI 416/1990, KepmenLH 51/2004, kepmenLH 55/2013 ), and biodiversity indicators. Based on the research, the parameters of RPL monitoring have been identified, among others, the quality of emission air (SO₂, NO₂, dust, particulate) due to the influence of fuel quality, combustion performance in a combustor and the effect of development change around the generating area. While in water quality (TSS, TDS) there was an increase due to the flow of water in the cooling intake carrying sedimentation from the flow of Banjir Kanal Timur. Including compliance with the ISO 14001:2004 clause on application design significantly contributes to the improvement of the quality of power plant management.

Keywords: environmental management systems, power plant management, regulatory compliance , enterprises resource planning

Procedia PDF Downloads 179
1025 Phytoremediation of Cr from Tannery Effluent by Vetiver Grass

Authors: Mingizem Gashaw Seid

Abstract:

Phytoremediation of chromium metal by vetiver grass was investigated in hydroponic system. The removal efficiency for organic load, nutrient and chromium were evaluated as a function of concentration of waste effluent (40 and 50% dilution with distilled water). Under this conditions 64.49-94.06 % of chromium was removed. This shows vetiver grass has potential for accumulation of chromium metal from tannery waste water stream.

Keywords: chromium, phytoremediation, tannery effluent, vetiver grass

Procedia PDF Downloads 416
1024 The Effects of Fertilizer in the Workplace on Male Infertility: About Workers of Unit NPK in Complex Fertial Annaba

Authors: B. Loukil, L. Mallem, M. S. Boulakoud

Abstract:

Inorganic fertilizers consist mainly of salts of ammonium nitrate, phosphate and potassium, the combination of primary nutrients NPK including secondary and micro nutrients are essential for plant growth, used for intensive agriculture, ranching, and horticultural crops, to increase soil fertility and ensure sustainable crop production. The manufacture of fertilizers is generally at a high temperature and high pressure, in the presence of several highly hazardous chemicals, dust and gases. These products are absorbed high in the airway, increasing the airway resistance thereby adversely affecting the pulmonary functions of workers. A study was conducted on 34 employees, especially exposed to nitrate derivatives. A questionnaire was prepared and distributed to all employees in the unit. The workers were divided into two groups according to age. Several hormonal parameters Assay were measured. The results of the questionnaire have detected a fertility problem, Concerning the hormones a significant reduction in the concentration of testosterone in both groups and LH in the group aged 30 to 40 year were noted compared to the control. However, an increase in the concentration of prolactin in both groups compared to the control. There was a significant decrease in FSH in the group aged 30 to 40 always in compared with the control group.

Keywords: fertilizers, healthy worker, risk, fertility

Procedia PDF Downloads 399
1023 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater

Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif

Abstract:

Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.

Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.

Procedia PDF Downloads 90
1022 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling

Authors: Vishnu Asokan, Zaid M. Paloba

Abstract:

Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.

Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution

Procedia PDF Downloads 143
1021 Synthesis, Characterization and Photocatalytic Activity of Electrospun Zinc and/or Titanium Oxide Nanofibers for Methylene Blue Degradation

Authors: Zainab Dahrouch, Beatrix Petrovičová, Claudia Triolo, Fabiola Pantò, Angela Malara, Salvatore Patanè, Maria Allegrini, Saveria Santangelo

Abstract:

Synthetic dyes dispersed in water cause environmental damage and have harmful effects on human health. Methylene blue (MB) is broadly used as a dye in the textile, pharmaceutical, printing, cosmetics, leather, and food industries. The complete removal of MB is difficult due to the presence of aromatic rings in its structure. The present study is focused on electrospun nanofibers (NFs) with engineered architecture and surface to be used as catalysts for the photodegradation of MB. Ti and/or Zn oxide NFs are produced by electrospinning precursor solutions with different Ti: Zn molar ratios (from 0:1 to 1:0). Subsequent calcination and cooling steps are operated at fast rates to generate porous NFs with capture centers to reduce the recombination rate of the photogenerated charges. The comparative evaluation of the NFs as photocatalysts for the removal of MB from an aqueous solution with a dye concentration of 15 µM under UV irradiation shows that the binary (wurtzite ZnO and anatase TiO₂) oxides exhibit higher catalytic activity compared to ternary (ZnTiO₃ and Zn₂TiO₄) oxides. The higher band gap and lower crystallinity of the ternary oxides are responsible for their lower photocatalytic activity. It has been found that the optimal load for the wurtzite ZnO is 0.66 mg mL⁻¹, obtaining a degradation rate of 7.94.10⁻² min⁻¹. The optimal load for anatase TiO₂ is lower (0.33 mg mL⁻¹) and the corresponding rate constant (1.12×10⁻¹ min⁻¹) is higher. This finding (higher activity with lower load) is of crucial importance for the scaling up of the process on an industrial scale. Indeed, the anatase NFs outperform even the commonly used P25-TiO₂ benchmark. Besides, they can be reused twice without any regeneration treatment, with 5.2% and 18.7% activity decrease after second and third use, respectively. Thanks to the scalability of the electrospinning technique, this laboratory-scale study provides a perspective towards the sustainable large-scale manufacture of photocatalysts for the treatment of industry effluents.

Keywords: anatase, capture centers, methylene blue dye, nanofibers, photodegradation, zinc oxide

Procedia PDF Downloads 157
1020 Seasonal Variability of Aerosol Optical Properties and Their Radiative Effects over Indo-Gangetic Plain in India

Authors: Kanika Taneja, V. K. Soni, S. D. Attri, Kafeel Ahmad, Shamshad Ahmad

Abstract:

Aerosols represent an important component of earth-atmosphere system and have a profound impact on the global and regional climate. With the growing population and urbanization, the aerosol load in the atmosphere over the Indian region is found to be increasing. Several studies have reported that the aerosol optical depth over the northern part of India is higher as compared to the southern part. The northern India along the Indo-Gangetic plain is often influenced with dust transported from the Thar Desert in northwestern India and from Arabian Peninsula during the pre-monsoon season. Seasonal variations in aerosol optical and radiative properties were examined using data retrieved from ground based multi-wavelength Prede Sun/sky radiometer (POM-02) over Delhi, Rohtak, Jodhpur and Varanasi for the period April 2011-April 2013. These stations are part of the Skynet-India network of India Meteorological Department. The Sun/sky radiometer (POM-02) has advantage over other instruments that it can be calibrated on-site. These aerosol optical properties retrieved from skyradiometer observations are further used to analyze the Direct Aerosol Radiative Forcing (DARF) over the study locations.

Keywords: aerosol optical properties, indo- gangetic plain, radiative forcing, sky radiometer

Procedia PDF Downloads 543
1019 Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Leaf and Stem Biochar Derived from Lantana camara: Adsorption Kinetics, Equilibrium, Thermodynamics and Possible Mechanism

Authors: Deepa Kundu, Prabhakar Sharma, Sayan Bhattacharya, Jianying Shang

Abstract:

The discharge of dye-containing effluents in the water bodies has raised concern due to the potential hazards related to their toxicity in the environment. There are various treatment technologies available for the removal of dyes from wastewaters. The use of biosorbent to remove dyes from wastewater is one of the effective and inexpensive techniques. In the study, the adsorption of phenothiazine dye methylene blue onto biosorbent prepared from Lantana camara L. has been studied in aqueous solutions. The batch adsorption experiments were conducted and the effects of various parameters such as pH (3-12), contact time, adsorbent dose (100-400 mg/L), initial dye concentration (5-20 mg/L), and temperature (303, 313 and 323 K) were investigated. The prepared leaf (BCL600) and shoot (BCS600) biochar of Lantana were characterized using FTIR, SEM, elemental analysis, and zeta potential (pH~7). A comparison between the adsorption potential of both the biosorbent was also evaluated. The results indicated that the amount of methylene blue dye (mg/g) adsorbed onto the surface of biochar was highly dependent on the pH of the dye solutions as it increased with an increase in pH from 3 to 12. It was observed that the dye treated with BCS600 and BCL600 attained an equilibrium within 60 and 100 minutes, respectively. The rate of the adsorption process was determined by performing the Lagergren pseudo-first-order and pseudo-second-order kinetics. It was found that dye treated with both BCS600 and BCL600 followed pseudo-second-order kinetics implying the multi-step nature of the adsorption process involving external adsorption and diffusion of dye molecules into the interior of the adsorbents. The data obtained from batch experiments were fitted well with Langmuir and Freundlich isotherms (R² > 0.98) to indicate the multilayer adsorption of dye over the biochar surfaces. The thermodynamic studies revealed that the adsorption process is favourable, spontaneous, and endothermic in nature. Based on the results, the inexpensive and easily available Lantana camara biomass can be used to remove methylene blue dye from wastewater. It can also help in managing the growth of the notorious weed in the environment.

Keywords: adsorption kinetics, biochar, Lantana camara, methylene blue dye, possible mechanism, thermodynamics

Procedia PDF Downloads 136
1018 Sonocatalytic Treatment of Baker’s Yeast Wastewater by Using SnO2/TiO2 Composite

Authors: Didem Ildırar, Serap Fındık

Abstract:

Baker’s yeast industry uses molasses as a raw material. Molasses wastewater contains high molecular weight polymers called melanoidins. Melanoidins are obtained after the reactions between the amino acids and carbonyl groups in molasses. The molasses wastewater has high biochemical and chemical oxygen demand and dark brown color. If it is discharged to receiving bodies without any treatment, it prevents light penetration and dissolved oxygen level of the surface water decreases. Melanoidin compounds are toxic effect to the microorganism in water and there is a resistance to microbial degradation. Before discharging molasses wastewater, adequate treatment is necessary. In addition to changing environmental regulations, properties of treated wastewater must be improved. Advanced oxidation processes can be used to improve existing properties of wastewater. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs the use of ultrasound resulting in cavitation phenomena. In this study, decolorization and chemical oxygen demand removal (COD) of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator was used for this study. Its operating frequency is 20kHz. SnO2/TiO2 catalyst has been used as sonocatalyst. The effects of the composite preparation method, mixing time while composite prepared, the molar ratio of SnO2/TiO2, the calcination temperature, and time, the catalyst amount were investigated on the treatment of baker’s yeast effluent. . According to the results, the prepared composite SnO2/TiO2 by using ultrasonic probe gave a better result than prepared composite by using an ultrasonic bath. Prepared composite by using an ultrasonic probe with a 4:1 molar ratio treated at 800°C for 60min gave a better result. By using this composite, optimum catalyst amount was 0.2g/l. At these conditions 26.6% decolorization was obtained. There was no COD removal at the studied conditions.

Keywords: baker’s yeast effluent, COD, decolorization, sonocatalyst, ultrasonic irradiation

Procedia PDF Downloads 322
1017 Negotiating Strangeness: Narratives of Forced Return Migration and the Construction of Identities

Authors: Cheryl-Ann Sarita Boodram

Abstract:

Historically, the movement of people has been the subject of socio-political and economic regulatory policies which congeal to regulate human mobility and establish geopolitical and spatial identities and borderlands. As migratory practices evolved, so too has the problematization associated with movement, migration and citizenship. The emerging trends have led to active development of immigration technology governing human mobility and the naming of migratory practices. One such named phenomenon is ‘deportation’ or the forced removal of individuals from their adopted country. Deportation, has gained much attention within the human mobility landscape in the past twenty years following the September 2001 terrorist attack on the World Trade Centre in New York. In a reactionary move, several metropolitan countries, including Canada and the United Kingdom enacted or reviewed immigration laws which further enabled the removal of foreign born criminals to the land of their birth in the global south. Existing studies fall short of understanding the multiple textures of the forced returned migration experiences and the social injustices resulting from deportation displacement. This study brings together indigenous research methodologies through the use of participatory action research and social work with returned migrants in Trinidad and Tobago to uncover the experiences of displacement of deported nationals. The study explores the experiences of negotiating life as a ‘stranger’ and how return has influenced the construction of identities of returned nationals. Findings from this study reveal that deportation has led to inequalities and facilitated ‘othering’ of this group within their own country of birth. The study further highlighted that deportation leads to circuits of dispossession, and perpetuates inequalities. This study provides original insights into the way returned migrants negotiate, map and embody ‘strangeness’ and manage their return to a soil they consider unfamiliar and alien.

Keywords: stranger, alien geographies, displacement, deportation, negotiating strangeness, identity, otherness, alien landscapes

Procedia PDF Downloads 505
1016 Phycoremiadation of Heavy Metals by Marine Macroalgae Collected from Olaikuda, Rameswaram, Southeast Coast of India

Authors: Suparna Roy, Anatharaman Perumal

Abstract:

The industrial effluent with high amount of heavy metals is known to have adverse effects on the environment. For the removal of heavy metals from aqueous environment, different conventional treatment technologies had been applied gradually which are not economically beneficial and also produce huge quantity of toxic chemical sludge. So, bio-sorption of heavy metals by marine plant is an eco-friendly innovative and alternative technology for removal of these pollutants from aqueous environment. The aim of this study is to evaluate the capacity of heavy metals accumulation and removal by some selected marine macroalgae (seaweeds) from marine environment. Methods: Seaweeds Acanthophora spicifera (Vahl.) Boergesen, Codium tomentosum Stackhouse, Halimeda gracilis Harvey ex. J. Agardh, Gracilaria opuntia Durairatnam.nom. inval. Valoniopsis pachynema (Martens) Boergesen, Caulerpa racemosa var. macrophysa (Sonder ex Kutzing) W. R. Taylor and Hydroclathrus clathratus (C. Agardh) Howe were collected from Olaikuda (09°17.526'N-079°19.662'E), Rameshwaram, south east coast of India during post monsoon period (April’2016). Seaweeds were washed with sterilized and filtered in-situ seawater repeatedly to remove all the epiphytes and debris and clean seaweeds were kept for shade drying for one week. The dried seaweeds were grinded to powder, and one gm powder seaweeds were taken in a 250ml conical flask, and 8 ml of 10 % HNO3 (70 % pure) was added to each sample and kept in room temperature (28 ̊C) for 24 hours and then samples were heated in hotplate at 120 ̊C, boiled to evaporate up to dryness and 20 ml of Nitric acid: Percholoric acid in 4:1 were added to it and again heated to hotplate at 90 ̊C up to evaporate to dryness, then samples were kept in room temperature for few minutes to cool and 10ml 10 % HNO3 were added to it and kept for 24 hours in cool and dark place and filtered with Whatman (589/2) filter paper and the filtrates were collected in 250ml clean conical flask and diluted accurately to 25 ml volume with double deionised water and triplicate of each sample were analysed with Inductively-Coupled plasma analysis (ICP-OES) to analyse total eleven heavy metals (Ag, Cd, B, Cu, Mn, Co, Ni, Cr, Pb, Zn, and Al content of the specified species and data were statistically evaluated for standard deviation. Results: Acanthophora spicifera contains highest amount of Ag (0.1± 0.2 mg/mg) followed by Cu (0.16±0.01 mg/mg), Mn (1.86±0.02 mg/mg), B (3.59±0.2 mg/mg), Halimeda gracilis showed highest accumulation of Al (384.75±0.12mg/mg), Valoniopsis pachynema accumulates maximum amount of Co (0.12±0.01 mg/mg), Zn (0.64±0.02 mg/mg), Caulerpa racemosa var. macrophysa contains Zn (0.63±0.01), Cr (0.26±0.01 mg/mg ), Ni (0.21±0.05), Pb (0.16±0.03 ) and Cd ( 0.02±00 ). Hydroclathrus clathratus, Codium tomentosum and Gracilaria opuntia also contain adequate amount of heavy metals. Conclusions: The mentioned species of seaweeds are contributing important role for decreasing the heavy metals pollution in marine environment by bioaccumulation. So, we can utilise this species to remove excess amount of heavy metals from polluted area.

Keywords: heavy metals pollution, seaweeds, bioaccumulation, eco-friendly, phyco-remediation

Procedia PDF Downloads 235
1015 The Effect of Subsurface Dam on Saltwater Intrusion in Heterogeneous Coastal Aquifers

Authors: Antoifi Abdoulhalik, Ashraf Ahmed

Abstract:

Saltwater intrusion (SWI) in coastal aquifers has become a growing threat for many countries around the world. While various control measures have been suggested to mitigate SWI, the construction of subsurface physical barriers remains one of the most effective solutions for this problem. In this work, we used laboratory experiments and numerical simulations to investigate the effectiveness of subsurface dams in heterogeneous layered coastal aquifer with different layering patterns. Four different cases were investigated, including a homogeneous (case H), and three heterogeneous cases in which a low permeability (K) layer was set in the top part of the system (case LH), in the middle part of the system (case HLH) and the bottom part of the system (case HL). Automated image analysis technique was implemented to quantify the main SWI parameters under high spatial and temporal resolution. The method also provides transient salt concentration maps, allowing for the first time clear visualization of the spillage of saline water over the dam (advancing wedge condition) as well as the flushing of residual saline water from the freshwater area (receding wedge condition). The SEAWAT code was adopted for the numerical simulations. The results show that the presence of an overlying layer of low permeability enhanced the ability of the dam to retain the saline water. In such conditions, the rate of saline water spillage and inland extension may considerably be reduced. Conversely, the presence of an underlying low K layer led to a faster increase of saltwater volume on the seaward side of the wall, therefore considerably facilitating the spillage. The results showed that a complete removal of the residual saline water eventually occurred in all the investigated scenarios, with a rate of removal strongly affected by the hydraulic conductivity of the lower part of the aquifer. The data showed that the addition of the underlying low K layer in case HL caused the complete flushing to be almost twice longer than in the homogeneous scenario.

Keywords: heterogeneous coastal aquifers, laboratory experiments, physical barriers, seawater intrusion control

Procedia PDF Downloads 251
1014 Mitigating Nitrous Oxide Production from Nitritation/Denitritation: Treatment of Centrate from Pig Manure Co-Digestion as a Model

Authors: Lai Peng, Cristina Pintucci, Dries Seuntjens, José Carvajal-Arroyo, Siegfried Vlaeminck

Abstract:

Economic incentives drive the implementation of short-cut nitrogen removal processes such as nitritation/denitritation (Nit/DNit) to manage nitrogen in waste streams devoid of biodegradable organic carbon. However, as any biological nitrogen removal process, the potent greenhouse gas nitrous oxide (N2O) could be emitted from Nit/DNit. Challenges remain in understanding the fundamental mechanisms and development of engineered mitigation strategies for N2O production. To provide answers, this work focuses on manure as a model, the biggest wasted nitrogen mass flow through our economies. A sequencing batch reactor (SBR; 4.5 L) was used treating the centrate (centrifuge supernatant; 2.0 ± 0.11 g N/L of ammonium) from an anaerobic digester processing mainly pig manure, supplemented with a co-substrate. Glycerin was used as external carbon source, a by-product of vegetable oil. Out-selection of nitrite oxidizing bacteria (NOB) was targeted using a combination of low dissolved oxygen (DO) levels (down to 0.5 mg O2/L), high temperature (35ºC) and relatively high free ammonia (FA) (initially 10 mg NH3-N/L). After reaching steady state, the process was able to remove 100% of ammonium with minimum nitrite and nitrate in the effluent, at a reasonably high nitrogen loading rate (0.4 g N/L/d). Substantial N2O emissions (over 15% of the nitrogen loading) were observed at the baseline operational condition, which were even increased under nitrite accumulation and a low organic carbon to nitrogen ratio. Yet, higher DO (~2.2 mg O2/L) lowered aerobic N2O emissions and weakened the dependency of N2O on nitrite concentration, suggesting a shift of N2O production pathway at elevated DO levels. Limiting the greenhouse gas emissions (environmental protection) from such a system could be substantially minimized by increasing the external carbon dosage (a cost factor), but also through the implementation of an intermittent aeration and feeding strategy. Promising steps forward have been presented in this abstract, yet at the conference the insights of ongoing experiments will also be shared.

Keywords: mitigation, nitrous oxide, nitritation/denitritation, pig manure

Procedia PDF Downloads 249
1013 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM

Authors: Prateek Singh, Dilshad Ahmad

Abstract:

Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.

Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish

Procedia PDF Downloads 208
1012 Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete

Authors: Shams Ul Khaliq, Khan Shahzada, Bashir Alam, Fawad Bilal, Mushtaq Zeb, Faizan Akbar

Abstract:

Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications.

Keywords: marble powder, strength, permeability, consistency, environment

Procedia PDF Downloads 333
1011 Successful Management of a Boy with Mild Persistent Asthma: A Longitudinal Case

Authors: A. Lubis, L. Setiawati, A. R. Setyoningrum, A. Suryawan, Irwanto

Abstract:

Asthma is a condition that causing chronic health problems in children. In addition to basic therapy against disease, we must try to reduce the impact of chronic health problems and also optimize their medical aspect of growth and development. A boy with mild asthma attack frequent episode did not showed any improvement with medical treatment and his asthma control test was 11. From radiologic examination he got hyperaerated lung and billateral sinusitis maxillaris; skin test results were house dust, food and pet allergy; an overweight body; bad school grades; psychological and environmental problem. We followed and evaluated this boy in 6 months, treated holistically. Even we could not do much on environmental but no more psychological and school problems, his on a good bodyweight and his asthma control test was 22. A case of a child with mild asthma attack frequent episode was reported. Asthma clinical course show no significant improvement when other predisposing factor is not well-controlled and a child’s growth and development may be affected. Improving condition of the patient can be created with the help of loving and caring way of nurturing from the parents and supportive peer group. Therefore, continuous and consistent monitoring is required because prognosis of asthma is generally good when regularly and properly controlled.

Keywords: asthma, chronic health problems, growth, development

Procedia PDF Downloads 229
1010 Development of Adsorbents for Removal of Hydrogen Sulfide and Ammonia Using Pyrolytic Carbon Black form Waste Tires

Authors: Yang Gon Seo, Chang-Joon Kim, Dae Hyeok Kim

Abstract:

It is estimated that 1.5 billion tires are produced worldwide each year which will eventually end up as waste tires representing a major potential waste and environmental problem. Pyrolysis has been great interest in alternative treatment processes for waste tires to produce valuable oil, gas and solid products. The oil and gas products may be used directly as a fuel or a chemical feedstock. The solid produced from the pyrolysis of tires ranges typically from 30 to 45 wt% and have high carbon contents of up to 90 wt%. However, most notably the solid have high sulfur contents from 2 to 3 wt% and ash contents from 8 to 15 wt% related to the additive metals. Upgrading tire pyrolysis products to high-value products has concentrated on solid upgrading to higher quality carbon black and to activated carbon. Hydrogen sulfide and ammonia are one of the common malodorous compounds that can be found in emissions from many sewages treatment plants and industrial plants. Therefore, removing these harmful gasses from emissions is of significance in both life and industry because they can cause health problems to human and detrimental effects on the catalysts. In this work, pyrolytic carbon black from waste tires was used to develop adsorbent with good adsorption capacity for removal of hydrogen and ammonia. Pyrolytic carbon blacks were prepared by pyrolysis of waste tire chips ranged from 5 to 20 mm under the nitrogen atmosphere at 600℃ for 1 hour. Pellet-type adsorbents were prepared by a mixture of carbon black, metal oxide and sodium hydroxide or hydrochloric acid, and their adsorption capacities were estimated by using the breakthrough curve of a continuous fixed bed adsorption column at ambient condition. The adsorbent was manufactured with a mixture of carbon black, iron oxide(III), and sodium hydroxide showed the maximum working capacity of hydrogen sulfide. For ammonia, maximum working capacity was obtained by the adsorbent manufactured with a mixture of carbon black, copper oxide(II), and hydrochloric acid.

Keywords: adsorbent, ammonia, pyrolytic carbon black, hydrogen sulfide, metal oxide

Procedia PDF Downloads 257
1009 Effects of Increased Green Surface on a Densely Built Urban Fabric: The Case of Budapest

Authors: Viktória Sugár, Orsolya Frick, Gabriella Horváth, A. Bendegúz Vöröss, Péter Leczovics, Géza Baráth

Abstract:

Urban greenery has multiple positive effects both on the city and its residents. Apart from the visual advantages, it changes the micro-climate by cooling and shading, also increasing vapor and oxygen, reducing dust and carbon-dioxide content at the same time. The above are all critical factors of livability of an urban fabric. Unfortunately, in a dense, historical district there are restricted possibilities to build green surfaces. The present study collects and systemizes the applicable green solutions in the case of a historical downtown district of Budapest. The study contains a GIS-based measurement of the eligible surfaces for greenery, and also calculates the potential of oxygen production, carbon-dioxide reduction and cooling effect of an increased green surface.  It can be concluded that increasing the green surface has measurable effects on a densely built urban fabric, including air quality, micro-climate and other environmental factors.

Keywords: urban greenery, green roof, green wall, green surface potential, sustainable city, oxygen production, carbon-dioxide reduction, geographical information system

Procedia PDF Downloads 225
1008 Thermal Decomposition Behaviors of Hexafluoroethane (C2F6) Using Zeolite/Calcium Oxide Mixtures

Authors: Kazunori Takai, Weng Kaiwei, Sadao Araki, Hideki Yamamoto

Abstract:

HFC and PFC gases have been commonly and widely used as refrigerant of air conditioner and as etching agent of semiconductor manufacturing process, because of their higher heat of vaporization and chemical stability. On the other hand, HFCs and PFCs gases have the high global warming effect on the earth. Therefore, we have to be decomposed these gases emitted from chemical apparatus like as refrigerator. Until now, disposal of these gases were carried out by using combustion method like as Rotary kiln treatment mainly. However, this treatment needs extremely high temperature over 1000 °C. In the recent year, in order to reduce the energy consumption, a hydrolytic decomposition method using catalyst and plasma decomposition treatment have been attracted much attention as a new disposal treatment. However, the decomposition of fluorine-containing gases under the wet condition is not able to avoid the generation of hydrofluoric acid. Hydrofluoric acid is corrosive gas and it deteriorates catalysts in the decomposition process. Moreover, an additional process for the neutralization of hydrofluoric acid is also indispensable. In this study, the decomposition of C2F6 using zeolite and zeolite/CaO mixture as reactant was evaluated in the dry condition at 923 K. The effect of the chemical structure of zeolite on the decomposition reaction was confirmed by using H-Y, H-Beta, H-MOR and H-ZSM-5. The formation of CaF2 in zeolite/CaO mixtures after the decomposition reaction was confirmed by XRD measurements. The decomposition of C2F6 using zeolite as reactant showed the closely similar behaviors regardless the type of zeolite (MOR, Y, ZSM-5, Beta type). There was no difference of XRD patterns of each zeolite before and after reaction. On the other hand, the difference in the C2F6 decomposition for each zeolite/CaO mixtures was observed. These results suggested that the rate-determining process for the C2F6 decomposition on zeolite alone is the removal of fluorine from reactive site. In other words, the C2F6 decomposition for the zeolite/CaO improved compared with that for the zeolite alone by the removal of the fluorite from reactive site. HMOR/CaO showed 100% of the decomposition for 3.5 h and significantly improved from zeolite alone. On the other hand, Y type zeolite showed no improvement, that is, the almost same value of Y type zeolite alone. The descending order of C2F6 decomposition was MOR, ZSM-5, beta and Y type zeolite. This order is similar to the acid strength characterized by NH3-TPD. Hence, it is considered that the C-F bond cleavage is closely related to the acid strength.

Keywords: hexafluoroethane, zeolite, calcium oxide, decomposition

Procedia PDF Downloads 482
1007 A Review of Antimicrobial Strategy for Cotton Textile

Authors: C. W. Kan, Y. L. Lam

Abstract:

Cotton textile has large specific surfaces with good adhesion and water-storage properties which provide conditions for the growth and settlement of biological organisms. In addition, the soil, dust and solutes from sweat can also be the sources of nutrients for microorganisms [236]. Generally speaking, algae can grow on textiles under very moist conditions, providing nutrients for fungi and bacteria growth. Fungi cause multiple problems to textiles including discolouration, coloured stains and fibre damage. Bacteria can damage fibre and cause unpleasant odours with a slick and slimy feel. In addition, microbes can disrupt the manufacturing processes such as textile dyeing, printing and finishing operations through the reduction of viscosity, fermentation and mold formation. Therefore, a large demand exists for the anti-microbially finished textiles capable of avoiding or limiting microbial fibre degradation or bio fouling, bacterial incidence, odour generation and spreading or transfer of pathogens. In this review, the main strategy for cotton textile will be reviewed. In the beginning, the classification of bacteria and germs which are commonly found with cotton textiles will be introduced. The chemistry of antimicrobial finishing will be discussed. In addition, the types of antimicrobial treatment will be summarized. Finally, the application and evaluation of antimicrobial treatment on cotton textile will be discussed.

Keywords: antimicrobial, cotton, textile, review

Procedia PDF Downloads 365
1006 Parametric Study of a Washing Machine to Develop an Energy Efficient Program Regarding the Enhanced Washing Efficiency Index and Micro Organism Removal Performance

Authors: Peli̇n Yilmaz, Gi̇zemnur Yildiz Uysal, Emi̇ne Bi̇rci̇, Berk Özcan, Burak Koca, Ehsan Tuzcuoğlu, Fati̇h Kasap

Abstract:

Development of Energy Efficient Programs (EEP) is one of the most significant trends in the wet appliance industry of the recent years. Thanks to the EEP, the energy consumption of a washing machine as one of the most energy-consuming home appliances can shrink considerably, while its washing performance and the textile hygiene should remain almost unchanged. Here in, the goal of the present study is to achieve an optimum EEP algorithm providing excellent textile hygiene results as well as cleaning performance in a domestic washing machine. In this regard, steam-pretreated cold wash approach with a combination of innovative algorithm solution in a relatively short washing cycle duration was implemented. For the parametric study, steam exposure time, washing load, total water consumption, main-washing time, and spinning rpm as the significant parameters affecting the textile hygiene and cleaning performance were investigated within a Design of Experiment study using Minitab 2021 statistical program. For the textile hygiene studies, specific loads containing the contaminated cotton carriers with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria were washed. Then, the microbial removal performance of the designed programs was expressed as log reduction calculated as a difference of microbial count per ml of the liquids in which the cotton carriers before and after washing. For the cleaning performance studies, tests were carried out with various types of detergents and EMPA Standard Stain Strip. According to the results, the optimum EEP program provided an excellent hygiene performance of more than 2 log reduction of microorganism and a perfect Washing Efficiency Index (Iw) of 1.035, which is greater than the value specified by EU ecodesign regulation 2019/2023.

Keywords: washing machine, energy efficient programs, hygiene, washing efficiency index, microorganism, escherichia coli, staphylococcus aureus, pseudomonas aeruginosa, laundry

Procedia PDF Downloads 135
1005 Waste Water Treatment by Moringa oleifera Seed Powder in Historical Jalmahal Lake Located in Semi-Arid Monsoon Zone of India

Authors: Pomila Sharma

Abstract:

The rapid urbanization in India was not accompanied by the establishment of waste water treatment facility at similar and same pace. The inland fresh water ecosystem is increasingly subjected to great stress from various human activities. Jalmahal Lake is located in Jaipur city of Rajasthan state; the lake was constructed about 400 years ago and surrounded by hills. The lake was approximately 139 hectare in full spread and has catchment area of 23.5 sq. kilometer. Out of the total catchment area approximate 40% falls inside dense urban area of Jaipur city. During the showers, the treated and untreated waste waters and runoff waters get mixed and enter the lake through the various influx channels, and the lake water quality gets affected by the inflow of waste water. The main objective of this work was to use the Moringa oleifera seeds as a natural adsorbent for the treatment of wastewater in lake. Moringa oleifera is a tropical, multipurpose tree whose seeds contain high-quality edible oil 40% by weight and water soluble, non-toxic protein that act as an effective coagulant for the removal of organic matter in water and waste water treatment. Laboratory Jar test procedure had been used for coagulation studies; an experiment runs using lake water. Water extracts/powder of Moringa seed applied to treat polluted water of lake. In present study various doses of Moringa oleifera seed coagulant viz. 100 mg/L, 200 mg/L, and 400 mg/L were taken and checked for the efficiency dose on treated and untreated polluted water. Turbidity and color removal is one of the important steps in a waste water treatment processes. The results indicate significant reduction in turbidity and color. Standard plate count was significantly reduced fecal coliform levels too. All parameters were reduced with the increased dose of Moringa oleifera. It was clear from the study Moringa oleifera seed was shown to be a potential bio-coagulant, for treatment of sewage laden polluted water in the lake.

Keywords: coagulant, Moringa oleifera, plate count, turbidity, wastewater

Procedia PDF Downloads 410
1004 Design of a Lumbar Interspinous Process Fixation Device for Minimizing Soft Tissue Removal and Operation Time

Authors: Minhyuk Heo, Jihwan Yun, Seonghun Park

Abstract:

It has been reported that intervertebral fusion surgery, which removes most of the ligaments and muscles of the spine, increases the degenerative disease in adjacent spinal segments. Therefore, it is required to develop a lumbar interspinous process fixation device that minimizes the risks and side effects from the surgery. The objective of the current study is to design an interspinous process fixation device with simple structures in order to minimize soft tissue removal and operation time during intervertebral fusion surgery. For the design concepts of a lumbar fixation device, the principle of the ratchet was first applied on the joining parts of the device in order to shorten the operation time. The coil spring structure was selected for connecting parts between the spinous processes so that a normal range of motion in spinal segments is preserved and degenerative spinal diseases are not developed in the adjacent spinal segments. The stiffness of the spring was determined not to interrupt the motion of a lumbar spine. The designed value of the spring stiffness allows the upper part of the spring to move ~10° which is higher than the range of flexion and extension for normal lumbar spine (6°-8°), when a moment of 10Nm is applied on the upper face of L1. A finite element (FE) model composed of L1 to L5 lumbar spines was generated to verify the mechanical integrity and the dynamic stability of the designed lumbar fixation device and to further optimize the lumbar fixation device. The FE model generated above produced the same pressure value on intervertebral disc and dynamic behavior as the normal intact model reported in the literature. The consistent results from this comparison validates the accuracy in the modeling of the current FE model. Currently, we are trying to generate an abnormal model with defects in one or more components of the normal FE model above. Then, the mechanical integrity and the dynamic stability of the designed lumbar fixation device will be analyzed after being installed in the abnormal model and then the lumbar fixation device will be further optimized.

Keywords: lumbar interspinous process fixation device, finite element method, lumbar spine, kinematics

Procedia PDF Downloads 228
1003 Survey of Related Field for Artificial Intelligence Window Development

Authors: Young Kwon Yang, Bo Rang Park, Hyo Eun Lee, Tea Won Kim, Eun Ji Choi, Jin Chul Park

Abstract:

To develop an artificial intelligence based automatic ventilation system, recent research trends were analyzed and analyzed. This research method is as follows. In the field of architecture and window technology, the use of artificial intelligence, the existing study of machine learning model and the theoretical review of the literature were carried out. This paper collected journals such as Journal of Energy and Buildings, Journal of Renewable and Sustainable Energy Reviews, and articles published on Web-sites. The following keywords were searched for articles from 2000 to 2016. We searched for the above keywords mainly in the title, keyword, and abstract. As a result, the global artificial intelligence market is expected to grow at a CAGR of 14.0% from USD127bn in 2015 to USD165bn in 2017. Start-up investments in artificial intelligence increased from the US $ 45 million in 2010 to the US $ 310 million in 2015, and the number of investments increased from 6 to 54. Although AI is making efforts to advance to advanced countries, the level of technology is still in its infant stage. Especially in the field of architecture, artificial intelligence (AI) is very rare. Based on the data of this study, it is expected that the application of artificial intelligence and the application of architectural field will be revitalized through the activation of artificial intelligence in the field of architecture and window.

Keywords: artificial intelligence, window, fine dust, thermal comfort, ventilation system

Procedia PDF Downloads 275
1002 3D Scanning Documentation and X-Ray Radiography Examination for Ancient Egyptian Canopic Jar

Authors: Abdelrahman Mohamed Abdelrahman

Abstract:

Canopic jars are one of the vessels of funerary nature used by the ancient Egyptian in mummification process that were used to save the viscera of the mummified body after being extracted from the body and treated. Canopic jars are made of several types of materials like Limestone, Alabaster, and Pottery. The studied canopic jar dates back to Late period, located in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar carved from limestone with carved hieroglyphic inscriptions, and it filled and closed by mortar from inside. Some aspects of damage appeared in the jar, such as dust, dirts, classification, wide crack, weakness of limestone. In this study, we used documentation and investigation modern techniques to document and examine the jar. 3D scanning and X-ray Radiography imaging used in applied study. X-ray imaging showed that the mortar was placed at a time when the jar contained probably viscera where the mortar appeared that not reach up to the base of the inner jar. Through the three-dimensional photography, the jar was documented, and we have 3D model of the jar, and now we have the ability through the computer to see any part of the jar in all its details. After that, conservation procedures have been applied with high accuracy to conserve the jar, including mechanical, wet, and chemical cleaning, filling wide crack in the body of the jar using mortar consisting of calcium carbonate powder mixing with primal E330 S, and consolidation, so the limestone became strong after using paraloid B72 2% concentrate as a consolidate material.

Keywords: vessel, limestone, canopic jar, mortar, 3D scanning, X-ray radiography

Procedia PDF Downloads 77
1001 Wastewater Treatment from Heavy Metals by Nanofiltration and Ion Exchange

Authors: G. G. Kagramanov, E. N. Farnosova, Linn Maung Maung

Abstract:

The technologies of ion exchange and nanofiltration can be used for treatment of wastewater containing copper and other heavy metal ions to decrease the environmental risks. Nanofiltration characteristics under water treatment of heavy metals have been studied. The influence of main technical process parameters - pressure, temperature, concentration and pH value of the initial solution on flux and rejection of nanofiltration membranes has been considered. And ion exchange capacities of resins in removal of heavy metal ions from wastewater have been determined.

Keywords: exchange capacity, heavy metals, ion exchange, membrane separation, nanofiltration

Procedia PDF Downloads 288
1000 Scar Removal Stretegy for Fingerprint Using Diffusion

Authors: Mohammad A. U. Khan, Tariq M. Khan, Yinan Kong

Abstract:

Fingerprint image enhancement is one of the most important step in an automatic fingerprint identification recognition (AFIS) system which directly affects the overall efficiency of AFIS. The conventional fingerprint enhancement like Gabor and Anisotropic filters do fill the gaps in ridge lines but they fail to tackle scar lines. To deal with this problem we are proposing a method for enhancing the ridges and valleys with scar so that true minutia points can be extracted with accuracy. Our results have shown an improved performance in terms of enhancement.

Keywords: fingerprint image enhancement, removing noise, coherence, enhanced diffusion

Procedia PDF Downloads 516
999 Processing of Input Material as a Way to Improve the Efficiency of the Glass Production Process

Authors: Joanna Rybicka-Łada, Magda Kosmal, Anna Kuśnierz

Abstract:

One of the main problems of the glass industry is the still high consumption of energy needed to produce glass mass, as well as the increase in prices, fuels, and raw materials. Therefore, comprehensive actions are taken to improve the entire production process. The key element of these activities, starting from filling the set to receiving the finished product, is the melting process, whose task is, among others, dissolving the components of the set, removing bubbles from the resulting melt, and obtaining a chemically homogeneous glass melt. This solution avoids dust formation during filling and is available on the market. This process consumes over 90% of the total energy needed in the production process. The processes occurring in the set during its conversion have a significant impact on the further stages and speed of the melting process and, thus, on its overall effectiveness. The speed of the reactions occurring and their course depend on the chemical nature of the raw materials, the degree of their fragmentation, thermal treatment as well as the form of the introduced set. An opportunity to minimize segregation and accelerate the conversion of glass sets may be the development of new technologies for preparing and dosing sets. The previously preferred traditional method of melting the set, based on mixing all glass raw materials together in loose form, can be replaced with a set in a thickened form. The aim of the project was to develop a glass set in a selectively or completely densified form and to examine the influence of set processing on the melting process and the properties of the glass.

Keywords: glass, melting process, glass set, raw materials

Procedia PDF Downloads 60