Search results for: deep deterministic policy gradient (DDPG)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6806

Search results for: deep deterministic policy gradient (DDPG)

5936 Pre-Drying Effects on the Quality of Frying Oil

Authors: Hasan Yalcin, Tugba Dursun Capar

Abstract:

Deep-fat frying causes desirable as well as undesirable changes in oil and potato, and changes the quality of the oil by hydrolysis, oxidation, and polymerization. The main objective of the present study was to investigate the pre-drying effects on the quality of both frying oil and potatoes. Prior to frying, potato slices (10 mm x10 mm x 30 mm) were air- dried at 60°C for 15, 30, 45, 60, 90, and 120 mins., respectively. Potato slices without the pre-drying treatment were considered as the control variable. Potato slices were fried in sunflower oil at 180°C for 5, 10, and 13 mins. The deep-frying experiments were repeated five times using the new potato slices in the same oil without oil replenishment. Samples of the fresh oil, together with those sampled at the end of successive frying operations (1th, 3th and 5th) were removed and analysed. Moisture content, colour and oil intake of the potato and colour, peroxide value (PV), free fatty acid (FFA), fatty acid composition and viscosity of the used oil were evaluated. The effect of frying time was also examined. Results show that pre-drying treatment had a significant effect on physicochemical properties and colour parameters of potato slices and frying oil. Pre-drying considerably decreased the oil absorption. The lowest oil absorption was found for the treatment that was pre-dried for 120, and fried for 5 min. The FFA levels decreased permanently for each pre-treatment throughout the frying period. All the pre-drying treatments had reached their maximum levels of FFA by the end of the frying procedures. The PV of the control and 60 min pre-dried sample decreased after the third frying. However, the PV of other samples increased constantly throughout the frying periods. Lastly, pre-drying did not affect the fatty acid composition of frying oil considerably when compared against previously unused oil.

Keywords: air-drying, deep-fat frying, moisture content oil uptake, quality

Procedia PDF Downloads 308
5935 Education in Schools and Public Policy in India

Authors: Sujeet Kumar

Abstract:

Education has greater importance particularly in terms of increasing human capital and economic competitiveness. It plays a crucial role in terms of cognitive and skill development. Its plays a vital role in process of socialization, fostering social justice, and enhancing social cohesion. Policy related to education has been always a priority for developed countries, which is later adopted by developing countries also. The government of India has also brought change in education polices in line with recognizing change at national and supranational level. However, quality education is still not become an open door for every child in India and several reports are produced year to year about level of school education in India. This paper is concerned with schooling in India. Particularly, it focuses on two government and two private schools in Bihar, but reference has made to schools in Delhi especially around slum communities. The paper presents brief historical context and an overview of current school systems in India. Later, it focuses on analysis of current development in policy in reference with field observation, which is anchored around choice, diversity, market – orientation and gap between different groups of pupils. There is greater degree of difference observed at private and government school levels in terms of quality of teachers, method of teaching and overall environment of learning. The paper concludes that the recent policy development in education particularly Sarva Siksha Abhiyaan (SAA) and Right to Education Act (2009) has required renovating new approach to bridge the gap through broader consultation at grassroots and participatory approach with different stakeholders.

Keywords: education, public policy, participatory approach

Procedia PDF Downloads 394
5934 Ground Improvement Using Deep Vibro Techniques at Madhepura E-Loco Project

Authors: A. Sekhar, N. Ramakrishna Raju

Abstract:

This paper is a result of ground improvement using deep vibro techniques with combination of sand and stone columns performed on a highly liquefaction susceptible site (70 to 80% sand strata and balance silt) with low bearing capacities due to high settlements located (earth quake zone V as per IS code) at Madhepura, Bihar state in northern part of India. Initially, it was envisaged with bored cast in-situ/precast piles, stone/sand columns. However, after detail analysis to address both liquefaction and improve bearing capacities simultaneously, it was analyzed the deep vibro techniques with combination of sand and stone columns is excellent solution for given site condition which may be first time in India. First after detail soil investigation, pre eCPT test was conducted to evaluate the potential depth of liquefaction to densify silty sandy soils to improve factor of safety against liquefaction. Then trail test were being carried out at site by deep vibro compaction technique with sand and stone columns combination with different spacings of columns in triangular shape with different timings during each lift of vibro up to ground level. Different spacings and timing was done to obtain the most effective spacing and timing with vibro compaction technique to achieve maximum densification of saturated loose silty sandy soils uniformly for complete treated area. Then again, post eCPT test and plate load tests were conducted at all trail locations of different spacings and timing of sand and stone columns to evaluate the best results for obtaining the required factor of safety against liquefaction and the desired bearing capacities with reduced settlements for construction of industrial structures. After reviewing these results, it was noticed that the ground layers are densified more than the expected with improved factor of safety against liquefaction and achieved good bearing capacities for a given settlements as per IS codal provisions. It was also worked out for cost-effectiveness of lightly loaded single storied structures by using deep vibro technique with sand column avoiding stone. The results were observed satisfactory for resting the lightly loaded foundations. In this technique, the most important is to mitigating liquefaction with improved bearing capacities and reduced settlements to acceptable limits as per IS: 1904-1986 simultaneously up to a depth of 19M. To our best knowledge it was executed first time in India.

Keywords: ground improvement, deep vibro techniques, liquefaction, bearing capacity, settlement

Procedia PDF Downloads 197
5933 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 250
5932 Policy of Tourism and Opportunities of Development of Wellness Industry in Georgia

Authors: G. Erkomaishvili, R. Gvelesiani, E. Kharaishvili, M. Chavleishvili

Abstract:

The topic reviews the situation existing currently in Georgia in the field of tourism in conditions of globalization: Touristic resources, the paces of development of the tourism infrastructure, tourism policy, possibilities of development of the Wellness industry in Georgia that is the newest direction of the medical tourism. The factors impeding the development of the industry of tourism, namely-existence of the conflict zones, high rates of the bank credits, deficiencies associated with the tax laws, a level of infrastructural development, quality of services, deficit in the competitive staff, increase of prices in the peak seasons, insufficient promotion of the touristic opportunities of Georgia on the international markets are studied and analyzed. Besides, the levels of development of tourism in Georgia according to the World Economic Forum, aspects of cooperation with the European Union etc. are reviewed. As a result of these studies, a strategy of development of tourism and one of its directions-Wellness industries in Georgia is introduced with the relevant conclusions, on which basis the recommendations are provided.

Keywords: about tourism, tourism policy, wellness industry, business, innovation, technology

Procedia PDF Downloads 517
5931 Comprehensive Evaluation of COVID-19 Through Chest Images

Authors: Parisa Mansour

Abstract:

The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.

Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT

Procedia PDF Downloads 57
5930 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 129
5929 How COVID 19 Changed Policy Makers Behavior toward Environmental Policy

Authors: Ammar Alrefaei

Abstract:

The COVID-19 pandemic changed human life. The vast majority of the COVID effect was on the healthcare sector, but its impact on the global economy cannot be denied. In the field of environment, the pandemic may have a more significant impact on the environment than all environmental activity and policies of recent years. The pandemic consequences for the environment may be far more unpredictable than one might assume. In view of this, it is imperative for legislators from different states to be prepared to apply adequate measures to counteract such consequences. This article aimed to examine the obstacles to implementing effective environmental policies after the COVID-19 pandemic using different examples from different countries. Also, how adopting new initiatives, such as the Saudi Green Initiative and the Middle East Green Initiative, can help policymakers and legislators adopt new laws and policies. In addition, this paper reviewed the developing dangers to environmental protection after the pandemic and analyzed the major challenges to instrument active environmental policies during COVID-19 and in the world after COVID.

Keywords: environmental policy, environment law, green initiative, COVID 19

Procedia PDF Downloads 112
5928 Cigarette Smoke Detection Based on YOLOV3

Authors: Wei Li, Tuo Yang

Abstract:

In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.

Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction

Procedia PDF Downloads 87
5927 Casual Effects of Informal Care and Health on Falls and Other Accidents among the Elderly Population in China

Authors: Hong Wu, Naiji Lu, Chenguang Wang, Xinming Tu

Abstract:

This article analyzes the causal effects of informal care, mental health, and physical health on falls and other accidents (e.g. traffic accidents) among elderly people. To purge potential reversal causal effects, e.g., past accidents induce more future informal care, we use two-stage least squares to identify the impacts. By using longitudinal data from a representative national China Health and retirement longitudinal study of people aged 45 and older in China, our findings indicate that informal care decreases while poor health conditions increase the occurrence of accidents. We also find heterogeneous impacts on the occurrence of accidents, varying by gender, urban status, and past accident history. Our findings suggest the following three policy implications. First, policy makers who aim to decrease accidents should take informal care to elders into account. Second, ease of birth policy and postponed retirement policy are urgent to meet the demand of informal care. Third, medical policies should attach great importance to not only physical health but also mental health of elderly parents especially for older people with accident history.

Keywords: accident, China, fall, informal care, mental health, physical health

Procedia PDF Downloads 478
5926 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia

Authors: Dhekra Khazri, Hakim Gabtni

Abstract:

Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.

Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector

Procedia PDF Downloads 284
5925 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 134
5924 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 142
5923 The Effects of Different Types of Cement on the Permeability of Deep Mixing Columns

Authors: Mojebullah Wahidy, Murat Olgun

Abstract:

In this study, four different types of cement are used to investigate the permeability of DMC (Deep Mixing Column) in the clay. The clay used in this research is in the kaolin group, and the types of cement are; CEM I 42.5.R. normal portland cement, CEM II/A-M (P-L) pozzolan doped cement, CEM III/A 42.5 N blast furnace slag cement and DMFC-800 fine-grained portland cement. Firstly, some rheological tests are done on every cement, and a 0.9 water/cement ratio is selected as the appropriate ratio. This ratio is used to prepare the small-scale DMCs for all types of cement with %6, %9, %12, and %15, which are determined as the dry weight of the clay. For all the types of cement, three samples were prepared in every percentage and were kept on curing for 7, 14, and 28 days for permeability tests. As a result of the small-scale DMCs, permeability tests, a %12 selected for big-scale DMCs. A total of five big scales DMC were prepared by using a %12-cement and were kept for 28 days curing for permeability tests. The results of the permeability tests show that by increasing the cement percentage and curing time of all DMCs, the permeability coefficient (k) is decreased. Despite variable results in different cement ratios and curing time in general, samples treated by DMFC-800 fine-grained cement have the lowest permeability coefficient. Samples treated with CEM II and CEM I cement types were the second and third lowest permeable samples. The highest permeability coefficient belongs to the samples that were treated with CEM III cement type.

Keywords: deep mixing column, rheological test, DMFC-800, permeability test

Procedia PDF Downloads 78
5922 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
5921 Environmental Policy Instruments and Greenhouse Gas Emissions: VAR Analysis

Authors: Veronika Solilová, Danuše Nerudová

Abstract:

The paper examines the interaction between the environmental taxation, size of government spending on environmental protection and greenhouse gas emissions and gross inland energy consumption. The aim is to analyze the effects of environmental taxation and government spending on environmental protection as an environmental policy instruments on greenhouse gas emissions and gross inland energy consumption in the EU15. The empirical study is performed using a VAR approach with the application of aggregated data of EU15 over the period 1995 to 2012. The results provide the evidence that the reactions of greenhouse gas emission and gross inland energy consumption to the shocks of environmental policy instruments are strong, mainly in the short term and decay to zero after about 8 years. Further, the reactions of the environmental policy instruments to the shocks of greenhouse gas emission and gross inland energy consumption are also strong in the short term, however with the deferred effects. In addition, the results show that government spending on environmental protection together with gross inland energy consumption has stronger effect on greenhouse gas emissions than environmental taxes in EU15 over the examined period.

Keywords: VAR analysis, greenhouse gas emissions, environmental taxation, government spending

Procedia PDF Downloads 293
5920 Lewis Turning Point in China: Interviewing Perceptions of Fertility Policies by Unmarried Female Millennials

Authors: Yunqi Wang

Abstract:

Benefiting from the demographic dividend, China has enjoyed export-led economic growth since 1978. While Lewis's model marks the structural transformation from the low-wage 'subsistence' sector to the 'modern sector' as the end of labour surplus, the Chinese government seems eager to extend such benefit by promoting a series of fertility encouragement policies, contrasting to its firm and strict birth control since last century. Based on a Attride-Stirling’s thematic analysis of interviews with unmarried female millennials in China, this paper argues that the young female generation responded to current fertility policies negatively, where the policy ineffectiveness and irresponsiveness have further worsened their marriage and childbirth reluctance. Instead of focusing on changes in wage level, this research contributes a qualitative perspective to the existing theoretical debate on the Lewis turning point, implying an inevitable end of demographic dividend in China. Highlighting the greater focus on female consciousness among the younger generation, it also suggests a policy orientation towards resolving outdated social norms to accommodate the rising female consciousness since millennials will become the childbirth mainstay in forthcoming years.

Keywords: lewis model, fertility policy, demographic dividend, one-child policy

Procedia PDF Downloads 120
5919 Synthesis of 5-Substituted 1H-Tetrazoles in Deep Eutectic Solvent

Authors: Swapnil A. Padvi, Dipak S. Dalal

Abstract:

The chemistry of tetrazoles has been grown tremendously in the past few years because tetrazoles are important and useful class of heterocyclic compounds which have a widespread application such as anticancer, antimicrobial, analgesics, antibacterial, antifungal, antihypertensive, and anti-allergic drugs in medicinal chemistry. Furthermore, tetrazoles have application in material sciences as explosives, rocket propellants, and in information recording systems. In addition to this, they have a wide range of application in coordination chemistry as a ligand. Deep eutectic solvents (DES) have emerged over the current decade as a novel class of green reaction media and applied in various fields of sciences because of their unique physical and chemical properties similar to the ionic liquids such as low vapor pressure, non-volatility, high thermal stability and recyclability. In addition, the reactants of DES are cheaply available, low-toxic, and biodegradable, which makes them predominantly required for large-scale applications effectively in industrial production. Herein we report the [2+3] cycloaddition reaction of organic nitriles with sodium azide affords the corresponding 5-substituted 1H-tetrazoles in six different types of choline chloride based deep eutectic solvents under mild reaction condition. Choline chloride: ZnCl2 (1:2) showed the best results for the synthesis of 5-substituted 1 H-tetrazoles. This method reduces the disadvantages such as: the use of toxic metals and expensive reagents, drastic reaction conditions and the presence of dangerous hydrazoic acid. The approach provides environment-friendly, short reaction times, good to excellent yields; safe process and simple workup make this method an attractive and useful contribution to present green organic synthesis of 5-substituted-1H-tetrazoles. All synthesized compounds were characterized by IR, 1H NMR, 13C NMR and Mass spectroscopy. DES can be recovered and reused three times with very little loss in activity.

Keywords: click chemistry, choline chloride, green chemistry, deep eutectic solvent, tetrazoles

Procedia PDF Downloads 231
5918 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 11
5917 Influencing Factors of School Enterprise Cooperation: An Exploratory Study in Chinese Vocational Nursing Education

Authors: Xiao Chen, Alice Ho, Mabel Tie, Xiaoheng Xu

Abstract:

Background and Significance of the Study: School-enterprise cooperation has been the cornerstone of vocational education in China and many other countries. Researchers and policymakers have paid much attention to ensuring the implementation and improving the quality of school-enterprise cooperation. However, many problems still exist on the implementation level of the cooperation. On the one hand, the enterprises lack the motivation to participate in the cooperation. On the other hand, there is a lack of effective guidance and management during the cooperation. Furthermore, the current literature focuses greatly on policy recommendations on the national level while failing to provide a detailed practical understanding of how school-enterprise cooperation is carried out on the ground level. With emerging social problems, such as the aging population in China, there is an increasing need for diverse nursing services and better nursing quality. Methodology: To gain a deeper understanding of the influencing factors of the implementation of school-enterprise cooperation, this work conducted 37 exploratory interviews in four Chinese cities spanning first-tier to fourth-tier cities with hospital department directors, vocational school deans, nurses, and vocational students. Multiple critical policy documents that founded the current vocational education system in China were analyzed, along with the data collected from the interviews. Major Findings: Based on the policy and interview analyses, this work reveals a set of influencing factors for school-enterprise cooperation implementation. Findings from each region contribute to an overall model of influencing factors for implementing school-enterprise cooperation in vocational nursing education in China, which leads to practical insights for policy recommendation. The key influencing factors are found based on the policy, hospital, school, and social levels. Following practical policy recommendations were presented. Moving forward, further research on the implementation of school-enterprise cooperation in specific industries will become increasingly critical to improving the effectiveness of educational policies and the quality of vocational education.

Keywords: nursing, policy recommendation, school-enterprise cooperation, vocational education

Procedia PDF Downloads 116
5916 Government and Non-Government Policy Responses to Anti-Trafficking Initiatives: A Discursive Analysis of the Construction of the Problem of Human Trafficking in Australia and Thailand

Authors: Jessica J. Gillies

Abstract:

Human trafficking is a gross violation of human rights and thus invokes a strong response particularly throughout the global academic community. A longstanding tension throughout academic debate remains the question of a relationship between anti-trafficking policy and sex industry policy. In Australia, over the previous decade, many human trafficking investigations have related to the sexual exploitation of female victims, and convictions in Australia to date have often been for trafficking women from Thailand. Sex industry policy in Australia varies between states, providing a rich contextual landscape in which to explore this relationship. The purpose of this study was to deconstruct how meaning is constructed surrounding human trafficking throughout these supposedly related political discourses in Australia. In order to analyse the discursive construction of the problem of human trafficking in relation to sex industry policy, a discursive analysis was conducted. The methodology of the study was informed by a feminist theoretical framework, and included academic sources and grey literature such as organisational reports and policy statements regarding anti-trafficking initiatives. The scope of grey literature was restricted to Australian and Thai government and non-government organisation texts. The chosen methodology facilitated a qualitative exploration of the influence of feminist discourses over political discourse in this arena. The discursive analysis exposed clusters of active feminist debates interacting with sex industry policy within individual states throughout Australia. Additionally, strongly opposed sex industry perspectives were uncovered within these competing feminist frameworks. While the influence these groups may exert over policy differs, the debate constructs a discursive relationship between human trafficking and sex industry policy. This is problematic because anti-trafficking policy is drawn to some extent from this discursive construction, therefore affecting support services for survivors of human trafficking. The discursive analysis further revealed misalignment between government and non-government priorities, Australian government anti-trafficking policy appears to favour criminal justice priorities; whereas non-government settings preference human rights protections. Criminal justice priorities invoke questions of legitimacy, leading to strict eligibility policy for survivors seeking support following exploitation in the Australian sex industry, undermining women’s agency and human rights. In practice, these two main findings demonstrate a construction of policy that has serious outcomes on typical survivors in Australia following a lived experience of human trafficking for the purpose of sexual exploitation. The discourses constructed by conflicting feminist arguments influence political discourses throughout Australia. The application of a feminist theoretical framework to the discursive analysis of the problem of human trafficking is unique to this study. The study has exposed a longstanding and unresolved feminist debate that has filtered throughout anti-trafficking political discourse. This study illuminates the problematic construction of anti-trafficking policy, and the implications in practice on survivor support services. Australia has received international criticism for the focus on criminal justice rather than human rights throughout anti-trafficking policy discourse. The outcome of this study has the potential to inform future language and constructive conversations contributing to knowledge around how policy effects survivors in the post trafficking experience.

Keywords: Australia, discursive analysis, government, human trafficking, non-government, Thailand

Procedia PDF Downloads 119
5915 Intrinsic Contradictions in Entrepreneurship Development and Self-Development

Authors: Revaz Gvelesiani

Abstract:

The problem of compliance between the state economic policy and entrepreneurial policy of businesses is primarily manifested in the contradictions related to the congruence between entrepreneurship development and self-development strategies. Among various types (financial, monetary, social, etc.) of the state economic policy aiming at the development of entrepreneurship, economic order policy is of special importance. Its goal is to set the framework for both public and private economic activities and achieve coherence between the societal value system and the formation of the economic order framework. Economic order policy, in its turn, involves intrinsic contradiction between the social and the competitive order. Competitive order is oriented on the principle of success, while social order _ on the criteria of need satisfaction, which contradicts, at least partly, to the principles of success. Thus within the economic order policy, on the one hand, the state makes efforts to form social order and expand its frontiers, while, on the other hand, market is determined to establish functioning competitive order and ensure its realization. Locating the adequate spaces for and setting the rational border between the state (social order) and the private (competitive order) activities, represents the phenomenon of the decisive importance from the entrepreneurship development strategy standpoint. In the countries where the above mentioned spaces and borders are “set” correctly, entrepreneurship agents (small, medium-sized and large businesses) achieve great success by means of seizing the respective segments and maintaining the leading positions in the internal, the European and the world markets for a long time. As for the entrepreneurship self-development strategy, above all, it involves: •market identification; •interactions with consumers; •continuous innovations; •competition strategy; •relationships with partners; •new management philosophy, etc. The analysis of compliance between the entrepreneurship strategy and entrepreneurship culture should be the reference point for any kind of internationalization in order to avoid shocks of cultural nature and the economic backwardness. Stabilization can be achieved only when the employee actions reflect the existing culture and the new contents of culture (targeted culture) is turned into the implicit consciousness of the personnel. The future leaders should learn how to manage different cultures. Entrepreneurship can be managed successfully if its strategy and culture are coherent. However, not rarely enterprises (organizations) show various forms of violation of both personal and team actions. If personal and team non-observances appear as the form of influence upon the culture, it will lead to global destruction of the system and structure. This is the entrepreneurship culture pathology that complicates to achieve compliance between the entrepreneurship strategy and entrepreneurship culture. Thus, the intrinsic contradictions of entrepreneurship development and self-development strategies complicate the task of reaching compliance between the state economic policy and the company entrepreneurship policy: on the one hand, there is a contradiction between the social and the competitive order within economic order policy and on the other hand, the contradiction exists between entrepreneurship strategy and entrepreneurship culture within entrepreneurship policy.

Keywords: economic order policy, entrepreneurship, development contradictions, self-development contradictions

Procedia PDF Downloads 328
5914 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 104
5913 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 66
5912 A Multidimensional Analysis of English as a Medium of Instruction in Algerian Higher Education: Policy, Practices and Attitudes

Authors: Imene Medfouni

Abstract:

In the context of postcolonial Algeria, language policy, language planning as well as language attitudes have recently stirred up contested debates in higher education system. This linguistic and politically-oriented conflict have constantly created a complex environment for learning. In the light of this observation, English language situates itself at the core of this debate with respects to its international status and potential influences. This presentation is based on ongoing research that aims to gain a better understanding of the introduction of English as a medium of instruction (EMI) in a postcolonial context, marked by multilingualism and language conflict. This research offers interesting insights to critically explore EMI from different perspectives: policy, practices, and attitudes. By means of methodological triangulation, this research integrates a mixed approach, whereby the sources of data triangulation will be elicited from the following methods: classroom observations, document analysis, focus groups, questionnaires and interviews. Preliminary findings suggest that English language might not replace French status in Algerian universities because of the latter strong presence and diffusion within Algerian linguistic landscape.

Keywords: English as a lingua franca, English as a medium of instruction, language policy and planning, multilingualism, postcolonial contexts, World Englishes

Procedia PDF Downloads 258
5911 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies

Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong

Abstract:

To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.

Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation

Procedia PDF Downloads 138
5910 Border Trade Policy to Promote Thailand - Myanmar Mae Sai, Chiang Rai Province

Authors: Sakapas Saengchai, Pichamon Chansuchai

Abstract:

Research Thai- Myanmar Border Trade Promotion Policy, Mae Sai District, Chiang Rai Province The objectives of this study were to study the policy of promoting Thai- Myanmar border trade in Mae Sai district, Chiang Rai province. And suitable models for the development of border trade in Mae Sai. Chiang Rai province This research uses qualitative methodology. The method of collecting data from research papers. Participatory Observation In-depth interviews in which the information is important, the governor of Chiang Rai. Chiang Rai Customs Service Executive Office of Mae Sai Immigration Bureau Maesai Chamber of Commerce and Private Entrepreneurs By specific sampling Data analysis uses content analysis. The study indicated that Border Trade Promotion Policy The direction taken by the government to focus on developing 1. Security is further reducing crime. Smuggling and human trafficking Including the preparation to protect people from terrorism and natural disasters. And cooperation with Burma on border security. 2. The development of wealth is the promotion of investment. The transport links, logistics value chain. Products and services across the Thai-Myanmar border. Improve the regulations and laws to promote fair trade. Convenient and fast 3. Sustainable development is the ability to generate income, quality of life of people in the Thai border to increase continuously. By using balanced natural resources, production and consumption are environmentally friendly. Which featured the participation of all sectors of the public and private sectors in the region to drive the development of the border with Thailand. Chiang Rai province To be more competitive .

Keywords: Border, Trade, Policy, Promote

Procedia PDF Downloads 171
5909 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm

Procedia PDF Downloads 441
5908 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 120
5907 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application

Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior

Abstract:

Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.

Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks

Procedia PDF Downloads 170