Search results for: metal matrix composites
4986 Phosphate Bonded Hemp (Cannabis sativa) Fibre Composites
Authors: Stephen O. Amiandamhen, Martina Meinken, Luvuyo Tyhoda
Abstract:
The properties of Hemp (Cannabis sativa) in phosphate bonded composites were investigated in this research. Hemp hurds were collected from the Hemporium institute for research, South Africa. The hurds were air-dried and shredded using a hammer mill. The shives were screened into different particle sizes and were treated separately with 5% solution of acetic anhydride and sodium hydroxide. The binding matrix was prepared using a reactive magnesia, phosphoric acid, class S fly ash and unslaked lime. The treated and untreated hemp fibers were mixed thoroughly in different ratios with the inorganic matrix. Boric acid and excess water were used to retard and control the rate of the reaction and the setting of the binder. The Hemp composite was formed in a rectangular mold and compressed at room temperature at a pressure of 100KPa. After de-molding the composites, they were cured in a conditioning room for 96 h. Physical and mechanical tests were conducted to evaluate the properties of the composites. A central composite design (CCD) was used to determine the best conditions to optimize the performance of the composites. Thereafter, these combinations were applied in the production of the composites, and the properties were evaluated. Scanning electron microscopy (SEM) was used to carry out the advance examination of the behavior of the composites while X-ray diffractometry (XRD) was used to analyze the reaction pathway in the composites. The results revealed that all properties of phosphate bonded Hemp composites exceeded the LD-1 grade classification of particle boards. The proposed product can be used for ceiling, partitioning, wall claddings and underlayment.Keywords: CCD, fly ash, magnesia, phosphate bonded hemp composites, phosphoric acid, unslaked lime
Procedia PDF Downloads 4354985 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites
Authors: M. Palizvan, M. T. Abadi, M. H. Sadr
Abstract:
Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.Keywords: homogenization, cohesive zone model, fiber-matrix debonding, RVE
Procedia PDF Downloads 1674984 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite
Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali
Abstract:
In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force
Procedia PDF Downloads 4314983 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 2664982 Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation
Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan
Abstract:
Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite.Keywords: sugarcane bagasse (SCB), polypropylene (PP), mechanical properties, scanning electron microscope (SEM), gamma radiation, water uptake tests and soil degradation
Procedia PDF Downloads 1384981 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method
Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece
Abstract:
Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance
Procedia PDF Downloads 1664980 Investigation of Alfa Fibers Reinforced Epoxy-Amine Composites Properties
Authors: Amar Boukerrou, Ouerdia Belhadj, Dalila Hammiche, Jean Francois Gerard, Jannick Rumeau
Abstract:
The main goal of this study is the investigation of alfa fiber content, treated with alkali treatment, on the thermal and mechanical properties of epoxy-amine matrix-based composites. The fibers were treated with 5% of sodium hydroxide solution and varied between 10% to 30% weight fractions. The tensile, flexural, and hardness tests are carried out to investigate the mechanical properties of composites. The results show those composites’ mechanical properties are higher than the neat epoxy-amine. It was noticed that the alkali treatment is more effective in the case of the tensile and flexural modulus than the tensile and flexural strength. The decline of both the tensile and flexural behavior of all composites with the increasing of the filler content was due probably to the random dispersion of the fibers in the epoxy resin The Fourier transform infrared (FTIR) was employed to analyze the chemical structure of epoxy resin before and after curing with amine hardener. FTIR and DSC analysis confirmed that epoxy resin was completely cured with amine hardener at room temperature. SEM analysis has highlighted the microstructure of epoxy matrix and its composites.Keywords: alfa fiber, epoxy resin, alkali treatment, mechanical properties
Procedia PDF Downloads 1094979 Advances in Natural Fiber Surface Treatment Methodologies for Upgradation in Properties of Their Reinforced Composites
Authors: G. L. Devnani, Shishir Sinha
Abstract:
Natural fiber reinforced polymer composite is a very attractive area among the scientific community because of their low cost, eco-friendly and sustainable in nature. Among all advantages there are few issues which need to be addressed, those issues are the poor adhesion and compatibility between two opposite nature materials that is fiber and matrix and their relatively high water absorption. Therefore, natural fiber modifications are necessary to improve their adhesion with different matrices. Excellent properties could be achieved with the surface treatment of these natural fibers ultimately leads to property up-gradation of their reinforced composites with different polymer matrices. Lot of work is going on to improve the adhesion between reinforced fiber phase and polymer matrix phase to improve the properties of composites. Researchers have suggested various methods for natural fiber treatment like silane treatment, treatment with alkali, acetylation, acrylation, maleate coupling, etc. In this study a review is done on the different methods used for the surface treatment of natural fibers and what are the advance treatment methodologies for natural fiber surface treatment for property improvement of natural fiber reinforced polymer composites.Keywords: composites, acetylation, natural fiber, surface treatment
Procedia PDF Downloads 4134978 Modifiable Poly Methacrylic Acid-Co-Acrylonitrile Microgels Fabricated with Cu and Co Nanoparticles for Simultaneous Catalytic Reduction of Multiple Compounds
Authors: Muhammad Ajmal, Muhammad Siddiq, Nurettin Sahiner
Abstract:
We prepared poly(methacrylic acid-co-acrylonitrile) (p(MAc-co-AN)) microgels by inverse suspension polymerization, and converted the nitrile groups into amidoxime groups to obtain more hydrophilic amidoximated poly(methacrylic acid-co-acrylonitile) (amid-p(MAc-co-AN)) microgels. Amid-microgels were used as microreactors for in situ synthesis of copper and cobalt nanoparticles. Cu (II) and Co (II) ions were loaded into microgels from their aqueous metal salt solutions and then converted to corresponding metal nanoparticle (MNP) by treating the loaded metal ions with sodium borohydride (NaBH4). The characterization of the prepared microgels and microgel metal nanoparticle composites was carried out by SEM, TEM and TG analysis. The amounts of metal nanoparticles within microgels were estimated by AAS measurements by dissolving the MNP entrapped within microgels by concentrated HCl acid treatment. Catalytic performances of the prepared amid-p(MAc-co-AN)-M (M: Cu, Co) microgel composites were investigated by using them as catalyst for the degradation of cationic and anionic organic dyes such as eosin Y (EY), methylene blue (MB) and methyl Orange (MO), and for the reduction of nitro aromatic pollutants like 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP) to their corresponding amino phenols. Here, we also report for the first time, the simultaneous degradation/reduction of MB, EY, and 4-NP by amid-p(MAc-co-AN)-Cu microgel composites. Different parameters affecting the reduction rates such as metal types, amount of catalysts, temperature and the amount of reducing agent were investigated.Keywords: microgels, nanoparticles, catalyst, pollutants
Procedia PDF Downloads 3564977 Experimental Study of Various Sandwich Composites
Authors: R. Naveen, E. Vanitha, S. Gayathri
Abstract:
The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density.Keywords: bamboo sandwich composite, metal sandwich composite, sandwich composite, v-board sandwich composite
Procedia PDF Downloads 2574976 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites
Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il
Abstract:
Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.Keywords: composite, flexural strength, matrix, sisal fibre
Procedia PDF Downloads 3954975 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite
Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala
Abstract:
The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂
Procedia PDF Downloads 1314974 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm
Authors: J. Sahari, S. M. Sapuan
Abstract:
Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical
Procedia PDF Downloads 4434973 Preparation of 1D Nano-Polyaniline/Dendritic Silver Composites
Authors: Wen-Bin Liau, Wan-Ting Wang, Chiang-Jen Hsiao, Sheng-Mao Tseng
Abstract:
In this paper, an interesting and easy method to prepare one-dimensional nanostructured polyaniline/dendritic silver composites is reported. It is well known that the morphology of metal particle is a very important factor to influence the properties of polymer-metal composites. Usually, the dendritic silver is prepared by kinetic control in reduction reaction. It is not a thermodynamically stable structure. It is the goal to reduce silver ion to dendritic silver by polyaniline polymer via kinetic control and form one-dimensional nanostructured polyaniline/dendritic silver composites. The preparation is a two steps sequential reaction. First step, the polyaniline networks composed of nano fibrillar polyaniline are synthesized from aniline monomers aqueous with ammonium persulfate as the initiator at room temperature. In second step, the silver nitrate is added into polyaniline networks dispersed in deionized water. The dendritic silver is formed via reduction by polyaniline networks under the kinetic control. The formation of polyaniline is discussed via transmission electron microscopy (TEM). Nanosheets, nanotubes, nanospheres, nanosticks, and networks are observed via TEM. Then, the mechanism of formation of one-dimensional nanostructured polyaniline/dendritic silver composites is discussed. The formation of dendritic silver is observed by TEM and X-ray diffraction.Keywords: 1D nanostructured polyaniline, dendritic silver, synthesis
Procedia PDF Downloads 5004972 Mechanical and Barrier Properties of Cellulose Fibers/HNT Reinforced Epoxy Nanocomposites
Authors: H. Alamri
Abstract:
Natural fiber reinforced composites have attracted researchers for their desirable properties of toughness, high modulus, low density, recyclability, and renewability. In fact, the use of natural fibers in polymer composites has the potential to produce materials with higher specific strength and specific modulus due of their low density. Likewise, polymer-nano-filler composites have been widely investigated for their unique and significant improvement in strength, modulus, impact strength, barrier properties, heat resistance and thermal stability. In this paper, The addition of halloysite nanotubes (HNTs) with three different weight percentages (1%, 3% and 5%) on enhancing barrier and flexural strength and modulus of cellulose-fiber (CF) /epoxy composites after water treatment for six months was studied. Results indicated that water uptake decreased as HNT content increased. The presence of HNT improved flexural strength and flexural modulus of CF/epoxy composites. SEM results showed damages in fiber-matrix interfacial bonding due to water absorption. The addition of HNTs was found to enhance to adhesion between fibers and matrix.Keywords: mechanical properties, epoxy, nanocomposites, halloysite nanotubes
Procedia PDF Downloads 3274971 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation
Procedia PDF Downloads 1454970 The Effectschemical Treatment on Alkyl Phenol Modified Sisal Fiber Reinforced Epoxy Composite
Authors: Rajesh Panda, Jimi Tjong, Sanjay K. Nayak, Mohini M. Sain
Abstract:
The aim of this manuscript was to evaluate the effect of chemical treatment of sisal fibre on the mechanical and viscoelastic properties of bio based epoxy/fibre composites. The composite samples were manufactured through a vacuum infusion process by adding alkyl phenols from cashew nutshell liquid (CSNL). Changes in the chemical structure of the sisal fibres resulting from the treatments were analyzed by Fourier transform infrared spectroscopy (FTIR). Both alkali and silane treatments produced enhancements in the mechanical properties of sisal fibre bundles. The alkali treatment, when combined with the silane treatment, the mechanical properties of epoxy composites notably improved (13%) in comparison to untreated sisal fibre reinforced composites.This was attributed to an enhanced fibre/matrix interface. The incorporation of CSNL into the sisal/epoxy composite enhanced the fibre-matrix interfacial properties because of the addition of -OH groups to the epoxy matrix. The incorporation of sisal fibre imparts stiffness to the epoxy matrix.Keywords: phenalkamine, sisal fiber, vacuum infusion, cashew nutshell liquid, cashew nutshell liquid (CSNL)
Procedia PDF Downloads 2854969 Enhanced Dimensional Stability of Rigid PVC Foams Using Glass Fibers
Authors: Nidal H. Abu-Zahra, Murtatha M. Jamel, Parisa Khoshnoud, Subhashini Gunashekar
Abstract:
Two types of glass fibers having different lengths (1/16" and 1/32") were added into rigid PVC foams to enhance the dimensional stability of extruded rigid Polyvinyl Chloride (PVC) foam at different concentrations (0-20 phr) using a single screw profile extruder. PVC foam-glass fiber composites (PVC-GF) were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Overall, foam composites which were prepared with longer glass fibers exhibit better mechanical and thermal properties than those prepared with shorter glass fibers due to higher interlocking between the fibers and the foam cells, which result in better load distribution in the matrix.Keywords: polyvinyl chloride, PVC foam, PVC composites, polymer composites, glass fiber composites, reinforced polymers
Procedia PDF Downloads 3964968 Melaleuca alternifolia Fibre Composites: Effect of Different Type of Fibre on Mechanical and Physical Properties
Authors: Sahari Japar, Rodney Jammy, M. A. Maleque
Abstract:
The fabrication of melaleuca alternifolia fibre reinforced thermoplastic starch composites was successfully done. This paper aims to show the effect of melaleuca alternifolia fibres on mechanical and physical properties of composites by using starch as a matrix. The fibres were extracted from three different part i.e. tea tree trunk (TTT), tea tree bunch (TTB) and tea tree leaf (TTL) and combined with tapioca starch by casting method. All composites showed superior mechanical properties in comparison to TS. The addition of 5% (v/v) fibres as a filler to TS led to the improvement in young’s modulus by 350% for TTB/TS, 282% for TTT/TS and 220% for TTL/TS. The tensile strength also increased to 34.39% for TTL/TS, 82.80% for TTB/TS and 203.18% for TTT/TS respectively. The trend can be correlated to the amount of cellulose in the fibres. For physical properties, it can be seen that, with the addition of fibres, the water absorption and swelling of composites decreased. The addition of melaleuca alternifolia fibre improved mechanical and physical properties of thermoplastic starch composites.Keywords: melaleuca alternifolia, fibre, starch, mechanical, physical
Procedia PDF Downloads 4004967 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber
Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria
Abstract:
Bio-composites derived from plant fiber and bio-derived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based. In this research, the green phenolic resin was used as a matrix and oil palm empty fruit bunch fiber (EFB) was used as filler. The matrix was synthesized from soda lignin, phenol and hydrochloric acid as a catalyst. The phenolic resin was synthesized via liquefaction and condensation to enhance the combination of phenol during the process. Later, the phenolic resin was mixed with EFB by using mechanical stirrer and was molded with hot press at 180 oC. In this research, the composites were prepared with EFB content of 5%, 10%, 15% and 20%. The samples that viewed under scanning electron microscopy (SEM) showed that the EFB filler remained embedded in the resin. From impact and hardness testing, samples 10% of EFB showed the optimum properties meanwhile sample 15% showed the optimum properties for flexural testing. Thermal stability of the composites was investigated using thermogravimetric (TGA) analysis and found that the weight loss and the activation energy (Ea) of the composites samples were decreased as the filler content increased.Keywords: EFB, liquefaction, phenol formaldehyde, lignin
Procedia PDF Downloads 5894966 Study on the Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation
Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan
Abstract:
Bamboo fiber (BF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, bamboo composites were manufactured using different percentages of fiber, which were varying from 25-65% on the total weight of the composites. To fabricate the BF/PP composites untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical, and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact, and bending properties were observed precisely. Maximum tensile strength (TS) and bending strength (BS) were found for 50 wt% fiber composites, 65 MPa, and 85.5 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 5.73 GPa and 7.85 GPa respectively. The BF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (i.e. 10, 20, 30, 40, 50 and 60 kGy doses). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 30.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray) gamma dose showed better mechanical properties than other doses. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated BF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated BF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.Keywords: bamboo fiber, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope
Procedia PDF Downloads 1334965 Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites
Authors: S. Kerakra, S. Bouhelal, M. Poncot
Abstract:
The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride.Keywords: isotactic polypropylene, hollow recycled PET fibers, solid recycled-PET fibers, composites, short fiber, scanning electron microscope
Procedia PDF Downloads 2774964 Physico-Mechanical Properties of Chemically Modified Sisal Fibre Reinforced Unsaturated Polyester Composites
Authors: A. A. Salisu, M. Y. Yakasai, K. M. Aujara
Abstract:
Sisal leaves were subjected to enzymatic retting method to extract the sisal fibre. A portion of the fibre was pretreated with alkali (NaOH), and further treated with benzoyl chloride and silane treatment reagents. Both the treated and untreated Sisal fibre composites were used to fabricate the composite by hand lay-up technique using unsaturated polyester resin. Tensile, flexural, water absorption, density, thickness swelling and chemical resistant tests were conducted and evaluated on the composites. Results obtained for all the parameters showed an increase in the treated fibre compared to untreated fibre. FT-IR spectra results ascertained the inclusion of benzoyl and silane groups on the fibre surface. Scanning electron microscopy (SEM) result obtained showed variation in the morphology of the treated and untreated fibre. Chemical modification was found to improve adhesion of the fibre to the matrix, as well as physico-mechanical properties of the composites.Keywords: chemical resistance, density test, polymer matrix sisal fibre, thickness swelling
Procedia PDF Downloads 4364963 Influence of Micro Fillers Content on the Mechanical Properties of Epoxy Composites
Authors: H. Unal, A. Mimaroglu, I. Ozsoy
Abstract:
In this study, the mechanical properties of micro filled epoxy composites were investigated. The matrix material is epoxy. Micro fillers are Al2O3 and TiO2 added in 10-30 wt% by weight ratio. Test samples were prepared using an open mould type die. Tensile, three point bending and hardness tests were carried out. The tensile strength, elastic modulus, elongation at break, flexural strength, flexural modulus and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the level of the mechanical properties of the epoxy composites is highly influenced by micro filler content.Keywords: composites, epoxy, fillers, mechanical properties
Procedia PDF Downloads 4864962 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications
Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma
Abstract:
Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties
Procedia PDF Downloads 4574961 Study the Performance of Metal-Organic Framework in Adsorptive Desulfurization for Gas Oil
Authors: Hoda A. Mohammed, Esraa M. El-Fawal, Howaida M. Abd El-Salam
Abstract:
Organic sulfurs in fuel oil cause serious environmental pollution and health problems. The important future direction for liquid fuel desulfurization is adsorptive desulfurization technology due to its simplicity, mild operating condition, and low cost. In this work, the well-prepared Nickel NPs were incorporated in a highly porous metal-organic framework MIL-101(Cr)) to produce Ni/Cr-MOF composite. Besides, the synthesis of Ni/Cr-MOF in the presence of Bi₂MoO₆/AC to prepare Bi₂MoO₆/AC@Ni/Cr-MOF. All the prepared composites were synthesized via a facile technique under ambient conditions to remove organosulfur compounds. The XRD, FT-IR, SEM, and BET techniques were used to characterize the prepared composites. The desulfurization performance of real gas oil by Bi₂MoO₆/AC, Ni/Cr-MOF, and Bi₂MoO₆/AC@Ni/Cr-MOF was investigated at different adsorbent doses and contact times. Bi₂MoO₆/AC@Ni/Cr-MOF shows the highest desulfurization performance, with removal efficiency reached to 80% at optimum conditions for a contact time of 4 hours.Keywords: desulfurization, gas oil, metal-organic framework, sorption characteristics
Procedia PDF Downloads 804960 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement
Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson
Abstract:
Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.Keywords: polyethylene, recycling, waste, composite, kaolin
Procedia PDF Downloads 1734959 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites
Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro
Abstract:
Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers
Procedia PDF Downloads 6204958 Compressive Response of Unidirectional Basalt Fiber/Epoxy/MWCNTs Composites
Authors: Reza Eslami-Farsani, Hamed Khosravi
Abstract:
The aim of this work is to study the influence of multi-walled carbon nanotubes (MWCNTs) addition at various contents with respect to the matrix (0-0.5 wt.% at a step of 0.1 wt.%) on the compressive response of unidirectional basalt fiber (UD-BF)/epoxy composites. Toward this end, MWCNTs were firstly functionalized with 3-glycidoxypropyltrimethoxysilane (3-GPTMS) to improve their dispersion state and interfacial compatibility with the epoxy. Subsequently, UD-BF/epoxy and multiscale 3-GPTMS-MWCNTs/UD-BF/epoxy composites were prepared. The mechanical properties of the composites were determined by quasi-static compression test. The compressive strength of the composites was obtained through performing the compression test on the off-axis specimens and extracting their longitudinal compressive strength. Results demonstrated that the highest value in compressive strength was attained at 0.4 wt.% MWCNTs with 41% increase, compared to the BF/epoxy composite. Potential mechanisms behind these were implied.Keywords: multiscale polymeric composites, unidirectional basalt fibers, multi-walled carbon nanotubes, surface modification, compressive properties
Procedia PDF Downloads 3044957 Production of Hard Nickel Particle Reinforced Ti6Al4V Matrix Composites by Hot Pressing
Authors: Ridvan Yamanoglu
Abstract:
In the current study, titanium based composites reinforced by hard nickel alloy particles were produced. Powder metallurgical hot pressing technique was used for the fabrication of composite materials. The composites containing different ratio of hard nickel particles were sintered at 900 oC for 15 and 30 minutes under 50 MPa pressure. All titanium based composites were obtained under a vacuum atmosphere of 10-4 mbar to prevent of oxidation of titanium due to its high reactivity to oxygen. The microstructural characterization of the composite samples was carried out by optical and scanning electron microscopy. The mechanical properties of the samples were determined by means of hardness and wear tests. The results showed that when the nickel particle content increased the mechanical properties of the composites enhanced. The results are discussed in detail and optimum nickel particle content were determined.Keywords: titanium, composite, nickel, hot pressing
Procedia PDF Downloads 173