Search results for: ferroelectric layers
1394 Geographical Information System-Based Approach for Vertical Takeoff and Landing Takeoff and Landing Site Selection
Authors: Chamnan Kumsap, Somsarit Sinnung, Suriyawate Boonthalarath, Teeranai Srithamarong
Abstract:
This research paper addresses the GIS analysis approach to the investigation of suitable sites for a vertical takeoff and landing drone. The study manipulated GIS and terrain layers into a proper input before the spatial analysis that included slope, reclassify, classify, and buffer was applied to the individual layers. The output layers were weighted, and multi-criteria analyzed before those patches failing to comply with filtering out criteria were discarded. Field survey for each suitable candidate site was conducted to cross-check the proposed approach with the real world. Conclusion was extracted for the VTOL takeoff and landing sites, and discussion was provided with further study being suggested on the mission simulation of selected takeoff and landing sites.Keywords: GIS approach, site selection, VTOL, takeoff and landing
Procedia PDF Downloads 1041393 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades
Authors: Magdi M. E. Zumrawi, Nehla Mansour
Abstract:
This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.Keywords: geogrid, reinforcement, stabilization, subgrade
Procedia PDF Downloads 3201392 Design and Analysis of a Lightweight Fire-Resistant Door
Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri
Abstract:
This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers
Procedia PDF Downloads 891391 Rare-Earth Ions Doped Zirconium Oxide Layers for Optical and Photovoltaic Applications
Authors: Sylwia Gieraltowska, Lukasz Wachnicki, Bartlomiej S. Witkowski, Marek Godlewski
Abstract:
Oxide layers doped with rare-earth (RE) ions in optimized way can absorb short (ultraviolet light), which will be converted to visible light by so-called down-conversion. Down-conversion mechanisms are usually exploited to modify the incident solar spectrum. In down conversion, multiple low-energy photons are generated to exploit the energy of one incident high-energy photon. These RE-doped oxide materials have attracted a great deal of attention from researchers because of their potential for optical manipulation in optical devices (detectors, temperature sensors, and compact solid-state lasers, light-emitting diodes), bio-analysis, medical therapy, display technologies, and light harvesting (such as in photovoltaic cells). The zirconium dioxide (ZrO2) doped RE ions (Eu, Tb, Ce) multilayer structures were tested as active layers, which can convert short wave emission to light in the visible range (the down-conversion mechanism). For these applications original approach of deposition ZrO2 layers using the Atomic Layer Deposition (ALD) method and doping these layers with RE ions using the spin-coating technique was used. ALD films are deposited at relatively low temperature (well below 250°C). This can be an effective method to achieve the white-light emission and to improve on this way light conversion efficiency, by an extension of absorbed spectral range by a solar cell material. Photoluminescence (PL), X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM) measurement are analyzed. The research was financially supported by the National Science Centre (decision No. DEC-2012/06/A/ST7/00398 and DEC- 2013/09/N/ST5/00901).Keywords: ALD, oxide layers, photovoltaics, thin films
Procedia PDF Downloads 2691390 Vibration Frequencies Analysis of Nanoporous Graphene Membrane
Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang
Abstract:
In this study, we use the atomic-scale finite element method to investigate the vibrational behavior of the armchair- and zigzag-structured nanoporous graphene layers with different size under the SFSF and CFFF boundary conditions. The fundamental frequencies computed for the graphene layers without pore are compared with the results of previous studies. We observe very good correspondence of our results with that of the other studies in all the considered cases. For the armchair- and zigzag-structured nanoporous graphene layers under the SFSF and CFFF boundary conditions, the frequencies decrease as the size of the nanopore increase. When the positions of the pore are symmetric with respect to the center of the graphene, the frequency of the zigzag pore graphene is higher than that of the armchair one.Keywords: atomic-scale finite element method, graphene, nanoporous, natural frequency
Procedia PDF Downloads 3611389 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 1801388 Twisted Bilayer Crescent Chiral Metasurface
Authors: Semere Araya Asefa
Abstract:
I described twisted bilayer crescent metasurfaces that link optical properties between two layers and enhance circular dichroism. The interactions between the metasurface layers cause circular dichroism. And we evaluated the parameters that affect the chiroptical response of the crescentKeywords: chiroptical response, chiral metasurface, circular dichroism, chiral sensing
Procedia PDF Downloads 801387 Use of FWD in Determination of Bonding Condition of Semi-Rigid Asphalt Pavement
Authors: Nonde Lushinga, Jiang Xin, Danstan Chiponde, Lawrence P. Mutale
Abstract:
In this paper, falling weight deflectometer (FWD) was used to determine the bonding condition of a newly constructed semi-rigid base pavement. Using Evercal back-calculation computer programme, it was possible to quickly and accurately determine the structural condition of the pavement system of FWD test data. The bonding condition of the pavement layers was determined from calculated shear stresses and strains (relative horizontal displacements) on the interface of pavement layers from BISAR 3.0 pavement computer programmes. Thus, by using non-linear layered elastic theory, a pavement structure is analysed in the same way as other civil engineering structures. From non-destructive FWD testing, the required bonding condition of pavement layers was quantified from soundly based principles of Goodman’s constitutive models shown in equation 2, thereby producing the shear reaction modulus (Ks) which gives an indication of bonding state of pavement layers. Furthermore, a Tack coat failure Ratio (TFR) which has long being used in the USA in pavement evaluation was also used in the study in order to give validity to the study. According to research [39], the interface between two asphalt layers is determined by use of Tack Coat failure Ratio (TFR) which is the ratio of the stiffness of top layer asphalt layers over the stiffness of the second asphalt layer (E1/E2) in a slipped pavement. TFR gives an indication of the strength of the tack coat which is the main determinants of interlayer slipping. The criteria is that if the interface was in the state full bond, TFR would be greater or equals to 1 and that if the TFR was 0, meant full slip. Results of the calculations showed that TFR value was 1.81 which re-affirmed the position that the pavement under study was in the state of full bond because the value was greater than 1. It was concluded that FWD can be used to determine bonding condition of existing and newly constructed pavements.Keywords: falling weight deflectometer (FWD), backcaluclation, semi-rigid base pavement, shear reaction modulus
Procedia PDF Downloads 5141386 Proximity-Inset Fed Triple Band Antenna for Global Position System with High Gain
Authors: The Nan Chang, Ping-Tang Yu, Jyun-Ming Lin
Abstract:
A triple band circularly polarized antenna covering 1.17, 1.22, and 1.57 GHz is presented. To extend to the triple-band operation, we need to add one more ring while maintaining the mechanism to independently control each ring. The inset-part in the feeding scheme is used to excite the band at 1.22 GHz, while the proximate-part of the feeding scheme is used to excite not only the band at 1.57 GHz but also the band at 1.17 GHz. This is achieved by up-vertically coupled with one ring to radiate at 1.57 GHz and down-vertically coupled another ring to radiate at 1.17 GHz. It is also noted that the inset-part in our feeding scheme is by horizontal coupling. Furthermore, to increase the gain at all three bands, three air-layers are added to make the total height of the antenna be 7.8 mm. The total thickness of the three air-layers is 3 mm. The gains of the three bands are all greater than 5 dBiC after adding the air-layers.Keywords: circular polarization, global position system, high gain, triband antenna
Procedia PDF Downloads 2361385 Diversification of Productivity of the Oxfordian Subtidal Carbonate Factory in the Holy Cross Mountains
Authors: Radoslaw Lukasz Staniszewski
Abstract:
The aim of the research was to verify lateral extent and thickness variability of individual limestone layers within early-Jurassic medium- and thick-bedded limestone interbedded with marlstones. Location: The main research area is located in the south-central part of Poland in the south-western part of Permo-Mesozoic margin of the Holy Cross Mountains. It includes outcroppings located on the line between Mieczyn and Wola Morawicka. The analyses were carried out on six profiles (Mieczyn, Gniezdziska, Tokarnia, Wola Morawicka, Morawica and Wolica) representing three early-Jurassic links: Jasna Gora layers, grey limestone, Morawica limestone. Additionally, an attempt was made to correlate the thickness sequence from the Holy Cross Mountains to the profile from the quarry in Zawodzie located 3 km east of Czestochowa. The distance between the outermost profiles is 122 km in a straight line. Methodology of research: The Callovian-Oxfordian border was taken as the reference point during the correlation. At the same time, ammonite-based stratigraphic studies were carried out, which allowed to identify individual packages in the remote outcroppings. The analysis of data collected during fieldwork was mainly devoted to the correlation of thickness sequences of limestone layers in subsequent profiles. In order to check the objectivity of the subsequent outcroppings, the profiles have been presented in the form of the thickness functions of the subsequent layers. The generated functions were auto-correlated, and the Pearson correlation coefficient was calculated. The next step in the research was to statistically determine the percentage increment of the individual layers thickness in the subsequent profiles, and on this basis to plot the function of relative carbonate productivity. Results: The result of the above-mentioned procedures consists in illustrating the extent of 34 rock layers across the examined area in demonstrating the repeatability of their success in subsequent outcroppings. It can also be observed that the thickness of individual layers in the Holy Cross Mountains is increasing from north-west towards south-east. Despite changes in the thickness of the layers in the profiles, their relations within the sequence remain constant. The lowest matching ratio of thickness sequence calculated using the Pearson correlation coefficient formula is 0.67, while the highest is 0.84. The thickness of individual layers changes between 4% and 230% over the examined area. Interpretation: Layers in the outcroppings covered by the research show continuity throughout the examined area and it is possible to precisely correlate them, which means that the process determining the formation of the layers was regional and probably included both the fringe of the Holy Cross Mountains and the north-eastern part of the Krakow-Czestochowa Jura Upland. Local changes in the sedimentation environment affecting the productivity of the subtidal carbonate factory only cause the thickness of the layers to change without altering the thickness proportions of the profiles. Based on the percentage of changes in the thickness of individual layers in the subsequent profiles, it can be concluded that the local productivity of the subtidal carbonate factory is increasing logarithmically.Keywords: Oxfordian, Holy Cross Mountains, carbonate factory, Limestone
Procedia PDF Downloads 1161384 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes
Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana
Abstract:
The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis
Procedia PDF Downloads 491383 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.Keywords: SiC, preceramic polymer, additive manufacturing, ceramic
Procedia PDF Downloads 781382 Experimental Investigation of Interfacial Bond Strength of Concrete Layers
Authors: Rajkamal Kumar, Sudhir Mishra
Abstract:
The connections between various elements of concrete structures play a vital role in determining the durability of structures. These connections produce discontinuities and to ensure the monolithic behavior of structures, these connections should be carefully designed. The connections between concrete layers may occur in various situations such as structure repairing and rehabilitation or construction of huge structures with cast-in-situ or pre-cast elements, etc. Bond strength at the interface of these concrete layers should be able to prevent the progressive slip from taking place and it should also ensure satisfactory performance of the structure. Different approaches to enhance the bond strength at interface have been a major area of research. Nowadays, micro-concrete is getting popular as a repair material. Under this ambit, this paper aims to present the experimental results of connections between concrete layers of different age with artificial indentation at interface with two types of repair material: Concrete with same parent concrete composition and ready-mix mortar (micro-concrete), artificial indentations (grooves and holes) were made on the old layer of concrete to increase the bond strength. Curing plays an important role in determining the bond strength. Optimum duration for curing have also been discussed for each type of repair material. Different types of failure patterns have also been mentioned.Keywords: adhesion, cohesion, compressive stress, micro-concrete, shear stress, slant shear test
Procedia PDF Downloads 3331381 Study on the Effects of Grassroots Characteristics on Reinforced Soil Performance by Direct Shear Test
Authors: Zhanbo Cheng, Xueyu Geng
Abstract:
Vegetation slope protection technique is economic, aesthetic and practical. Herbs are widely used in practice because of rapid growth, strong erosion resistance, obvious slope protection and simple method, in which the root system of grass plays a very important role. In this paper, through changing the variables value of grassroots quantity, grassroots diameter, grassroots length and grassroots reinforce layers, the direct shear tests were carried out to discuss the change of shear strength indexes of grassroots reinforced soil under different reinforce situations, and analyse the effects of grassroots characteristics on reinforced soil performance. The laboratory test results show that: (1) in the certain number of grassroots diameter, grassroots length and grassroots reinforce layers, the value of shear strength, and cohesion first increase and then reduce with the increasing of grassroots quantity; (2) in the certain number of grassroots quantity, grassroots length and grassroots reinforce layers, the value of shear strength and cohesion rise with the increasing of grassroots diameter; (3) in the certain number of grassroots diameter, and grassroots reinforce layers, the value of shear strength and cohesion raise with the increasing of grassroots length in a certain range of grassroots quantity, while the value of shear strength and cohesion first rise and then decline with the increasing of grassroots length when the grassroots quantity reaches a certain value; (4) in the certain number of grassroots quantity, grassroots diameter, and grassroots length, the value of shear strength and cohesion first climb and then decline with the increasing of grassroots reinforced layers; (5) the change of internal friction angle is small in different parameters of grassroots. The research results are of importance for understanding the mechanism of vegetation protection for slopes and determining the parameters of grass planting.Keywords: direct shear test, reinforced soil, grassroots characteristics, shear strength indexes
Procedia PDF Downloads 1781380 Layers of Identities in Nahdliyyin Mosque Architecture and Some Related Socio-Political Context Within
Authors: Yulia Eka Putrie, Widjaja Martokusumo
Abstract:
The development of architecture today indicates that an architectural object often does not represent one single identity only. One architectural object could represents layers of multiple identities of an increasingly complex society. Mosque architecture for example, is mainly associated with one religious identity; that mosque architecture serves as the representation of Islamic identity. However, on many occasions, mosque architecture also serves as the representation of other motives, such as political, social, even individual identity. In normal circumstances, these layers of identities are not always seen or realized by common people outside the community. They are only represented implicitly in some symbolic forms, activities, and events. On the other hand, in specific circumstances, these kinds of identities were represented explicitly in mosque architecture. This paper is a part of an initial research on the representation of socio-political identities in Nahdliyyin mosques in East Java, Indonesia. Nahdliyyin mosques were chosen as the object of research because of its significance in Indonesian socio-political context, because majority of Indonesian muslims are culturally associated with Nahdlatul Ulama (NU) with its aswaja doctrine. Some frictions in mosque ownership and management between Nahdliyyin and other islamic school of thoughts, has resulted in preventive efforts, where some of the efforts are related to the representation of their identity in their mosque architecture. The research is a field research that took place in Malang, East Java. Malang is one of main cities in East Java; a cultural and regional basis of NU and Nahdliyyin people. Formal analysis were conducted in ten large Nahdliyyin mosques in Malang. Some structured and in-depth interviews were also held to explore the motives of identity representation in some architectural aspects of the mosques. The result of this initial study indicates that there are layers of identities which were manifested in the studied mosques. These layers of identities in Nahdliyyin mosques were based on the same main values, but represented through various formal expressions. Furthermore, the study also brings the deeper understanding on socio-political context of mosques in Nahdliyyin culture.Keywords: Nahdliyyin mosque architecture, layers of identities, representation, Nahdlatul Ulama
Procedia PDF Downloads 5191379 Wear Resistance of Graphene Oxide and Carbon Nanotubes Silanized Coatings
Authors: Henrique Gomes dos Santos, Manoel Henrique Alves, Jane Zoppas Ferreira, Annelise Kopp Alves
Abstract:
This work aimed to seek an environmentally sustainable surface coating alternative by researching the influence of the addition of graphene oxide (GO) and carbon nanotubes (CNT) on the silanization of coatings to increase the wear resistance in galvanized steel, using the pin-on-disk test. The results obtained were compared between different concentrations of additives and the number of coating layers, in addition to comparing with samples without coating and only with silane layers. Bis-1,2-(triethoxysilyl)ethane (BTSE) silane was used in silanizing the coatings with CNT or GO and applied to the samples through dip-coating to form one, four, or eight layers. The wear test results found that three samples stood out in relation to the objective, showing an increase in wear resistance compared to the galvanized sample only. The rolling effect and the lubricity character presented by carbon nanotubes were positive for the increase in wear resistance obtained. The reduction in wear compared to the galvanized-only sample reached 82%. Raman spectroscopy was also carried out to detect the presence of silane, GO, and CNT, in addition to roughness tests and SEM to assess the homogeneity of the coating. The carbonaceous additives, graphene oxide, and carbon nanotubes in certain amounts of layers and specific concentrations fulfilled their objective against the wear imposed on the substrate.Keywords: silane, coating, graphene oxide, carbon nanotubes, wear resistance
Procedia PDF Downloads 121378 Stability Characteristics of Angle Ply Bi-Stable Laminates by Considering the Effect of Resin Layers
Authors: Masih Moore, Saeed Ziaei-Rad
Abstract:
In this study, the stability characteristics of a bi-stable composite plate with different asymmetric composition are considered. The interest in bi-stable structures comes from their ability that these structures can have two different stable equilibrium configurations to define a discrete set of stable shapes. The structures can easily change the first stable shape to the second one by a simple snap action. The main purpose of the current research is to consider the effect of including resin layers on the stability characteristics of bi-stable laminates. To this end and In order to determine the magnitude of the loads that are responsible for snap through and snap back phenomena between two stable shapes of the laminate, a non-linear finite element method (FEM) is utilized. An experimental investigation was also carried out to study the critical loads that caused snapping between two different stable shapes. Several specimens were manufactured from T300/5208 graphite-epoxy with [0/90]T, [-30/60]T, [-20/70]T asymmetric stacking sequence. In order to create an accurate finite element model, different thickness of resin layers created during the manufacturing process of the laminate was measured and taken into account. The geometry of each lamina and the resin layers was characterized by optical microscopy from different locations of the laminates thickness. The exact thickness of each lamina and the resin layer in all specimens with [0/90]T,[-30/60]T, [-20/70]T stacking sequence were determined by using image processing technique.Keywords: bi-stable laminates, finite element method, graphite-epoxy plate, snap behavior
Procedia PDF Downloads 2431377 Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application
Authors: Thierry Pauporté, Sana Koussi, Fabrice Odobel
Abstract:
The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described.Keywords: NiO, layer, p-type sensitized solar cells, electrodeposition
Procedia PDF Downloads 2971376 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes
Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang
Abstract:
The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations
Procedia PDF Downloads 2481375 Layer-By-Layer Deposition of Poly(Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric: Electrostatic and Thermal Properties
Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska
Abstract:
The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20°C). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.Keywords: layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties
Procedia PDF Downloads 4351374 Finding Out the Best Place for Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi, Nima Ghasemloo
Abstract:
Iran is a capable zone for earthquake that follows loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System (GIS) has a determining role in disaster management; it can determine the best places for temporary resettling after such a disaster. In this paper the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QGIS software.Keywords: disaster management, temporary resettlement, earthquake, criteria
Procedia PDF Downloads 4641373 Finding out the Best Criteria for Locating the Best Place Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi
Abstract:
Iran is a capable zone for the earthquake that follows the loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System(GIS) has a determining role in disaster management, it can determine the best places for temporary resettling after such a disaster. In this paper, the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also, in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in ArcGIS software.Keywords: disaster management, temporary resettlement, earthquake, criteria
Procedia PDF Downloads 2921372 Tunable Optoelectronic Properties of WS₂ by Local Strain Engineering and Folding
Authors: Ahmed Raza Khan
Abstract:
Local-strain engineering is an exciting approach to tune the optoelectronic properties of materials and enhance the performance of devices. Two dimensional (2D) materials such as 2D transition metal dichalcogenides (TMDCs) are particularly well-suited for this purpose because they have high flexibility and can withstand high deformations before rupture. Wrinkles on thick TMDC layers have been reported to show the interesting photoluminescence enhancement due to bandgap modulation and funneling effect. However, the wrinkles in ultrathin TMDCs have not been investigated, because the wrinkles can easily fall down to form folds in these ultrathin layers of TMDCs. Here, we have achieved both wrinkle and fold nano-structures simultaneously on 1-3L WS₂ using a new fabrication technique. The comparable layer dependent reduction in surface potential is observed for both folded layers and corresponding perfect pack layers due to the dominant interlayer screening effect. The strains produced from the wrinkle nanostructures considerably vary semi conductive junction properties. Thermo-ionic modelling suggests that the strained (1.6%) wrinkles can lower the Schottky barrier height (SBH) by 20%. The photo-generated carriers would further significantly lower the SBH. These results present an important advance towards controlling the optoelectronic properties of atomically thin WS₂ using strain engineering, with important implications for practical device applications.Keywords: strain engineering, folding, WS₂, Kelvin probe force microscopy, KPFM, surface potential, photo current, layer dependence
Procedia PDF Downloads 1071371 Cyclic Liquefaction Resistance of Reinforced Sand
Authors: S. A. Naeini, Z. Eftekhari
Abstract:
Liquefaction phenomenon in sand is nowadays a classical soil mechanics subject. Using a cyclic triaxial test apparatus, we use non-woven geotextile reinforcement to improve the liquefaction resistance of sand. The layer configurations used are zero, one, two and three horizontal reinforcing layers in a triaxial test sample. The influences of the number of geotextile layers, and cyclic stress ratio (CSR) were studied and described. The results illustrated that the geotextile inclusion increases liquefaction resistance.Keywords: liquefaction resistance, geotextile, sand, cyclic triaxial test, cyclic stress ratio
Procedia PDF Downloads 5761370 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification
Authors: Zhaoxin Luo, Michael Zhu
Abstract:
In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese
Procedia PDF Downloads 681369 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes
Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari
Abstract:
In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior
Procedia PDF Downloads 641368 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers
Authors: Marcus Klein, Martina GrießBach, Richard Kupke
Abstract:
The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology
Procedia PDF Downloads 3071367 Women from the Margins: An Exploration of the African Women Marginalization in the South African Context from Postcolonial Feminist Perspective
Authors: Goodness Thandi Ntuli
Abstract:
As one of the sub-Saharan African countries, South Africa has a majority of women living at the receiving end of all ferocious atrocities, afflictions and social ills such as utter poverty, unemployment, morbidity, sexual exploitation and abuse, gender-based and domestic violence. The response to these social ills that permeate the South African context like wildfire requires postcolonial feminism as a lens which needs to directly address this particular context. In the empirical study that was conducted among the Zulu people about Zulu young women in the South African context, it was found that a postcolonial young woman has a lot of social challenges that militate against her. In her struggle to liberate herself, there are layers of oppression that she has to deal with before attaining emancipation of any kind. These layers of oppression emanate from postcolonial effects on cultural norms that come with patriarchal issues, racial issues as the woman of colour and socio-economic issues as the poverty-stricken marginalised woman. Such layers also render marginalized women voiceless on many occasions, and hence the kind of feminism that needs to be applied in this context has to give them a voice, worth and human dignity that they deserve. From the postcolonial feminist perspective, this paper examines the condition of women from the margins and seeks the ways in which the layers of oppression could be disengaged. In the process of the severed layers of oppression, these women can be uplifted to becoming the women of worth, restored to life-giving dignity from the inferiority complex of racial discrimination and liberation from all forms of patriarchy and its upshots that keep them bound by gender inequality. This requires, in particular, postcolonial feminism that would find profound ways of reaching into the deep-seated socialization and internalization of every kind of prejudice against women. It is the kind of feminism that questions the status core even among those who consider themselves feminists. With the ruination of all postcolonial layers of oppression, women in the margins could find real emancipation that they have always longed for through feminism that will take into consideration their context. This calls for the rethinking of feminism in different contexts because the conditions of the oppressed woman of the South cannot be the same as the conditions of the woman who considers herself oppressed in the North.Keywords: exploration, feminism, postcolonial, margins, South African, women
Procedia PDF Downloads 2221366 Burnishing Effect on the Mechanical Characteristics of 100C6
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
This work relates to the physico-geometrical aspect of the surface layers of 100C6 steel having undergone the burnishing treatment by hard steel ball. The application of tip diamond burnishing promotes better roughness compared to turning. In addition, it allows the surface layers to be consolidated by work hardening phenomena. The optimal effects are closely related to the parameters of the treatment and the active part of the device. With an 80% improvement in roughness resulting from the treatment, burnishing can be defined as a finishing operation within the machining range. With a 40% gain in consolidation rate, this treatment is an efficient process for material consolidation.Keywords: 100C6 steel, burnishing, hardening, roughness
Procedia PDF Downloads 1561365 Corrosion Control of Carbon Steel Surface by Phosphonic Acid Nano-Layers
Authors: T. Abohalkuma, J. Telegdi
Abstract:
Preparation, characterization, and application of self-assembled monolayers (SAM) formed by fluorophosphonic and undecenyl phosphonic acids on carbon steel surfaces as anticorrosive nanocoatings were demonstrated. The anticorrosive efficacy of these SAM layers was followed by atomic force microscopy, as the change in the surface morphology caused by layer deposition and corrosion processes was monitored. The corrosion process was determined by electrochemical potentiodynamic polarization, whereas the surface wettability of the carbon steel samples was tested with the use of static and dynamic contact angle measurements. Results showed that both chemicals produced good protection against corrosion as they performed as anodic inhibitors, especially with increasing the time of layer formation, which results in a more compact molecular film. According to the atomic force microscope (AFM) images, the fluoro-phosphonic acid self-assembled molecular layer can control the general as well as the pitting corrosion, but the SAM layers of the undecenyl-phosphonic acid cannot inhibit the pitting corrosion. The AFM and the contact angle measurements confirmed the results achieved by electrochemical measurements.Keywords: nanolayers, corrosion, phosphonic acids, coatings
Procedia PDF Downloads 171