Search results for: differential magnetic susceptibility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3306

Search results for: differential magnetic susceptibility

3246 Orbital Tuning of Marl-Limestone Alternations (Upper Tithonian to Upper Berriasian) in North-South Axis (Tunisia): Geochronology and Sequence Implications

Authors: Hamdi Omar Omar, Hela Fakhfakh, Chokri Yaich

Abstract:

This work reflects the integration of different techniques, such as field sampling and observations, magnetic susceptibility measurement, cyclostratigaraphy and sequence stratigraphy. The combination of these results allows us to reconstruct the environmental evolution of the Sidi Khalif Formation in the North-South Axis (NOSA), aged of Upper Tithonian, Berriasian and Lower Valanginian. Six sedimentary facies were identified and are primarily influenced by open marine sedimentation receiving increasing terrigenous influx. Spectral analysis, based on MS variation (for the outcropped section) and wireline logging gamma ray (GR) variation (for the sub-area section) show a pervasive dominance of 405-kyr eccentricity cycles with the expression of 100-kyr eccentricity, obliquity and precession. This study provides (for the first time) a precise duration of 2.4 myr for the outcropped Sidi Khalif Formation with a sedimentation rate of 5.4 cm/kyr and the sub-area section to 3.24 myr with a sedimentation rate of 7.64 cm/kyr. We outlined 27 5th-order depositional sequences, 8 Milankovitch depositional sequences and 2 major 3rd-order cycles for the outcropping section, controlled by the long eccentricity (405 kyr) cycles and the precession index cycles. This study has demonstrated the potential of MS and GR to be used as proxies to develop an astronomically calibrated time-scale for the Mesozoic era.

Keywords: Berriasian, magnetic susceptibility, orbital tuning, Sidi Khalif Formation

Procedia PDF Downloads 238
3245 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load

Procedia PDF Downloads 121
3244 Electro Magnetic Tractor (E. M. Tractor)

Authors: Sijo Varghese

Abstract:

A space craft (E. M. Tractor) which is intended to deflect or tug the asteroids which possesses threat towards the planets is the whole idea behind this paper. In this case "Electro Magnetic Induction" is used where it is known that when two separate circuits are connected to the electro magnet and on application of electric current through the one circuit in to the coil induces magnetic fields which repels the other circuit.( Faraday's law of Electromagnetic Induction). Basically a Spacecraft is used to attach a large sheet of aluminum on to the surface of the asteroid, the Spacecraft acts as an electro magnet and the induced magnetic field would eventually repel the aluminum intern repelling the asteroid. This method would take less time as compared to use of gravity( which requires a larger spacecraft and process will take a long time).

Keywords: asteroids, electro magnetic induction, gravity, electro magnetic tractor

Procedia PDF Downloads 460
3243 New Refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ for Application in Magnetic Refrigeration

Authors: Essebti Dhahri

Abstract:

We present a new refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ (x = 0.0-0.1) manganites. These compounds were prepared by the sol-gel method. The refinement of the X-ray diffraction reveals that all samples crystallize in a rhombohedral structure (space group R3 ̅c). Detailed measurements of the magnetization as a function of temperature and magnetic applied field M (µ₀H, T) were carried out. From the M(µ₀H, T) curves, we have calculated the magnetic entropy change (ΔSM) according to the Maxwell relation. The temperature dependence of the magnetization M(T) reveals a decrease of M when increasing the x content. The magnetic entropy change (ΔSM) reaches a maximum value near room temperature. It was also found that this compound exhibits a large magnetocaloric effect MCE which increases when decreasing Ga concentration. So, the studied compounds could be considered potential materials for magnetic refrigeration application.

Keywords: magnetic measurements, Rietveld refinement, magnetic refrigeration, magnetocaloric effect

Procedia PDF Downloads 67
3242 Antifungal Susceptibility of Yeasts Isolated from Clinical Samples from a Tertiary Hospital from State of Puebla

Authors: Ricardo Munguia-Perez, Nayeli Remigio-Alvarado, M.Miriam Hernandez-Arroyo, Elsa Castañeda-Roldan

Abstract:

Fungi have emerged as important pathogens causing morbidity and mortality mainly in immunosuppressed, malnourished and elderly patients. It has detected an increase in resistance to azoles primarily to fluconazol. The fungal infections have become a problem of public health for the resistance to antifungal agents, they have developed new antifungals with broad-spectrum. The aim of this study was determine the antifungal susceptibility of yeasts isolated from clinical samples (respiratory secretions, exudates, wounds, blood cultures, urine cultures) obtained from inpatients and outpatients of a tertiary hospital from State of Puebla. The antifungal susceptibility of the yeast from several clinical samples were determined by the CLS M44-A disk diffusion methods. 149 samples of yeast were analyzed. All species were 100% susceptible to nystatin and amphotericin B. Candida albicans showed resistance of 95.5 % to fluconazole, 50.7 % to 5-flurocytosine and 55.2 % intermediate susceptibility to ketoconazole. Candida glabrata 81.3 % was susceptibility to ketoconazole and 75 % to fluconazole, for the case of 5-flurocytosine the 56.3 % was susceptible. Candida krusei 100 % was susceptible to ketoconazole, 50 % to fluconazole and 37.5 % to 5-flurocytosine. The internal medicine have greater diversity of yeast, the samples have susceptibility of 64.7% to ketoconazole, 47.1 % to fluconazole and 27.5 % to 5-flurocytosine. Hospitalized patients are more resistant to fluconazole and nystatin, but in the case of outpatients presents resistance to ketoconazole.

Keywords: antifungal, susceptibility, yeast, clinical samples

Procedia PDF Downloads 306
3241 Structural and Magnetic Properties of Mn-Doped 6H-SiC

Authors: M. Al Azri, M. Elzain, K. Bouziane, S. M. Chérif

Abstract:

n-Type 6H-SiC(0001) substrates were implanted with three fluencies of Mn+ 5x1015 Mn/cm2 (Mn content: 0.7%), 1x1016 (~2 %), and 5x1016 cm–2 (7%) with implantation energy of 80 keV and substrate temperature of 365ºC. The samples were characterized using Rutherford Backscattering and Channeling Spectroscopy (RBS/C), High-Resolution X-Ray Diffraction technique (HRXRD), micro-Raman Spectroscopy (μRS), and Superconducting Quantum Interference Device (SQUID) techniques. The aim of our work is to investigate implantation induced defects with dose and to study any correlation between disorder-composition and magnetic properties. In addition, ab-initio calculations were used to investigate the structural and magnetic properties of Mn-doped 6H-SiC. Various configurations of Mn sites and vacancy types were considered. The calculations showed that a substitutional Mn atom at Si site possesses larger magnetic moment than Mn atom at C site. A model is introduced to explain the dependence of the magnetic structure on site occupation. The magnetic properties of ferromagnetically (FM) and antiferromagnetically (AFM) coupled pairs of Mn atoms with and without neighboring vacancies have also been explored.

Keywords: ab-initio calculations, diluted magnetic semiconductors, magnetic properties, silicon carbide

Procedia PDF Downloads 291
3240 Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force

Authors: Fatemeh Shahi, Mehdi Sharifian, Laia Shahrassai, Elham Eskandari A.

Abstract:

A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma.

Keywords: magnetic field generation, laser-plasma interaction, ponderomotive force, inhomogeneous plasma

Procedia PDF Downloads 259
3239 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 185
3238 Functionalized Magnetic Iron Oxide Nanoparticles for Extraction of Protein and Metal Nanoparticles from Complex Fluids

Authors: Meenakshi Verma, Mandeep Singh Bakshi, Kultar Singh

Abstract:

Magnetic nanoparticles have received incredible importance in view of their diverse applications, which arise primarily due to their response to the external magnetic field. The magnetic behaviour of magnetic nanoparticles (NPs) helps them in numerous different ways. The most important amongst them is the ease with which they can be purified and also can be separated from the media in which they are present merely by applying an external magnetic field. This exceptional ease of separation of the magnetic NPs from an aqueous media enables them to use for extracting/removing metal pollutants from complex aqueous medium. Functionalized magnetic NPs can be subjected for the metallic impurities extraction if are favourably adsorbed on the NPs surfaces. We have successfully used the magnetic NPs as vehicles for gold and silver NPs removal from the complex fluids. The NPs loaded with gold and silver NPs pollutant fractions has been easily removed from the aqueous media by using external magnetic field. Similarly, we have used the magnetic NPs for extraction of protein from complex media and then constantly washed with pure water to eliminate the unwanted surface adsorbed components for quantitative estimation. The purified and protein loaded magnetic NPs are best analyzed with SDS Page to not only for characterization but also for separating the protein fractions. A collective review of the results indicates that we have synthesized surfactant coated iron oxide NPs and then functionalized these with selected materials. These surface active magnetic NPs work very well for the extraction of metallic NPs from the aqueous bulk and make the whole process environmentally sustainable. Also, magnetic NPs-Au/Ag/Pd hybrids have excellent protein extracting properties. They are much easier to use in order to extract the magnetic impurities as well as protein fractions under the effect of external magnetic field without any complex conventional purification methods.

Keywords: magnetic nanoparticles, protein, functionalized, extraction

Procedia PDF Downloads 79
3237 Computer Simulation to Investigate Magnetic and Wave-Absorbing Properties of Iron Nanoparticles

Authors: Chuan-Wen Liu, Min-Hsien Liu, Chung-Chieh Tai, Bing-Cheng Kuo, Cheng-Lung Chen, Huazhen Shen

Abstract:

A recent surge in research on magnetic radar absorbing materials (RAMs) has presented researchers with new opportunities and challenges. This study was performed to gain a better understanding of the wave-absorbing phenomenon of magnetic RAMs. First, we hypothesized that the absorbing phenomenon is dependent on the particle shape. Using the Material Studio program and the micro-dot magnetic dipoles (MDMD) method, we obtained results from magnetic RAMs to support this hypothesis. The total MDMD energy of disk-like iron particles was greater than that of spherical iron particles. In addition, the particulate aggregation phenomenon decreases the wave-absorbance, according to both experiments and computational data. To conclude, this study may be of importance in terms of explaining the wave- absorbing characteristic of magnetic RAMs. Combining molecular dynamics simulation results and the theory of magnetization of magnetic dots, we investigated the magnetic properties of iron materials with different particle shapes and degrees of aggregation under external magnetic fields. The MDMD of the materials under magnetic fields of various strengths were simulated. Our results suggested that disk-like iron particles had a better magnetization than spherical iron particles. This result could be correlated with the magnetic wave- absorbing property of iron material.

Keywords: wave-absorbing property, magnetic material, micro-dot magnetic dipole, particulate aggregation

Procedia PDF Downloads 465
3236 Effect of Al Contents on Magnetic Domains of {100} Grains in Electrical Steels

Authors: Hyunseo Choi, Jaewan Hong, Seil Lee, Yang Mo Koo

Abstract:

Non-oriented (NO) electrical steel is one of the most important soft magnetic materials for rotating machines. Si has usually been added to electrical steels to reduce eddy current loss by increasing the electrical resistivity. Si content more than 3.5 wt% causes cracks during cold rolling due to increase of brittleness. Al also increases the electrical resistivity of the materials as much as Si. In addition, cold workability of Fe-Al is better than Fe-Si, so that Al can be added up to 6.0 wt%. However, the effect of Al contents on magnetic properties of electrical steels has not been studied in detail. Magnetic domains of {100} grains in electrical steels, ranging from 1.85 to 6.54 wt% Al, were observed by magneto-optic Kerr microscopy. Furthermore, the correlation of magnetic domains with magnetic properties was investigated. As Al contents increased, the magnetic domain size of {100} grains decreased due to lowered domain wall energy. Reorganization of magnetic domain structure became more complex as domain size decreased. Therefore, the addition of Al to electrical steel caused hysteresis loss to increase. Anomalous loss decreased and saturated after 4.68% Al.

Keywords: electrical steel, magnetic domain structure, Al addition, core loss, rearrangement of domains

Procedia PDF Downloads 211
3235 Effects of Magnetic Field Strength on Fluid Flow Behavior in a Constricted Channel

Authors: Ashkan Javadzadegan, Aitak Javadzadegan, Babak Fakhim

Abstract:

One of possible ways to retard movement of fluid is through applying an external magnetic field. In this regard, this study is focused on the effect of a uniform transverse magnetic field on fluid flow behavior inside a channel with a local symmetric constriction. Also, Ellis Non-Newtonian model is implemented to address the effects of shear-dependent viscosity. According to the results, the flow separation downstream of the constriction can be controlled by applying an external magnetic field and/or manipulating the shear-thinning degree of fluid. It is also demonstrated that pressure drop increases by an increase in the strength of the magnetic field.

Keywords: magnetic field, non-Newtonian, separation, shear thinning

Procedia PDF Downloads 404
3234 The Paleoenvironment and Paleoclimatological Variations during Aptian in North Central Tunisia

Authors: Houda Khaled, Frederic Boulvain, Fredj Chaabani

Abstract:

This paper focuses on the sedimentological and mineralogical studies of Aptian series outcrops in the Serdj and Bellouta Mountain situated in north-central Tunisia. In the Serdj Mountain, the Aptian series is about 590 meters thick and it is defined by tow formations corresponding respectively to the Sidi Hamada formation (Barremian-Gragasian) and the Serdj formation (Middle Gragasian-Late Clansaysian). This later is consisting of five limestones sequences separated by marly levels limestones associated to some siltstones bed. The Bellouta section is especially composed of carbonate rocks and it is attributed to the Middle Gragasian - Late Clansaysian. These sections are studied in detail regarding lithology, micropaleontology, microfacies, magnetic susceptibility and mineralogical composition in order to provide new insights into the paleoenvironmental evolution and paleoclimatological implications during Aptian. The following facies associations representing different ramp palaeoenvironments have been identified: mudstone-wackestone outer ramp facies; skeletal grainstone-packstone mid-ramp facies, packstone-grainstone inner-ramp facies which include a variety of organisms such as ooliths, rudists ostracods associated to athor bioclats. The coastal facies is especially defined by a mudstone -wackestone texture coastal rich with miliolidea and orbitolines. The magnetic susceptibility (Xin) of all samples was compared with the lithological and microfacies variation. The MS curves show that the high values are correlated with the distal facies and the low values are registred in the coastal environment. The X-ray diffractometer analysis show the presence of kaolinite and illite.

Keywords: Aptian, Serdj formation, mineralogy, petrography

Procedia PDF Downloads 167
3233 A Study on the Magnetic and Mechanical Properties of Nd-Fe-B Sintered Magnets According to Sintering Temperature

Authors: J. H. Kim, S. Y. Park, K. M. Lim, S. K. Hyun

Abstract:

The effect of sintering temperature on the magnetic and mechanical properties of Nd-Fe-B sintered magnets has been investigated in this study. The sintering temperature changed from 950°C to 1120°C. While remanence and hardness of the magnets increased with increasing sintering temperature, the coercivity first increased, and then decreased. The optimum magnetic and mechanical properties of the magnets were obtained at the sintering temperature of 1050°C. In order to clarify the reason for the variation on magnetic and mechanical properties of the magnets, we systematically analyzed the microstructure.

Keywords: magnetic and mechanical property, microstructure, permanent magnets, sintered Nd-Fe-B magnet

Procedia PDF Downloads 307
3232 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms

Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel

Abstract:

Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.

Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning

Procedia PDF Downloads 138
3231 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment

Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar

Abstract:

Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate

Procedia PDF Downloads 293
3230 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites

Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash

Abstract:

Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.

Keywords: gamma ray irradiation, hard ferrite, magnetic coefficient, magnetic material, radiation dose

Procedia PDF Downloads 217
3229 Existence Result of Third Order Functional Random Integro-Differential Inclusion

Authors: D. S. Palimkar

Abstract:

The FRIGDI (functional random integrodifferential inclusion) seems to be new and includes several known random differential inclusions already studied in the literature as special cases have been discussed in the literature for various aspects of the solutions. In this paper, we prove the existence result for FIGDI under the non-convex case of multi-valued function involved in it.Using random fixed point theorem of B. C. Dhage and caratheodory condition. This result is new to the theory of differential inclusion.

Keywords: caratheodory condition, random differential inclusion, random solution, integro-differential inclusion

Procedia PDF Downloads 438
3228 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.

Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking

Procedia PDF Downloads 130
3227 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 330
3226 Integral Image-Based Differential Filters

Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama

Abstract:

We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.

Keywords: integral images, differential images, differential filters, image fusion

Procedia PDF Downloads 476
3225 Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent

Authors: Pyar Singh Jassal, Priti Rani, Rajni Johar

Abstract:

The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0Keywords: magnetic chitosan beads, ethylene glycol diglycidyl ether, equilibrium parameters, desorption

Procedia PDF Downloads 60
3224 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations

Authors: Teoman Ozer, Ozlem Orhan

Abstract:

This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.

Keywords: λ-symmetry, μ-symmetry, classification, invariant solution

Procedia PDF Downloads 287
3223 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

Authors: Vikas Kumar

Abstract:

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper.

Keywords: axi-symmetric, ferrofluid, magnetic field, porous rotating disk

Procedia PDF Downloads 366
3222 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls

Authors: M. A. Anwar, K. Iqbal, M. Razzaq

Abstract:

Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.

Keywords: bifurcation, elastic walls, finite element, wall shear stress,

Procedia PDF Downloads 144
3221 Functionalized SPIO Conjugated with Doxorubicin for Tumor Diagnosis and Chemotherapy Enhanced by Applying Magnetic Fields

Authors: Po-Chin Liang, Yung-Chu Chen, Chi-Feng Chiang, Yun-Ping Lin, Wen-Yuan Hsieh, Win-Li Lin

Abstract:

The aim of this study was to develop super paramagnetic iron oxide (SPIO) nano-particles comprised of a magnetic Fe3O4 core and a shell of aqueous stable self-doped polyethylene glycol (PEG) with a high loading of doxorubicin (SPIO-PEG-D) for tumor theranostics. The in-vivo MRI study showed that there was a stronger T2-weighted signal enhancement for the group under a magnetic field, and hence it indicated that this group had a better accumulation of SPIO-PEG than the group without a magnetic field. In the anticancer evaluation of SPIO-PEG-D, the group with a magnetic field displayed a significantly smaller tumor size than the group without. The overall results show that SPIO-PEG-D nanoparticles have the potential for the application of MRI/monitoring chemotherapy and the therapy can be locally enhanced by applying an external magnetic field.

Keywords: super paramagnetic iron oxide nano particles, doxorubicin, chemotherapy, MRI, magnetic fields

Procedia PDF Downloads 579
3220 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.

Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization

Procedia PDF Downloads 108
3219 Magnetic Field Analysis of External Rotor Permanent-Magnet Synchronous Motors with Non Magnetic Rotor Core

Authors: Mabrak Samir

Abstract:

The motor performance created by permanent magnetic in a slotless air-gap of a surface mounted permanent-magnet synchronous motor with non magnetic rotor and either sinusoidal or mixed (quasi-Halbatch) magnetization is presented in this paper using polar coordinates. The analysis works for both internal and external rotor motor topologies, The effect of stator slots is introduced by modulating the magnetic field distribution in the slotless stator by the complex relative air-gap permeance, calculated from the conformal transformation of the slot geometry. We compare predicted results of flux density distribution and cogging torque with those obtained by finite-element analysis.

Keywords: air-cored, cogging torque, finite element magnetic field, permanent-magnet

Procedia PDF Downloads 349
3218 Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations

Authors: Yildiray Keskin, Omer Acan, Murat Akkus

Abstract:

In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations.

Keywords: fractional diffusion equations, Caputo fractional derivative, reduced differential transform method, partial

Procedia PDF Downloads 495
3217 Magnetofluidics for Mass Transfer and Mixing Enhancement in a Micro Scale Device

Authors: Majid Hejazian, Nam-Trung Nguyen

Abstract:

Over the past few years, microfluidic devices have generated significant attention from industry and academia due to advantages such as small sample volume, low cost and high efficiency. Microfluidic devices have applications in chemical, biological and industry analysis and can facilitate assay of bio-materials and chemical reactions, separation, and sensing. Micromixers are one of the important microfluidic concepts. Micromixers can work as stand-alone devices or be integrated in a more complex microfluidic system such as a lab on a chip (LOC). Micromixers are categorized as passive and active types. Passive micromixers rely only on the arrangement of the phases to be mixed and contain no moving parts and require no energy. Active micromixers require external fields such as pressure, temperature, electric and acoustic fields. Rapid and efficient mixing is important for many applications such as biological, chemical and biochemical analysis. Achieving fast and homogenous mixing of multiple samples in the microfluidic devices has been studied and discussed in the literature recently. Improvement in mixing rely on effective mass transport in microscale, but are currently limited to molecular diffusion due to the predominant laminar flow in this size scale. Using magnetic field to elevate mass transport is an effective solution for mixing enhancement in microfluidics. The use of a non-uniform magnetic field to improve mass transfer performance in a microfluidic device is demonstrated in this work. The phenomenon of mixing ferrofluid and DI-water streams has been reported before, but mass transfer enhancement for other non-magnetic species through magnetic field have not been studied and evaluated extensively. In the present work, permanent magnets were used in a simple microfluidic device to create a non-uniform magnetic field. Two streams are introduced into the microchannel: one contains fluorescent dye mixed with diluted ferrofluid to induce enhanced mass transport of the dye, and the other one is a non-magnetic DI-water stream. Mass transport enhancement of fluorescent dye is evaluated using fluorescent measurement techniques. The concentration field is measured for different flow rates. Due to effect of magnetic field, a body force is exerted on the paramagnetic stream and expands the ferrofluid stream into non-magnetic DI-water flow. The experimental results demonstrate that without a magnetic field, both magnetic nanoparticles of the ferrofluid and the fluorescent dye solely rely on molecular diffusion to spread. The non-uniform magnetic field, created by the permanent magnets around the microchannel, and diluted ferrofluid can improve mass transport of non-magnetic solutes in a microfluidic device. The susceptibility mismatch between the fluids results in a magnetoconvective secondary flow towards the magnets and subsequently the mass transport of the non-magnetic fluorescent dye. A significant enhancement in mass transport of the fluorescent dye was observed. The platform presented here could be used as a microfluidics-based micromixer for chemical and biological applications.

Keywords: ferrofluid, mass transfer, micromixer, microfluidics, magnetic

Procedia PDF Downloads 196