Search results for: concrete%20compressive%20strength%20effect
1830 Moisture Impact on the Utilization of Recycled Concrete Fine Aggregate to Produce Mortar
Authors: Rahimullah Habibzai
Abstract:
To achieve a sustainable concrete industry, reduce exploitation of the natural aggregate resources, and mitigate waste concrete environmental burden, one way is to use recycled concrete aggregate. The utilization of low-quality fine aggregate inclusively recycled concrete sand that is produced from crushing waste concrete recently has become a popular and challenging topic among researchers nowadays. This study provides a scientific base for promoting the application of concrete waste as fine aggregate in producing concrete by conducting a comprehensive laboratory program. The mechanical properties of mortar made from recycled concrete fine aggregate (RCFA), that is produced by pulse power crushing concrete waste are satisfactory and capable of being utilized in the construction industry. A better treatment of RCFA particles and enhancing its quality will make it possible to be utilized in producing structural concrete. Pulse power discharge technology is proposed in this research to produce RCFA, which is a more effective and promising technique compared to other recycling methods to generate medium to high-quality recycled concrete fine aggregate with a reduced amount of powder, mitigate the environmental burden, and save more space.Keywords: construction and demolition waste, concrete waste recycle fine aggregate, pulse power discharge
Procedia PDF Downloads 1531829 Characterization of Structural Elements in Metal Fiber Concrete
Authors: Ammari Abdelhammid
Abstract:
This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We're interested in this study to the Rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios ( S/G) are S/G = 0.8 and S/G = 1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G = 1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: Eurosteel fibers corrugated and Dramix fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test
Procedia PDF Downloads 4381828 Obtaining the Hydraulic Concrete Resistant to the Aggressive Environment by Using Admixtures
Authors: N. Tabatadze
Abstract:
The research aim is to study the physical and mechanical characteristics of hydraulic concrete in the surface active environment. The specific goal is to obtain high strength and low deformable concrete based on nano additives, resistant to the aggressive environment. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa). Moreover, water absorption (W=0,59 % of admixture instead of W=1,41 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.Keywords: hydraulic concrete, alkali-silica reaction, water absorption, water-resistance
Procedia PDF Downloads 3481827 Effect of Mineral Admixture on Self-Healing Performance in Concrete
Authors: Young-Cheol Choi, Sung-Won Yoo, Bong Chun Lee, Byoungsun Park, Sang-Hwa Jung
Abstract:
Cracks in concrete commonly provide the passages of ingresses of aggressive and harmful ions into concrete inside and thus reduce the durability of concrete members. In order to solve this problem, self-healing concrete based on mineral admixture has become a major issue. Self-healing materials are those which have the ability of autonomously repairing some damages or small cracks in concrete structures. Concrete has an inherent healing potential, called natural healing, which can take place in ordinary concrete elements but its power is limited and is not predictable. The main mechanism of self-healing in cracked concrete is the continued hydration of unreacted binder and the crystallization of calcium carbonate. Some mineral admixtures have been found to promote the self-healing of cementitious materials. The aim of this study is to investigate the effect of mineral admixture on the self-healing performances of high strength concrete. The potential capability of self-healing of cementitious materials was evaluated using isothermal conduction calorimeter. The self-healing efficiencies were studied by means of water flow tests on cracked concrete specimens. The results show a different healing behaviour depending on presence of the crystalline admixture.Keywords: mineral admixture, self-healing, water flow test, crystallization
Procedia PDF Downloads 3661826 Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete
Authors: Mustafa Hasan Omar
Abstract:
The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively.Keywords: epoxy resin, hydrocarbon solutions, mechanical properties, polymer concrete, ultrasonic pulse velocity
Procedia PDF Downloads 1271825 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects
Authors: Toufic Abd El-Latif Sadek
Abstract:
The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.Keywords: asphalt, concrete, satellite thermal images, timing
Procedia PDF Downloads 3201824 A Parametric Study on Effects of Internal Factors on Carbonation of Reinforced Concrete
Authors: Kunal Tongaria, Abhishek Mangal, S. Mandal, Devendra Mohan
Abstract:
The carbonation of concrete is a phenomenon which is a function of various interdependent parameters. Therefore, in spite of numerous literature and database, the useful generalization is not an easy task. These interdependent parameters can be grouped under the category of internal and external factors. This paper focuses on the internal parameters which govern and increase the probability of the ingress of deleterious substances into concrete. The mechanism of effects of internal parameters such as microstructure for with and without supplementary cementing materials (SCM), water/binder ratio, the age of concrete etc. has been discussed. This is followed by the comparison of various proposed mathematical models for the deterioration of concrete. Based on existing laboratory experiments as well as field results, this paper concludes the present understanding of mechanism, modeling and future research needs in this field.Keywords: carbonation, diffusion coefficient, microstructure of concrete, reinforced concrete
Procedia PDF Downloads 4051823 Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack
Authors: Talakokula Visalakshi
Abstract:
Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material.Keywords: fly ash, geo polymer, geopolymer concrete, construction material
Procedia PDF Downloads 4861822 Research of Interaction between Layers of Compressed Composite Columns
Authors: Daumantas Zidanavicius
Abstract:
In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage.Keywords: concrete filled steel tube, push-out test, bond slip relationship, bond stress distribution
Procedia PDF Downloads 1231821 Using Construction Wastes and Recyclable Materials in Sustainable Concrete Manufacture
Authors: Mohamed T. El-Hawary, Carsten Koenke, Amr M. El-Nemr, Nagy F. Hanna
Abstract:
Sustainable construction materials using solid construction wastes are of great environmental and economic significance. Construction wastes, demolishing wastes, and wastes coming out from the preparation of traditional materials could be used in sustainable concrete manufacture, which is the main scope of this paper. Ceramics, clay bricks, marble, recycled concrete, and many other materials should be tested and validated for use in the manufacture of green concrete. Introducing waste materials in concrete helps in reducing the required landfills, leaving more space for land investments, and decrease the environmental impact of the concrete buildings industry in both stages -construction and demolition-. In this paper, marble aggregate is used as a replacement for the natural aggregate in sustainable green concrete production. The results showed that marble aggregates can be used as a full replacement for the natural aggregates in eco-friendly green concrete.Keywords: coarse aggregate replacement, economical designs, green concrete, marble aggregates, sustainability, waste management
Procedia PDF Downloads 1461820 The Effect of Air Entraining Agents on Compressive Strength
Authors: Demet Yavuz
Abstract:
Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.Keywords: concrete, air-entraining, compressive strength, mechanical properties
Procedia PDF Downloads 2751819 Comparative Study of Natural Coarse Aggregate Concrete with Recycled Concrete Aggregate Concrete
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
The partial or full replacement of natural coarse aggregate by recycled concrete aggregate (RCA) is of great benefit to the environment, as the demand of natural coarse aggregate reduces. In the modern construction and practice, the use of RCA is limited to backfilling and road construction. The establishment of RCA for its wide application can only be done after having an understanding of the use of RCA in conventional concrete. To have an insight to this, various tests to determine the compressive strength, elastic strength, workability, durability and drying shrinkage tests can be done and the test results may be different from that obtained from natural coarse aggregates, by using natural coarse aggregate in concrete. This paper gives a comprehensive review of the said tests done on RCA concrete. The results obtained from the tests indicate that RCA concrete gives comparable compressive strength, stiffness, and workability relative to the corresponding results obtained from the natural coarse aggregates. However, the durability and drying shrinkage had more variance but well within recommended limits.Keywords: aggregate, compressive strength, durability, modulus of elasticity, recycled concrete, shrinkage, workability
Procedia PDF Downloads 2821818 Getting to Know the Types of Concrete and its Production Methods
Authors: Mokhtar Nikgoo
Abstract:
Definition of Concrete and Concreting: Concrete (in French: Béton) in a broad sense is any substance or combination that consists of a sticky substance with the property of cementation. In general, concrete refers to concrete made by Portland cement, which is produced by mixing fine and coarse aggregates, Portland cement and water. After enough time, this mixture turns into a stone-like substance. During the hardening or processing of the concrete, cement is chemically combined with water to form strong crystals that bind the aggregates together, a process called hydration. During this process, significant heat is released called hydration heat. Additionally, concrete shrinks slightly, especially as excess water evaporates, a phenomenon known as drying shrinkage. The process of hardening and the gradual increase in concrete strength that occurs with it does not end suddenly unless it is artificially interrupted. Instead, it decreases more over long periods of time, although, in practical applications, concrete is usually set after 28 days and is considered at full design strength. Concrete may be made from different types of cement as well as pozzolans, furnace slag, additives, additives, polymers, fibers, etc. It may also be used in the way it is made, heating, water vapor, autoclave, vacuum, hydraulic pressures and various condensers.Keywords: concrete, RCC, batching, cement, Pozzolan, mixing plan
Procedia PDF Downloads 961817 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns
Authors: I. A Tijani, Y. F Wu, C.W. Lim
Abstract:
Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method
Procedia PDF Downloads 1341816 Modified Tendon Model Considered Structural Nonlinearity in PSC Structures
Authors: Yangsu Kwon, Hyo-Gyoung Kwak
Abstract:
Nonlinear tendon constitutive model for nonlinear analysis of pre-stressed concrete structures are presented. Since the post-cracking behavior of concrete structures, in which bonded reinforcements such as tendons and/or reinforcing steels are embedded, depends on many influencing factors(the tensile strength of concrete, anchorage length of reinforcements, concrete cover, and steel spacing) that are deeply related to the bond characteristics between concrete and reinforcements, consideration of the tension stiffening effect on the basis of the bond-slip mechanism is necessary to evaluate ultimate resisting capacity of structures. In this paper, an improved tendon model, which considering the slip effect between concrete and tendon, and effect of tension stiffening, is suggested. The validity of the proposed models is established by comparing between the analytical results and experimental results in pre-stressed concrete beams.Keywords: bond-slip, prestressed concrete, tendon, ultimate strength
Procedia PDF Downloads 4921815 Gravitational Energy Storage by Using Concrete Stacks
Authors: Anusit Punsirichaiyakul, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
The paper aims to study the energy storage system in the form of gravity energy by the weight of concrete stacks. This technology has the potential to replace expensive battery storage. This paper is a trial plan in abandoned mines in Thailand. This is to start with construct concrete boxes to be stacked vertically or obliquely to form appropriate shapes and, therefore, to store the potential energy. The stored energy can be released or discharged back to the system by deploying the concrete stacks to the ground. This is to convert the potential energy stored in the concrete stacks to the kinetic energy of the concrete box movement. This design is incorporating mechanical transmission to reduce the height of the concrete stacks. This study also makes a comparison between the energy used to construct concrete stacks in various shapes and the energy to deploy all the concrete boxes to ground. This paper consists of 2 test systems. The first test is to stack the concrete in vertical shape. The concrete stack has a maximum height of 50 m with a gear ratio of 1:200. The concrete box weight is 115 tons/piece with a total stored energy of 1800 kWh. The oblique system has a height of 50 m with a similar gear ratio of 1:200. The weight of the concrete box is 90 tons/piece and has a total stored energy of 1440 kWh. Also, it has an overall efficiency of 65% and a lifetime of 50 years. This storage has higher storage densities compared to other systems.Keywords: gravity, concrete stacks, vertical, oblique
Procedia PDF Downloads 1621814 Analytical Investigation of Ductility of Reinforced Concrete Beams Strengthening with Polypropylene Fibers
Authors: Rifat Sezer, Abdulhamid Aryan
Abstract:
The purpose of this study is to research both the ductility of the reinforced concrete beams without fiber and the ductility of the reinforced concrete beams with fiber. For this purpose, the analytical load - displacement curves of the beams were formed and the areas under these curves were compared. According to the results of this comparison, it is concluded that the reinforced concrete beams with polypropylene fiber are more ductile. The dimension of the used beam-samples for analytical model in this study is 20x30 cm, their length is 200 cm and their scale is ½. The reinforced concrete reference-beams are produced as one item and the reinforced concrete beams with P-0.60 kg/m3 polypropylene fiber are produced as one item. The modeling of reinforced concrete beams was utilized with Abaqus software.Keywords: polypropylene, fiber-reinforced beams, strengthening of the beams, abaqus program
Procedia PDF Downloads 4931813 Eco-Efficient Self-Compacting Concrete for Sustainable Building
Authors: Valeria Corinaldesi
Abstract:
In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building
Procedia PDF Downloads 801812 Neutralization of Sulphurous Waste (AMD) Using Recycled Waste Concrete
Authors: Ercument Koc, Banu Yaylali, Gulsen Tozsin, Haci Deveci
Abstract:
Re-using of concrete waste materials for the neutralization of acid mine drainage (AMD) can protect the environment and contribute the national economy. The aim of this study was to investigate the prevention of AMD formation and heavy metal release using concrete wastes which are alkaline and generated by demolition of buildings within the urban renewal process. Shake flask test was conducted to determine the neutralization effects. Concrete wastes are rich in CaCO3 and they are used as a pH regulator for AMD neutralization. The results showed that pH of the AMD increased from 3.33 to 6.84 with the application of concrete waste materials.Keywords: AMD, neutralization, sulphurous waste, urban renewal
Procedia PDF Downloads 3021811 Study of the Thermomechanical Behavior of a Concrete Element
Authors: Douhi Reda Bouabdellah, Khalafi Hamid, Belamri Samir
Abstract:
The desire to improve the safety of nuclear reactor containment has revealed the need for data on the thermo mechanical behavior of concrete in case of accident during which the concrete is exposed to high temperatures. The aim of the present work is to study the influence of high temperature on the behavior of ordinary concrete specimens loaded by an effort of compression. A thermal model is developed by discretization volume elements (CASTEM). The results of different simulations, combined with other findings help to bring a physical phenomenon explanation Thermo mechanical concrete structures, which allowed to obtain the variation of the stresses anywhere in point or node and each subsequent temperature different directions X, Y and Z.Keywords: concrete, thermic-gradient, fire resistant, simulation by CASTEM, mechanical strength
Procedia PDF Downloads 3051810 Making Lightweight Concrete with Meerschaum
Abstract:
Meerschaum, which is found in the earth’s crust, is a white and clay like hydrous magnesium silicate. It has a wide area of use from production of carious ornaments to chemical industry. It has a white and irregular crystalline structure. It is wet and moist when extracted, which is a good form for processing. At drying phase, it gradually loses its moisture and becomes lighter and harder. In through-dry state, meerschaum is durable and floats on the water. After processing of meerschaum, A ratio between %15 to %40 of the amount becomes waste. This waste is usually kept in a dry-atmosphere which is isolated from environmental effects so that to be used right away when needed. In this study, use of meerschaum waste as aggregate in lightweight concrete is studied. Stress-strain diagrams for concrete with meerschaum aggregate are obtained. Then, stress-strain diagrams of lightweight concrete and concrete with regular aggregate are compared. It is concluded that meerschaum waste can be used in production of lightweight concrete.Keywords: lightweight concrete, meerschaum, aggregate, sepiolite, stress-strain diagram
Procedia PDF Downloads 6041809 Numerical Investigation of the Jacketing Method of Reinforced Concrete Column
Authors: S. Boukais, A. Nekmouche, N. Khelil, A. Kezmane
Abstract:
The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column.Keywords: strengthening, jacketing, rienforced concrete column, Abaqus, simulation
Procedia PDF Downloads 1441808 Experimental Study on Recycled Aggregate Pervious Concrete
Authors: Ji Wenzhan, Zhang Tao, Li Guoyou
Abstract:
Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.Keywords: recycled aggregate, permeable concrete, compressive strength, permeability
Procedia PDF Downloads 2231807 Geopolymer Concrete: A Review of Properties, Applications and Limitations
Authors: Abbas Ahmed Albu Shaqraa
Abstract:
The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries.Keywords: geopolymer concrete, Portland cement concrete, alkaline liquid, compressive strength
Procedia PDF Downloads 2211806 Size Effect on Shear Strength of Slender Reinforced Concrete Beams
Authors: Subhan Ahmad, Pradeep Bhargava, Ajay Chourasia
Abstract:
Shear failure in reinforced concrete beams without shear reinforcement leads to loss of property and life since a very little or no warning occurs before failure as in case of flexural failure. Shear strength of reinforced concrete beams decreases as its depth increases. This phenomenon is generally called as the size effect. In this paper, a comparative analysis is performed to estimate the performance of shear strength models in capturing the size effect of reinforced concrete beams made with conventional concrete, self-compacting concrete, and recycled aggregate concrete. Four shear strength models that account for the size effect in shear are selected from the literature and applied on the datasets of slender reinforced concrete beams. Beams prepared with conventional concrete, self-compacting concrete, and recycled aggregate concrete are considered for the analysis. Results showed that all the four models captured the size effect in shear effectively and produced conservative estimates of the shear strength for beams made with normal strength conventional concrete. These models yielded unconservative estimates for high strength conventional concrete beams with larger effective depths ( > 450 mm). Model of Bazant and Kim (1984) captured the size effect precisely and produced conservative estimates of shear strength of self-compacting concrete beams at all the effective depths. Also, shear strength models considered in this study produced unconservative estimates of shear strength for recycled aggregate concrete beams at all effective depths.Keywords: reinforced concrete beams; shear strength; prediction models; size effect
Procedia PDF Downloads 1591805 High Volume Fly Ash Concrete for Paver Blocks
Authors: Som Nath Sachdeva, Vanita Aggarwal, S. M. Gupta
Abstract:
Use of concrete paver blocks is becoming increasingly popular. They are used for paving of approaches, paths and parking areas including their application in pre-engineered buildings. This paper discusses the results of an experimental study conducted on Fly Ash Concrete with the aim to report its suitability for concrete paver blocks. In this study, the effect of varying proportions of fly ash, 20 % to 40 %, on compressive strength and flexural strength of concrete has been evaluated. The mix designs studied are M-30, M-35, M-40 and M-50. It is observed that all the fly ash based mixes are able to achieve the required compressive and flexural strengths. In comparison to control mixes, the compressive and flexural strengths of the fly ash based mixes are found to be slightly less at 7 days and 28 days and a little more at 90 days.Keywords: fly ash concrete, paver blocks, compressive, flexural strength
Procedia PDF Downloads 4071804 Influence of Locally Made Effective Microorganisms on the Compressive Strength of Concrete
Authors: Muhammad Nura Isa, Magaji Muhammad Garba, Dauda Dahiru Danwata
Abstract:
A lot of research was carried out to improve the technology of concrete, some of which include the introduction of new admixture in concrete production such as effective microorganisms. Researches carried out in Japan and Malaysia indicated that the Effective Microorganisms improve the strength and durability of concrete. Therefore, the main objective of this research is to assess the effect of the locally made effective microorganisms on the compressive strength of concrete in Nigeria. The effective microorganisms were produced locally. The locally made effective microorganism was added in 3%, 5%, 10% and 15% to replace the mixing water required. The results of the tests indicated that the concrete specimens with 3% content of locally made EM-A possessed the highest compressive strength, this proved the 3% to be the optimum dosage of locally made EM-A in the concrete.Keywords: locally made effective microorganisms, compressive strength, admixture, fruits and vegetable wastes
Procedia PDF Downloads 3411803 Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates
Authors: Adil K. Tamimi, Tarig Ali, Rawan Anoohi, Ahmed Rajput, Kaltham Alkamali
Abstract:
3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project’s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete.Keywords: 3D printing, workability, compressive strength, robots, dimensions
Procedia PDF Downloads 1441802 Pervious Concrete for Road Intersection Drainage
Authors: Ivana Barišić, Ivanka Netinger Grubeša, Ines Barjaktarić
Abstract:
Road performance and traffic safety are highly influenced by improper water drainage system performance, particularly within intersection areas. So, the aim of the presented paper is the evaluation of pervious concrete made with two types and two aggregate fractions for potential utilization in intersection drainage areas. Although the studied pervious concrete mixtures achieved proper drainage but lower strength characteristics, this pervious concrete has a good potential for enhancing pavement drainage systems if it is embedded on limited intersection areas.Keywords: drainage, intersection, pervious concrete, road
Procedia PDF Downloads 3901801 Rupture Probability of Type of Coarse Aggregate on Fracture Surface of Concrete
Authors: B. Ramakrishna, S. Sivamurthy Reddy
Abstract:
The various types of aggregates such as granite, dolerite, Quartzite, dolomitic limestone, limestone and river gravel were used to produce the concrete with 28-day target compressive strength of 35, 60, and 80 Mpa. The compressive strength of concrete, as well as aggregates, was measured to study the effect of rupture probability of aggregate on the fracture surface of the concrete. Also, the petrographic studies were carried out to study the texture, type of minerals present and their relative proportions in various types of aggregates. The concrete of various grades produced with the same aggregate has shown a rise in RPCA with strength. However, the above relationship has ceased to exist in the concretes of the same grade, made of different types of aggregates. The carbonate aggregates namely Limestone and Dolomitic limestone have produced concrete with higher RPCA irrespective of the strength of concrete. The mode of origin, texture and mineralogical composition of aggregates have a significant impact on their pulse velocity and thereby the pulse velocity of concrete. Procedia PDF Downloads 292