Search results for: composite damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4210

Search results for: composite damage

4150 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

Authors: Lei Qi, Rongxin Yan, Lichen Sun

Abstract:

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Keywords: acoustic sensor array, spacecraft, damage assessment, leakage location

Procedia PDF Downloads 269
4149 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 326
4148 Multiscale Cohesive Zone Modeling of Composite Microstructure

Authors: Vincent Iacobellis, Kamran Behdinan

Abstract:

A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.

Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling

Procedia PDF Downloads 454
4147 An Environmental Method for Renovation of Sewer Systems in Building Structures

Authors: Parastou Kharazmi

Abstract:

Degradation of building materials particularly pipelines causes environmental damage during the renovation or replacement, disturbance for people living in the buildings, is time-consuming and last but not least is very costly. Rehabilitation by composite materials is a solution for renovation of degraded pipeline in residential buildings and any other structures which is less costly, faster and causes less damage to the environment. This study provides a brief state of technology, methods, and materials which are being used in Nordic and some other European countries and an investigation on the performance of the relined pipes after they have been in working condition. The investigation was carried by different analyses in laboratory as well as numerous field inspections.

Keywords: buildings, pipeline, rehabilitation, polymer materials

Procedia PDF Downloads 219
4146 Lateral Buckling of Nanoparticle Additive Composite Beams

Authors: Gürkan Şakar, Akgün Alsaran, Emrah E. Özbaldan

Abstract:

In this study, lateral buckling analysis of composite beams with particle additive was carried out experimentally and numerically. The effects of particle type, particle addition ratio on buckling loads of composite beams were determined. The numerical studies were performed with ANSYS package. In the analyses, clamped-free boundary condition was assumed. The load carrying capabilities of composite beams were influenced by different particle types and particle addition ratios.

Keywords: lateral buckling, nanoparticle, composite beam, numeric analysis

Procedia PDF Downloads 444
4145 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System

Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna

Abstract:

In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.

Keywords: ceramic, composite material, sintering, corundum

Procedia PDF Downloads 274
4144 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite

Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh

Abstract:

In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.

Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear

Procedia PDF Downloads 535
4143 Overview and Post Damage Analysis of Nepal Earthquake 2015

Authors: Vipin Kumar Singhal, Rohit Kumar Mittal, Pavitra Ranjan Maiti

Abstract:

Damage analysis is one of the preliminary activities to be done after an earthquake so as to enhance the seismic building design technologies and prevent similar type of failure in future during earthquakes. This research article investigates the damage pattern and most probable reason of failure by observing photographs of seven major buildings collapsed/damaged which were evenly spread over the region during Mw7.8, Nepal earthquake 2015 followed by more than 400 aftershocks of Mw4 with one aftershock reaching a magnitude of Mw7.3. Over 250,000 buildings got damaged, and more than 9000 people got injured in this earthquake. Photographs of these buildings were collected after the earthquake and the cause of failure was estimated along with the severity of damage and comment on the reparability of structure has been made. Based on observations, it was concluded that the damage in reinforced concrete buildings was less compared to masonry structures. The number of buildings damaged was high near Kathmandu region due to high building density in that region. This type of damage analysis can be used as a cost effective and quick method for damage assessment during earthquakes.

Keywords: Nepal earthquake, damage analysis, damage assessment, damage scales

Procedia PDF Downloads 344
4142 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring

Procedia PDF Downloads 267
4141 Development and Analysis of Waste Human Hair Fiber Reinforced Composite

Authors: Tesfaye Worku

Abstract:

Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.

Keywords: composite, human hair fiber, matrix, unsaturated polyester

Procedia PDF Downloads 28
4140 Crack Propagation Effect at the Interface of a Composite Beam

Authors: Mezidi Amar

Abstract:

In this research work, crack propagation at the interface of a composite beam is considered. The behavior of composite beams (CB) depends upon a law based on relationship between tangential or normal efforts with inelastic propagation. Throughout this study, composite beams are classified like composite beams with partial connection or sandwich beams of three layers. These structural systems are controlled by the same nature of differential equations regarding their behavior in the plane, as well as out-of-plane. Multi-layer elements with partial connection are typically met in the field of timber construction where the elements are assembled by joining. The formalism of the behavior in the plane and out-of-plane of these composite beams is obtained and their results concerning the engineering aspect or simple of interpretation are proposed for the case of composite beams made up of rectangular section and simply supported section. An apparent analytical peculiarity or paradox in the bending behavior of elastic–composite beams with interlayer slip, sandwich beam or other similar problems subjected to boundary moments exists. For a fully composite beam subjected to end moments, the partial composite model will render a non-vanishing uniform value for the normal force in the individual subelement. Obtained results are similar to those for the case of vibrations in the plane as well for the composite beams as for the sandwich beams where eigen-frequencies increase with related rigidity.

Keywords: composite beam, behaviour, interface, deflection, propagation

Procedia PDF Downloads 270
4139 Composite Components Manufacturing in SAE Formula Student, a Case Study of AGH Racing

Authors: Hanna Faron, Wojciech Marcinkowski, Daniel Prusak, Władysław Hamiga

Abstract:

Interest in composite materials comes out of two basic premises: their supreme mechanical and strength properties,combined with a small specific weight. Origin and evolution of modern composite materials bonds with development of manufacturing of synthetic fibers, which have begun during Second World War. Main condition to achieve intended properties of composite materials is proper bonding of reinforcing layer with appropriate adhesive in manufacturing process. It is one of the fundamental quality evaluation criterion of fabrication processes.

Keywords: SAE, formula student, composite materials, carbon fiber, Aramid fiber, hot wire cutter

Procedia PDF Downloads 488
4138 Buckling a Reservoir Composite Provided with Notches

Authors: H. Chenine, D. Ouinas, Z. Bennaceur

Abstract:

The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.

Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials

Procedia PDF Downloads 339
4137 Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam

Authors: Cheng Yang Kwa, Yoke Rung Wong

Abstract:

Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency.

Keywords: structural health monitoring, NDT, cantilever, laminate

Procedia PDF Downloads 80
4136 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods

Authors: Abdelkader Hocine, Abdelhakim Maizia

Abstract:

The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.

Keywords: composite, design, monte carlo, tubular structure, reliability

Procedia PDF Downloads 433
4135 MXene-Based Self-Sensing of Damage in Fiber Composites

Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi

Abstract:

Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.

Keywords: damage sensing, fiber composites, MXene, self-sensing

Procedia PDF Downloads 97
4134 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels

Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim

Abstract:

This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).

Keywords: aftershock, composite material, GFRP, infill panel

Procedia PDF Downloads 312
4133 Damage Identification Using Experimental Modal Analysis

Authors: Niladri Sekhar Barma, Satish Dhandole

Abstract:

Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.

Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification

Procedia PDF Downloads 86
4132 Experimental and Numerical Investigation on Delaminated Composite Plate

Authors: Sreekanth T. G., Kishorekumar S., Sowndhariya Kumar J., Karthick R., Shanmugasuriyan S.

Abstract:

Composites are increasingly being used in industries due to their unique properties, such as high specific stiffness and specific strength, higher fatigue and wear resistances, and higher damage tolerance capability. Composites are prone to failures or damages that are difficult to identify, locate, and characterize due to their complex design features and complicated loading conditions. The lack of understanding of the damage mechanism of the composites leads to the uncertainties in the structural integrity and durability. Delamination is one of the most critical failure mechanisms in laminated composites because it progressively affects the mechanical performance of fiber-reinforced polymer composite structures over time. The identification and severity characterization of delamination in engineering fields such as the aviation industry is critical for both safety and economic concerns. The presence of delamination alters the vibration properties of composites, such as natural frequencies, mode shapes, and so on. In this study, numerical analysis and experimental analysis were performed on delaminated and non-delaminated glass fiber reinforced polymer (GFRP) plate, and the numerical and experimental analysis results were compared, and error percentage has been found out.

Keywords: composites, delamination, natural frequency, mode shapes

Procedia PDF Downloads 81
4131 A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery

Authors: Shruti Motiwale, Xianlin Zhou, Reuben H. Kraft

Abstract:

Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model.

Keywords: cervical spine, computational biomechanics, damage evolution, intervertebral disc, continuum damage mechanics

Procedia PDF Downloads 542
4130 Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure

Authors: Ming Lu, Xiaojun Li, Bodi Lu, Juehui Xing

Abstract:

Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs.

Keywords: attribute index, classification method, earthquake damage picture, engineering structure

Procedia PDF Downloads 738
4129 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films

Authors: Tariku Nefo Duke

Abstract:

Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.

Keywords: polyimide, corrosion resistance, electroactive, Tg

Procedia PDF Downloads 172
4128 Thermal Analysis of a Composite of Coco Fiber and Látex

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

Given the unquestionable need of environmental preservation, the natural fibers have been seen as a salutary alternative for production of composites in substitution to the synthetic fibers, vitreous and metallic. In this work, the behavior of a composite was analyzed done with fiber of the peel of the coconut as reinforcement and latex as head office, when submitted the source of heat. The temperature profiles were verified in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. It was also analyzed the behavior of this composite when submitted to a cold source. As consequence, in function of the answers of the system, conclusions were reached.

Keywords: natural fiber, composite, temperature, latex, gradient

Procedia PDF Downloads 779
4127 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments

Authors: Melby Chacko, Jagannath Nayak

Abstract:

The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.

Keywords: 6061 Al-SiC composite, aging curve, Rockwell B hardness, T4, T6 treatments

Procedia PDF Downloads 247
4126 Design of Composite Joints from Carbon Fibre for Automotive Parts

Authors: G. Hemath Kumar, H. Mohit, K. Karthick

Abstract:

One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place.

Keywords: carbon fiber, FRP composite, MMC, automotive

Procedia PDF Downloads 383
4125 Production and Characterization of Sol-Enhanced Zn-Ni-Al2O3 Nano Composite Coating

Authors: Soroor Ghaziof, Wei Gao

Abstract:

Sol-enhanced Zn-Ni-Al2O3 nano-composite coatings were electroplated on mild steel by our newly developed sol-enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The chemical composition, microstructure and mechanical properties of the composite and alloy coatings deposited at two different agitation speed were investigated. The structure of all coatings was single γ-Ni5Zn21 phase. The composite coatings possess refined crystals with higher microhardness compared to Zn-Ni alloy coatings. The wear resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings. Higher agitation speed provided more uniform coatings with smaller grain sized and slightly higher microhardness. Considering composite coatings, high agitation speeds may facilitate co-deposition of alumina in the coatings.

Keywords: microhardness, sol-enhanced electroplating, wear resistance, Zn-Ni-Al2O3 composite coatings

Procedia PDF Downloads 470
4124 Micro-Meso 3D FE Damage Modelling of Woven Carbon Fibre Reinforced Plastic Composite under Quasi-Static Bending

Authors: Aamir Mubashar, Ibrahim Fiaz

Abstract:

This research presents a three-dimensional finite element modelling strategy to simulate damage in a quasi-static three-point bending analysis of woven twill 2/2 type carbon fibre reinforced plastic (CFRP) composite on a micro-meso level using cohesive zone modelling technique. A meso scale finite element model comprised of a number of plies was developed in the commercial finite element code Abaqus/explicit. The interfaces between the plies were explicitly modelled using cohesive zone elements to allow for debonding by crack initiation and propagation. Load-deflection response of the CRFP within the quasi-static range was obtained and compared with the data existing in the literature. This provided validation of the model at the global scale. The outputs resulting from the global model were then used to develop a simulation model capturing the micro-meso scale material features. The sub-model consisted of a refined mesh representative volume element (RVE) modelled in texgen software, which was later embedded with cohesive elements in the finite element software environment. The results obtained from the developed strategy were successful in predicting the overall load-deflection response and the damage in global and sub-model at the flexure limit of the specimen. Detailed analysis of the effects of the micro-scale features was carried out.

Keywords: woven composites, multi-scale modelling, cohesive zone, finite element model

Procedia PDF Downloads 114
4123 Experimental Investigation of the Static and Dynamic Behaviour of Double Lap Joints

Authors: H. I. Beloufa, M. Tarfaoui

Abstract:

For many applications, adhesively bonded assemblies have gained an increasing interest in the industry due to several advantages over welding, riveting and bolting, such as reduction of stress concentrations, lightness, low cost and easy manufacturing. This work is largely concerned to show the effects of the loading rate of the adhesively bonded joints under different speed rates. The tensile tests were conducted at four different rates; static (5mm/min, 50mm/min) and dynamic tests (1m/s, and 10m/s). An attempt was made to determine the damage kinetic and a comparison between the use of aluminium and composite laminate substrates is introduced. Aluminum T6082 and glass/vinylester laminated composite Substrates were used to construct aluminum/aluminum and laminate/laminate specimens. The adhesive used in this study was Araldite 2015. The results showed the effects of the loading rate évolution on the double joint strength. The comparison of the results of static and dynamic tests showed a raise of the strength of the specimens while the load velocity is elevated. In the case of composite substrates double joint lap, the stiffness increased by more than 60% between static and dynamic tests. However, in the case of aluminum substrates, the rigidity improved about 28% from static to moderately high velocity loading. For both aluminum and composite double joint lap, the strength increased by approximately 25% when the tensile velocity is increased from 5 mm/min to 50 mm/min (static tests). Nevertheless, the tensile velocity is extended to 1m/s the strength increased by 13% and 25% respectively for composite and aluminum substrates.

Keywords: adhesive, double lap joints, static and dynamic behavior, tensile tests

Procedia PDF Downloads 176
4122 Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite

Authors: Sudarat Issarapanacheewin, Katcharin Wetchakun, Sukon Phanichphant, Wiyong Kangwansupamonkon, Natda Wetchakun

Abstract:

The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed.

Keywords: composite, dyes, photocatalytic activity, ZnWO4-Bi2WO6

Procedia PDF Downloads 275
4121 Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite

Authors: Pattamaphorn Phuangngamphan, Rewadee Anuwattana, Narumon Soparatana, Nestchanok Yongpraderm, Atiporn Jinpayoon, Supinya Sutthima, Saroj Klangkongsub, Worapong Pattayawan

Abstract:

This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products.

Keywords: agricultural waste, waste utilization, biomaterials, cellulose fiber, composite material

Procedia PDF Downloads 371