Search results for: photoacoustic imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1295

Search results for: photoacoustic imaging

455 Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows

Authors: D. Sun, T. F. Lu, A. Zander, M. Trinkle

Abstract:

This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field.

Keywords: airborne, airflow, focused sound field, ultrasonic phased array

Procedia PDF Downloads 344
454 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.

Keywords: borescope, engine, long-wave-infrared, sensor

Procedia PDF Downloads 137
453 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures

Authors: Kholood Baron

Abstract:

Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure and to determine the impact of certain parameters on the patient dose. Method: The radiation dose was measured by TLD devices (thermoluminescent dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.

Keywords: dosimetry, radiation dose, interventional radiology procedures, patient radiation dose

Procedia PDF Downloads 112
452 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

Authors: S. Hutasavi, D. Chen

Abstract:

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping

Procedia PDF Downloads 126
451 Mapping the Neurotoxic Effects of Sub-Toxic Manganese Exposure: Behavioral Outcomes, Imaging Biomarkers, and Dopaminergic System Alterations

Authors: Katie M. Clark, Adriana A. Tienda, Krista C. Paffenroth, Lindsey N. Brigante, Daniel C. Colvin, Jose Maldonado, Erin S. Calipari, Fiona E. Harrison

Abstract:

Manganese (Mn) is an essential trace element required for human health and is important in antioxidant defenses, as well as in the development and function of dopaminergic neurons. However, chronic low-level Mn exposure, such as through contaminated drinking water, poses risks that may contribute to neurodevelopmental and neurodegenerative conditions, including attention deficit hyperactivity disorder (ADHD). Pharmacological inhibition of the dopamine transporter (DAT) blocks reuptake, elevates synaptic dopamine, and alleviates ADHD symptoms. This study aimed to determine whether Mn exposure in juvenile mice modifies their response to DAT blockers, amphetamine, and methylphenidate and utilize neuroimaging methods to visualize and quantify Mn distribution across dopaminergic brain regions. Male and female heterozygous DATᵀ³⁵⁶ᴹ and wild-type littermates were randomly assigned to receive control (2.5% Stevia) or high Manganese (2.5 mg/ml Mn + 2.5% Stevia) via water ad libitum from weaning (21-28 days) for 4-5 weeks. Mice underwent repeated testing in locomotor activity chambers for three consecutive days (60 mins.) to ensure that they were fully habituated to the environments. On the fourth day, a 3-hour activity session was conducted following treatment with amphetamine (3 mg/kg) or methylphenidate (5 mg/kg). The second drug was administered in a second 3-hour activity session following a 1-week washout period. Following the washout, the mice were given one last injection of amphetamine and euthanized one hour later. Using the ex-vivo brains, magnetic resonance relaxometry (MRR) was performed on a 7Telsa imaging system to map T1- and T2-weighted (T1W, T2W) relaxation times. Mn inherent paramagnetic properties shorten both T1W and T2W times, which enhances the signal intensity and contrast, enabling effective visualization of Mn accumulation in the entire brain. A subset of mice was treated with amphetamine 1 hour before euthanasia. SmartSPIM light sheet microscopy with cleared whole brains and cFos and tyrosine hydroxylase (TH) labeling enabled an unbiased automated counting and densitometric analysis of TH and cFos positive cells. Immunohistochemistry was conducted to measure synaptic protein markers and quantify changes in neurotransmitter regulation. Mn exposure elevated Mn brain levels and potentiated stimulant effects in males. The globus pallidus, substantia nigra, thalamus, and striatum exhibited more pronounced T1W shortening, indicating regional susceptibility to Mn accumulation (p<0.0001, 2-Way ANOVA). In the cleared whole brains, initial analyses suggest that TH and c-Fos co-staining mirrors behavioral data with decreased co-staining in DATT356M+/- mice. Ongoing studies will identify the molecular basis of the effect of Mn, including changes to DAergic metabolism and transport and post-translational modification to the DAT. These findings demonstrate that alterations in T1W relaxation times, as measured by MRR, may serve as an early biomarker for Mn neurotoxicity. This neuroimaging approach exhibits remarkable accuracy in identifying Mn-susceptible brain regions, with a spatial resolution and sensitivity that surpasses current conventional dissection and mass spectrometry approaches. The capability to label and map TH and cFos expression across the entire brain provides insights into whole-brain neuronal activation and its connections to functional neural circuits and behavior following amphetamine and methylphenidate administration.

Keywords: manganese, environmental toxicology, dopamine dysfunction, biomarkers, drinking water, light sheet microscopy, magnetic resonance relaxometry (MRR)

Procedia PDF Downloads 10
450 Factors Associated with Mammography Screening Behaviors: A Cross-Sectional Descriptive Study of Egyptian Women

Authors: Salwa Hagag Abdelaziz, Naglaa Fathy Youssef, Nadia Abdellatif Hassan, Rasha Wesam Abdelrahman

Abstract:

Breast cancer is considered as a substantial health concern and practicing mammography screening [MS] is important in minimizing its related morbidity. So it is essential to have a better understanding of breast cancer screening behaviors of women and factors that influence utilization of them. The aim of this study is to identify the factors that are linked to MS behaviors among the Egyptian women. A cross-sectional descriptive design was carried out to provide a snapshot of the factors that are linked to MS behaviors. A convenience sample of 311 women was utilized and all eligible participants admitted to the Women Imaging Unit who are 40 years of age or above, coming for mammography assessment, not pregnant or breast feeding and who accepted to participate in the study were included. A structured questionnaire was developed by the researchers and contains three parts; Socio-demographic data; Motivating factors associated with MS; and association between MS and model of behavior change. The analyzed data indicated that most of the participated women (66.6 %) belonged to the age group of 40-49.A high proportion of participants (58.1%) of group having previous MS influenced by their neighbors to practice MS, whereas 32.7 % in group not having previous MS were influenced by family members which indicated significant differences (P <0.05). Doctors and media are shown to be the least influence of others to practice MS. Women with intention to have a future mammogram had higher OR (1.404) for practicing MS compared with women with no intention. Further studies are needed to examine the relation between Trans-theoretical Model [TTM] and practicing MS.

Keywords: breast cancer, mammography, screening behaviors, morbidity

Procedia PDF Downloads 442
449 Advancing Our Understanding of Age-Related Changes in Executive Functions: Insights from Neuroimaging, Genetics and Cognitive Neurosciences

Authors: Yasaman Mohammadi

Abstract:

Executive functions are a critical component of goal-directed behavior, encompassing a diverse set of cognitive processes such as working memory, cognitive flexibility, and inhibitory control. These functions are known to decline with age, but the precise mechanisms underlying this decline remain unclear. This paper provides an in-depth review of recent research investigating age-related changes in executive functions, drawing on insights from neuroimaging, genetics, and cognitive neuroscience. Through an interdisciplinary approach, this paper offers a nuanced understanding of the complex interplay between neural mechanisms, genetic factors, and cognitive processes that contribute to executive function decline in aging. Here, we investigate how different neuroimaging methods, like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), have helped scientists better understand the brain bases for age-related declines in executive function. Additionally, we discuss the role of genetic factors in mediating individual differences in executive functions across the lifespan, as well as the potential for cognitive interventions to mitigate age-related decline. Overall, this paper presents a comprehensive and integrative view of the current state of knowledge regarding age-related changes in executive functions. It underscores the need for continued interdisciplinary research to fully understand the complex and dynamic nature of executive function decline in aging, with the ultimate goal of developing effective interventions to promote healthy cognitive aging.

Keywords: executive functions, aging, neuroimaging, cognitive neuroscience, working memory, cognitive training

Procedia PDF Downloads 67
448 Introduction of Digital Radiology to Improve the Timeliness in Availability of Radiological Diagnostic Images for Trauma Care

Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe

Abstract:

In an emergency department ‘where every second count for patient’s management’ timely availability of X- rays play a vital role in early diagnosis and management of patients. Trauma care centers rely heavily on timely radiologic imaging for patient care and radiology plays a crucial role in the emergency department (ED) operations. A research study was carried out to assess timeliness of availability of X-rays and total turnaround time at the Accident Service of National Hospital of Sri Lanka which is the premier trauma center in the country. Digital Radiology system was implemented as an intervention to improve the timeliness of availability of X-rays. Post-implementation assessment was carried out to assess the effectiveness of the intervention. Reduction in all three aspects of waiting times namely waiting for initial examination by doctors, waiting until X –ray is performed and waiting for image availability was observed after implementation of the intervention. However, the most significant improvement was seen in waiting time for image availability and reduction in time for image availability had indirect impact on reducing waiting time for initial examination by doctors and waiting until X –ray is performed. The most significant reduction in time for image availability was observed when performing 4-5 X rays with DR system. The least improvement in timeliness was seen in patients who are categorized as critical.

Keywords: emergency department, digital radilogy, timeliness, trauma care

Procedia PDF Downloads 265
447 Transferring Data from Glucometer to Mobile Device via Bluetooth with Arduino Technology

Authors: Tolga Hayit, Ucman Ergun, Ugur Fidan

Abstract:

Being healthy is undoubtedly an indispensable necessity for human life. With technological improvements, in the literature, various health monitoring and imaging systems have been developed to satisfy your health needs. In this context, the work of monitoring and recording the data of individual health monitoring data via wireless technology is also being part of these studies. Nowadays, mobile devices which are located in almost every house and which become indispensable of our life and have wireless technology infrastructure have an important place of making follow-up health everywhere and every time because these devices were using in the health monitoring systems. In this study, Arduino an open-source microcontroller card was used in which a sample sugar measuring device was connected in series. In this way, the glucose data (glucose ratio, time) obtained with the glucometer is transferred to the mobile device based on the Android operating system with the Bluetooth technology channel. A mobile application was developed using the Apache Cordova framework for listing data, presenting graphically and reading data over Arduino. Apache Cordova, HTML, Javascript and CSS are used in coding section. The data received from the glucometer is stored in the local database of the mobile device. It is intended that people can transfer their measurements to their mobile device by using wireless technology and access the graphical representations of their data. In this context, the aim of the study is to be able to perform health monitoring by using different wireless technologies in mobile devices that can respond to different wireless technologies at present. Thus, that will contribute the other works done in this area.

Keywords: Arduino, Bluetooth, glucose measurement, mobile health monitoring

Procedia PDF Downloads 323
446 Accuracy of Small Field of View CBCT in Determining Endodontic Working Length

Authors: N. L. S. Ahmad, Y. L. Thong, P. Nambiar

Abstract:

An in vitro study was carried out to evaluate the feasibility of small field of view (FOV) cone beam computed tomography (CBCT) in determining endodontic working length. The objectives were to determine the accuracy of CBCT in measuring the estimated preoperative working lengths (EPWL), endodontic working lengths (EWL) and file lengths. Access cavities were prepared in 27 molars. For each root canal, the baseline electronic working length was determined using an EAL (Raypex 5). The teeth were then divided into overextended, non-modified and underextended groups and the lengths were adjusted accordingly. Imaging and measurements were made using the respective software of the RVG (Kodak RVG 6100) and CBCT units (Kodak 9000 3D). Root apices were then shaved and the apical constrictions viewed under magnification to measure the control working lengths. The paired t-test showed a statistically significant difference between CBCT EPWL and control length but the difference was too small to be clinically significant. From the Bland Altman analysis, the CBCT method had the widest range of 95% limits of agreement, reflecting its greater potential of error. In measuring file lengths, RVG had a bigger window of 95% limits of agreement compared to CBCT. Conclusions: (1) The clinically insignificant underestimation of the preoperative working length using small FOV CBCT showed that it is acceptable for use in the estimation of preoperative working length. (2) Small FOV CBCT may be used in working length determination but it is not as accurate as the currently practiced method of using the EAL. (3) It is also more accurate than RVG in measuring file lengths.

Keywords: accuracy, CBCT, endodontics, measurement

Procedia PDF Downloads 308
445 Criteria for Assessing Prostate Structure after Proton Radiotherapy for Prostate Cancer

Authors: Kuplevatsky V., Kuplevatskay, Cherkashin M., Berezina N.

Abstract:

After 6 months, a violation of the differentiation of the structure of the gland due to edema in 100%. 20% retained signs of a tumor according to DWI/ADC data. By 12 months, the reduction in the size of the gland is 100%. In all cases, no diffusion restriction was observed. The study after 18 months showed no significant changes in all (100%) patients. In the study, 24 months after treatment, the size of the gland was stable in all cases (+/- up to 5%). Diffuse decrease in T2VI signals from peripheral zones, without signs of diffusion restriction in 100%. After 30 months, signs of recovery of adenomatous changes in the transient zone were revealed in 85%. After 36 and 42 months, the restoration of organ differentiation was observed in 93% of patients. In 4 patients, by the 48th month, signs of biochemical relapse were clinically noted. According to the MRI data, signs of a local relapse were revealed. After 48 months, there were signs of restoration of organ differentiation, which allowed the use of PI-RADS criteria. The study after 54 months showed no changes compared to the control. 60 months after treatment, 97% of patients showed a restoration of differentiation of the gland structure, which allows evaluating the organ according to PI-RADS criteria Conclusions: The beginning of restoration of the structure of the prostate gland began 24 months after proton radiation therapy, the PI-RADS criteria can be fully applied after 48 months of treatment. Control studies every 6 months without clinical signs of relapse are not advisable. Local control of the prostate tumor after proton radiation therapy was achieved in 95% of patients during the entire follow-up period ( 60 months).

Keywords: proton therapy, prostate cancer, MRI imaging, PI-RADS

Procedia PDF Downloads 102
444 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: finite element method, growth, residual stress, soft tissue

Procedia PDF Downloads 270
443 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?

Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang

Abstract:

Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.

Keywords: creativity, default mode network, neural activation, SCAMPER

Procedia PDF Downloads 100
442 Engineering of E-Learning Content Creation: Case Study for African Countries

Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola

Abstract:

This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.

Keywords: teaching contents engineering, e-learning, blended learning, international cooperation, 3dslicer, open anatomy browser

Procedia PDF Downloads 172
441 Task Validity in Neuroimaging Studies: Perspectives from Applied Linguistics

Authors: L. Freeborn

Abstract:

Recent years have seen an increasing number of neuroimaging studies related to language learning as imaging techniques such as fMRI and EEG have become more widely accessible to researchers. By using a variety of structural and functional neuroimaging techniques, these studies have already made considerable progress in terms of our understanding of neural networks and processing related to first and second language acquisition. However, the methodological designs employed in neuroimaging studies to test language learning have been questioned by applied linguists working within the field of second language acquisition (SLA). One of the major criticisms is that tasks designed to measure language learning gains rarely have a communicative function, and seldom assess learners’ ability to use the language in authentic situations. This brings the validity of many neuroimaging tasks into question. The fundamental reason why people learn a language is to communicate, and it is well-known that both first and second language proficiency are developed through meaningful social interaction. With this in mind, the SLA field is in agreement that second language acquisition and proficiency should be measured through learners’ ability to communicate in authentic real-life situations. Whilst authenticity is not always possible to achieve in a classroom environment, the importance of task authenticity should be reflected in the design of language assessments, teaching materials, and curricula. Tasks that bear little relation to how language is used in real-life situations can be considered to lack construct validity. This paper first describes the typical tasks used in neuroimaging studies to measure language gains and proficiency, then analyses to what extent these tasks can validly assess these constructs.

Keywords: neuroimaging studies, research design, second language acquisition, task validity

Procedia PDF Downloads 138
440 Ipsilateral Heterotopic Ossification in the Knee and Shoulder Post Long COVID-19

Authors: Raheel Shakoor Siddiqui, Calvin Mathias, Manikandar Srinivas Cheruvu, Bobin Varghese

Abstract:

A 58 year old gentleman presented to accident and emergency at the district general hospital with worsening shortness of breath and a non-productive cough over a period of five days. He was initially admitted under the medical team for suspicion of SARS-CoV-2 (COVID-19) pneumonitis. Subsequently, upon deterioration of observations and a positive COVID-19 PCR, he was taken to intensive care for invasive mechanical ventilation. He required frequent proning, inotropic support and was intubated for thirty-three days. After successful extubation, he developed myopathy with a limited range of motion to his right knee and right shoulder. Plain film imaging of these limbs demonstrated an unusual formation of heterotopic ossification without any precipitating trauma or surgery. Current literature demonstrates limited case series portraying heterotopic ossification post-COVID-19. There has been negligible evidence of heterotopic ossification in the ipsilateral knee and shoulder post-prolonged immobility secondary to a critical illness. Physiotherapy and rehabilitation are post-intensive care can be prolonged due to the formation of heterotopic ossification around joints. Prolonged hospital stays may lead to a higher risk of developing infections of the chest, urine and pressure sores. This raises the question of whether a severe systemic inflammatory immune response from the SARS-CoV-2 virus results in histopathological processes leading to the formation of heterotopic ossification not previously seen, requiring prolonged physiotherapy.

Keywords: orthopaedics, rehabilitation, physiotherapy, heterotopic ossification, COVID-19

Procedia PDF Downloads 71
439 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 163
438 Modified Acetamidobenzoxazolone Based Biomarker for Translocator Protein Mapping during Neuroinflammation

Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra

Abstract:

The 18-kDa translocator protein (TSPO) previously called as peripheral benzodiazepine receptor, is proven biomarker for variety of neuroinflammation. TSPO is tryptophane rich five transmembranal protein found on outer mitochondrial membrane of steroid synthesising and immunomodulatory cells. In case of neuronal damage or inflammation the expression level of TSPO get upregulated as an immunomodulatory response. By utilizing Benzoxazolone as a basic scaffold, series of TSPO ligands have been designed followed by their screening through in silico studies. Synthesis has been planned by employing convergent methodology in six high yielding steps. For the synthesized ligands the ‘in vitro’ assay was performed to determine the binding affinity in term of Ki. On ischemic rat brain, autoradiography studies were also carried to check the specificity and affinity of the designed radiolabelled ligand for TSPO.Screening was performed on the basis of GScore of CADD based schrodinger software. All the modified and better prospective compound were successfully carried out and characterized by spectroscopic techniques (FTIR, NMR and HRMS). In vitro binding assay showed best binding affinity Ki = 6.1+ 0.3 for TSPO over central benzodiazepine receptor (CBR) Ki > 200. ARG studies indicated higher uptake of two analogues on the lesion side compared with that on the non-lesion side of ischemic rat brains. Displacement experiments with unlabelled ligand had minimized the difference in uptake between the two sides which indicates the specificity of the ligand towards TSPO receptor.

Keywords: TSPO, PET, imaging, Acetamidobenzoxazolone

Procedia PDF Downloads 143
437 Preparing a Library of Abnormal Masses for Designing a Long-Lasting Anatomical Breast Phantom for Ultrasonography Training

Authors: Nasibullina A., Leonov D.

Abstract:

The ultrasonography method is actively used for the early diagnosis of various le-sions in the human body, including the mammary gland. The incidence of breast cancer has increased by more than 20%, and mortality by 14% since 2008. The correctness of the diagnosis often directly depends on the qualifications and expe-rience of a diagnostic medical sonographer. That is why special attention should be paid to the practical training of future specialists. Anatomical phantoms are ex-cellent teaching tools because they accurately imitate the characteristics of real hu-man tissues and organs. The purpose of this work is to create a breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. We used silicone-like compounds ranging from 3 to 17 on the Shore scale hardness units to simulate soft tissue and lesions. Impurities with experimentally selected concentrations were added to give the phantom the necessary attenuation and reflection parameters. We used 3D modeling programs and 3D printing with PLA plastic to create the casting mold. We developed a breast phantom with inclusions of varying shape, elasticity and echogenicity. After testing the created phantom in B-mode and elastography mode, we performed a survey asking 19 participants how realistic the sonograms of the phantom were. The results showed that the closest to real was the model of the cyst with 9.5 on the 0-10 similarity scale. Thus, the developed breast phantom can be used for ultrasonography, elastography, and ultrasound-guided biopsy training.

Keywords: breast ultrasound, mammary gland, mammography, training phantom, tissue-mimicking materials

Procedia PDF Downloads 93
436 Iterative Method for Lung Tumor Localization in 4D CT

Authors: Sarah K. Hagi, Majdi Alnowaimi

Abstract:

In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.

Keywords: automated algorithm , computed tomography, lung tumor, tumor localization

Procedia PDF Downloads 602
435 Highly Efficient Iron Oxide-Sulfonated Graphene Oxide Catalyst for Esterification and Trans-Esterification Reactions

Authors: Reena D. Souza, Tripti Vats, Prem F. Siril

Abstract:

Esterification of free fatty acid (oleic acid) and transesterification of waste cooking oil (WCO) with ethanol over graphene oxide (GO), GO-Fe2O3, sulfonated GO (GO-SO3H), and Fe2O3/GO-SO3H catalysts were examined in the present study. Iron oxide supported graphene-based acid catalyst (Fe2O3/GO-SO3H) exhibited highest catalytic activity. GO was prepared by modified Hummer’s process. The GO-Fe2O3 nanocomposites were prepared by the addition of NaOH to a solution containing GO and FeCl3. Sulfonation was done using concentrated sulfuric acid. Transmissionelectron microscopy (TEM) and atomic force microscopy (AFM) imaging revealed the presence of Fe2O3 particles having size in the range of 50-200 nm. Crystal structure was analyzed by XRD and defect states of graphene were characterized using Raman spectroscopy. The effects of the reaction variables such as catalyst loading, ethanol to acid ratio, reaction time and temperature on the conversion of fatty acids were studied. The optimum conditions for the esterification process were molar ratio of alcohol to oleic acid at 12:1 with 5 wt% of Fe2O3/GO-SO3H at 1000C with a reaction time of 4h yielding 99% of ethyl oleate. This is because metal oxide supported solid acid catalysts have advantages of having both strong Brønsted as well as Lewis acid properties. The biodiesel obtained by transesterification of WCO was characterized by 1H NMR and Gas Chromatography techniques. XRD patterns of the recycled catalyst evidenced that the catalyst structure was unchanged up to the 5th cycle, which indicated the long life of the catalyst.

Keywords: Fe₂O₃/GO-SO₃H, Graphene Oxide, GO-Fe₂O₃, GO-SO₃H, WCO

Procedia PDF Downloads 277
434 Event Related Brain Potentials Evoked by Carmen in Musicians and Dancers

Authors: Hanna Poikonen, Petri Toiviainen, Mari Tervaniemi

Abstract:

Event-related potentials (ERPs) evoked by simple tones in the brain have been extensively studied. However, in reality the music surrounding us is spectrally and temporally complex and dynamic. Thus, the research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation, which, in various forms, has always been an essential part of different cultures. In addition to sensory responses, music elicits vast cognitive and emotional processes in the brain. When compared to laymen, professional musicians have stronger ERP responses in processing individual musical features in simple tone sequences, such as changes in pitch, timbre and harmony. Here we show that the ERP responses evoked by rapid changes in individual musical features are more intense in musicians than in laymen, also while listening to long excerpts of the composition Carmen. Interestingly, for professional dancers, the amplitudes of the cognitive P300 response are weaker than for musicians but still stronger than for laymen. Also, the cognitive P300 latencies of musicians are significantly shorter whereas the latencies of laymen are significantly longer. In contrast, sensory N100 do not differ in amplitude or latency between musicians and laymen. These results, acquired from a novel ERP methodology for natural music, suggest that we can take the leap of studying the brain with long pieces of natural music also with the ERP method of electroencephalography (EEG), as has already been made with functional magnetic resonance (fMRI), as these two brain imaging devices complement each other.

Keywords: electroencephalography, expertise, musical features, real-life music

Procedia PDF Downloads 484
433 Localization of Frontal and Temporal Speech Areas in Brain Tumor Patients by Their Structural Connections with Probabilistic Tractography

Authors: B.Shukir, H.Woo, P.Barzo, D.Kis

Abstract:

Preoperative brain mapping in tumors involving the speech areas has an important role to reduce surgical risks. Functional magnetic resonance imaging (fMRI) is the gold standard method to localize cortical speech areas preoperatively, but its availability in clinical routine is difficult. Diffusion MRI based probabilistic tractography is available in head MRI. It’s used to segment cortical subregions by their structural connectivity. In our study, we used probabilistic tractography to localize the frontal and temporal cortical speech areas. 15 patients with left frontal tumor were enrolled to our study. Speech fMRI and diffusion MRI acquired preoperatively. The standard automated anatomical labelling atlas 3 (AAL3) cortical atlas used to define 76 left frontal and 118 left temporal potential speech areas. 4 types of tractography were run according to the structural connection of these regions to the left arcuate fascicle (FA) to localize those cortical areas which have speech functions: 1, frontal through FA; 2, frontal with FA; 3, temporal to FA; 4, temporal with FA connections were determined. Thresholds of 1%, 5%, 10% and 15% applied. At each level, the number of affected frontal and temporal regions by fMRI and tractography were defined, the sensitivity and specificity were calculated. At the level of 1% threshold showed the best results. Sensitivity was 61,631,4% and 67,1523,12%, specificity was 87,210,4% and 75,611,37% for frontal and temporal regions, respectively. From our study, we conclude that probabilistic tractography is a reliable preoperative technique to localize cortical speech areas. However, its results are not feasible that the neurosurgeon rely on during the operation.

Keywords: brain mapping, brain tumor, fMRI, probabilistic tractography

Procedia PDF Downloads 166
432 Evaluation of 18F Fluorodeoxyglucose Positron Emission Tomography, MRI, and Ultrasound in the Assessment of Axillary Lymph Node Metastases in Patients with Early Stage Breast Cancer

Authors: Wooseok Byon, Eunyoung Kim, Junseong Kwon, Byung Joo Song, Chan Heun Park

Abstract:

Purpose: 18F Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) is a noninvasive imaging modality that can identify nodal metastases in women with primary breast cancer. The aim of this study was to compare the accuracy of FDG-PET with MRI and sonography scanning to determine axillary lymph node status in patients with breast cancer undergoing sentinel lymph node biopsy or axillary lymph node dissection. Patients and Methods: Between January and December 2012, ninety-nine patients with breast cancer and clinically negative axillary nodes were evaluated. All patients underwent FDG-PET, MRI, ultrasound followed by sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND). Results: Using axillary lymph node assessment as the gold standard, the sensitivity and specificity of FDG-PET were 51.4% (95% CI, 41.3% to 65.6%) and 92.2% (95% CI, 82.7% to 97.4%) respectively. The sensitivity and specificity of MRI and ultrasound were 57.1% (95% CI, 39.4% to 73.7%), 67.2% (95% CI, 54.3% to 78.4%) and 42.86% (95% CI, 26.3% to 60.7%), 92.2% (95% CI, 82.7% to 97.4%). Stratification according to hormone receptor status showed an increase in specificity when negative (FDG-PET: 42.3% to 77.8%, MRI 50% to 77.8%, ultrasound 34.6% to 66.7%). Also, positive HER2 status was associated with an increase in specificity (FDG-PET: 42.9% to 85.7%, MRI 50% to 85.7%, ultrasound 35.7% to 71.4%). Conclusions: The sensitivity and specificity of FDG-PET compared with MRI and ultrasound was high. However, FDG-PET is not sufficiently accurate to appropriately identify lymph node metastases. This study suggests that FDG-PET scanning cannot replace histologic staging in early-stage breast cancer, but might have a role in evaluating axillary lymph node status in hormone receptor negative or HER-2 overexpressing subtypes.

Keywords: axillary lymph node metastasis, FDG-PET, MRI, ultrasound

Procedia PDF Downloads 376
431 Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique

Authors: P. Siriarchawatana, K. Leungchavaphongse, N. Covavisaruch, K. Rojananuangnit, P. Boondaeng, N. Panyayingyong

Abstract:

Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma.

Keywords: glaucoma, retinal vessel, central light reflex, image processing, fundus photograph, edge detection

Procedia PDF Downloads 325
430 Characterization of the Pore System and Gas Storage Potential in Unconventional Reservoirs: A Case of Study of the Cretaceous la Luna Formation, Middle Magdalena Valley Basin, Colombia

Authors: Carlos Alberto Ríos-Reyes, Efraín Casadiego-Quintero

Abstract:

We propose a generalized workflow for mineralogy investigation of unconventional reservoirs using multi-scale imaging and pore-scale analyses. This workflow can be used for the integral evaluation of these resources. The Cretaceous La Luna Formation´s mudstones in the Middle Magdalena Valley Basin (Colombia) inherently show a heterogeneous pore system with organic and inorganic pores. For this reason, it is necessary to carry out the integration of high resolution 2D images of mapping by conventional petrography, scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy to describe their organic and inorganic porosity to understand the transport mechanism through pores. The analyzed rocks show several pore types, including interparticle pores, organoporosity, intraparticle pores, intraparticle pores, and microchannels and/or microfractures. The existence of interconnected pores in pore system of these rocks promotes effective pathways for primary gas migration and storage space for residual hydrocarbons in mudstones, which is very useful in this type of gas reservoirs. It is crucial to understand not only the porous system of these rocks and their mineralogy but also to project the gas flow in order to design the appropriate strategies for the stimulation of unconventional reservoirs. Keywords: mudstones; La Luna Formation; gas storage; migration; hydrocarbon.

Keywords: mudstones, La luna formation, gas storage, migration, hydrocarbon

Procedia PDF Downloads 76
429 Liquid Biopsy and Screening Biomarkers in Glioma Grading

Authors: Abdullah Abdu Qaseem Shamsan

Abstract:

Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches.

Keywords: GBM: glioblastoma multiforme, CT: computed tomography, MRI: magnetic resonance imaging, ctRNA: circulating tumor RNA

Procedia PDF Downloads 51
428 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 411
427 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 64
426 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras

Abstract:

Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.

Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions

Procedia PDF Downloads 407