Search results for: microbial electrolysis cells
3289 Effect of Amiodarone on the Thyroid Gland of Adult Male Albino Rat and the Possible Protective Role of Vitamin E Supplementation: A Histological and Ultrastructural Study
Authors: Ibrahim Abdulla Labib, Medhat Mohamed Morsy, Gamal Hosny, Hanan Dawood Yassa, Gaber Hassan
Abstract:
Amiodarone is a very effective drug, widely used for arrhythmia. Unfortunately it has many side effects involving many organs especially thyroid gland. The current work was conducted to elucidate the effect of amiodarone on the thyroid gland and the possible protective role of vitamin E. Fifty adult male albino rats weighed 200 – 250 grams were divided into five groups; ten rats each. Group I (Control): Five rats were sacrificed after three weeks and five rats were sacrificed after six weeks. Group II (Sham control): Each rat received sunflower oil orally; the solvent of vitamin E for three weeks. Group III (Amiodarone-treated): each rat received an oral dose of amiodarone; 150 mg/kg/day for three weeks. Group IV (Recovery): Each rat received amiodarone as group III then the drug was stopped for three weeks to evaluate recovery. Group V (Amiodarone + Vitamin E-treated): Each rat received amiodarone as group III followed by 100 mg/kg/day vitamin E orally for three weeks. Thyroid gland of the sacrificed animals were dissected out and prepared for light and electron microscopic studies. Amiodarone administration resulted in loss of normal follicular architecture as many follicles appeared either shrunken, empty or contained scanty pale colloid. Some follicles appeared lined by more than one layer of cells while others showed interruption of their membrane. Masson's Trichrome stained sections showed increased collagen fibers in between the thyroid follicles. Ultrastructurally, the apical border of the follicular cells showed few irregular detached microvilli. The nuclei of the follicular cells were almost irregular with chromatin condensation. The cytoplasm of most follicular cells revealed numerous dilated rough endoplasmic reticulum with numerous lysosomes. After three weeks of stopping amiodarone, the follicles were nearly regular in outline. Some follicles were filled with homogenous eosinophilic colloid and others had shrunken pale colloid or were empty. Some few follicles showed exfoliated cells in their lumina and others were still lined by more than one layer of follicular cells. Moderate amounts of collagen fibers were observed in-between thyroid follicles. Ultrastructurally, many follicular cells had rounded euchromatic nucleui, moderate number of lysosomes and moderately dilated rough endoplasmic reticulum. However, few follicular cells still showing irregular nucleui, dilated rough endoplasmic reticulum and many cytoplasmic vacuoles. Administration of vitamin E with amiodarone for three weeks resulted in obvious structural improvement. Most of the follicles were lined by a single layer of cuboidal cells and the lumina were filled with homogenous eosinophilic colloid with very few vacuolations. The majority of follicular cells had rounded nuclei with occasional detection of ballooned cells and dark nuclei. Scanty collagen fibers were detected among thyroid follicles. Ultrastructurally, most follicular cells exhibited rounded euchromatic nuclei with few short microvilli were projecting into the colloid. Few lysosomes were also noticed. It was concluded that amiodarone administration leads to many adverse histological changes in the thyroid gland. Some of these changes are reversible during the recovery period however concomitant vitamin E administration with amiodarone has a major protective role in preventing many of these changes.Keywords: amiodarone, recovery, ultrastructure, vitamin E.
Procedia PDF Downloads 3513288 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics
Authors: Leo Nnamdi Ozurumba-Dwight
Abstract:
Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq
Procedia PDF Downloads 1773287 Ecological Engineering Through Organic Amendments: Enhancing Pest Regulation, Beneficial Insect Populations, and Rhizosphere Microbial Diversity in Cabbage Ecosystems
Authors: Ravi Prakash Maurya, Munaswamyreddygari Sreedhar
Abstract:
The present studies on ecological engineering through soil amendments in cabbage crops for insect pests regulation were conducted at G. B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, India. Ten treatments viz., Farm Yard Manure (FYM), Neem cake (NC), Vermicompost (VC), Poultry manure (PM), PM+FYM, NC+VC, NC+PM, VC+FYM, Urea+ SSP+MOP (Standard Check) and Untreated Check were evaluated to study the effect of these amendments on the population of insect pests, natural enemies and the microbial community of the rhizosphere in the cabbage crop ecosystem. The results revealed that most of the cabbage pests, viz., aphids, head borer, gram pod borer, and armyworm, were more prevalent in FYM, followed by PM and NC-treated plots. The best cost-benefit ratio was found in PM + FYM treatment, which was 1: 3.62, while the lowest, 1: 0.97, was found in the VC plot. The population of natural enemies like spiders, coccinellids, syrphids, and other hymenopterans and dipterans was also found to be prominent in organic plots, namely FYM, followed by VC and PM plots. Diversity studies on organic manure-treated plots were also carried out, which revealed a total of nine insect orders (Hymenoptera, Hemiptera, Lepidoptera, Coleoptera, Neuroptera, Diptera, Orthoptera, Dermaptera, Thysanoptera, and one arthropodan class, Arachnida) in different treatments. The Simpson Diversity Index was also studied and found to be maximum in FYM plots. The metagenomic analysis of the rhizosphere microbial community revealed that the highest bacterial count was found in NC+PM plot as compared to standard check and untreated check. The diverse microbial population contributes to soil aggregation and stability. Healthier soil structures can improve water retention, aeration, and root penetration, which are all crucial for crop health. The further analysis also identified a total of 39 bacterial phyla, among which the most abundant were Actinobacteria, Firmicutes, and the SAR324 clade. Actinobacteria and Firmicutes are known for their roles in decomposing organic matter and mineralizing nutrients. Their highest abundance suggests improved nutrient cycling and availability, which can directly enhance plant growth. Hence, organic amendments in cabbage farming can transform the rhizosphere microbiome, reduce pest pressure, and foster populations of beneficial insects, leading to healthier crops and a more sustainable agricultural ecosystem.Keywords: cabbage ecosystem, organic amendments, rhizosphere microbiome, pest and natural enemy diversity
Procedia PDF Downloads 163286 The Effectiveness of Cathodic Protection on Microbiologically Influenced Corrosion Control
Authors: S. Taghavi Kalajahi, A. Koerdt, T. Lund Skovhus
Abstract:
Cathodic protection (CP) is an electrochemical method to control and manage corrosion in different industries and environments. CP which is widely used, especially in buried and sub-merged environments, which both environments are susceptible to microbiologically influenced corrosion (MIC). Most of the standards recommend performing CP using -800 mV, however, if MIC threats are high or sulfate reducing bacteria (SRB) is present, the recommendation is to use more negative potentials for adequate protection of the metal. Due to the lack of knowledge and research on the effectiveness of CP on MIC, to the author’s best knowledge, there is no information about what MIC threat is and how much more negative potentials should be used enabling adequate protection and not overprotection (due to hydrogen embrittlement risk). Recently, the development and cheaper price of molecular microbial methods (MMMs) open the door for more effective investigations on the corrosion in the presence of microorganisms, along with other electrochemical methods and surface analysis. In this work, using MMMs, the gene expression of SRB biofilm under different potentials of CP will be investigated. The specific genes, such as pH buffering, metal oxidizing, etc., will be compared at different potentials, enabling to determine the precise potential that protect the metal effectively from SRB. This work is the initial step to be able to standardize the recommended potential under MIC condition, resulting better protection for the infrastructures.Keywords: cathodic protection, microbiologically influenced corrosion, molecular microbial methods, sulfate reducing bacteria
Procedia PDF Downloads 933285 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence
Authors: H. Mazouz, A. Belghachi, F. Hadjaj
Abstract:
Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit
Procedia PDF Downloads 4763284 Internal Methane Dry Reforming Kinetic Models in Solid Oxide Fuel Cells
Authors: Saeed Moarrefi, Shou-Han Zhou, Liyuan Fan
Abstract:
Coupling with solid oxide fuel cells, methane dry reforming is a promising pathway for energy production while mitigating carbon emissions. However, the influence of carbon dioxide and electrochemical reactions on the internal dry reforming reaction within the fuel cells remains debatable, requiring accurate kinetic models to describe the internal reforming behaviors. We employed the Power-Law and Langmuir Hinshelwood–Hougen Watson models in an electrolyte-supported solid oxide fuel cell with a NiO-GDC-YSZ anode. The current density used in this study ranges from 0 to 1000 A/m2 at 973 K to 1173 K to estimate various kinetic parameters. The influence of the electrochemical reactions on the adsorption terms, the equilibrium of the reactions, the activation energy, the pre-exponential factor of the rate constant, and the adsorption equilibrium constant were studied. This study provides essential parameters for future simulations and highlights the need for a more detailed examination of reforming kinetic models.Keywords: dry reforming kinetics, Langmuir Hinshelwood–Hougen Watson, power-law, SOFC
Procedia PDF Downloads 293283 Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers
Authors: Mohammed Al-Bloushi, Sanghyun Jeong, Torove Leiknes
Abstract:
Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.Keywords: algae, biocide, biofouling, seawater cooling tower
Procedia PDF Downloads 2403282 Changes in the fecal Microbiome of Periparturient Dairy Cattle and Associations with the Onset of Salmonella Shedding
Authors: Lohendy Munoz-Vargas, Stephen O. Opiyo, Rose Digianantonio, Michele L. Williams, Asela Wijeratne, Gregory Habing
Abstract:
Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, to author`s best knowledge, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle.Keywords: dairy cattle, microbiome, periparturient, Salmonella
Procedia PDF Downloads 1753281 Superiority of Bone Marrow Derived-Osteoblastic Cells (ALLOB®) over Bone Marrow Derived-Mesenchymal Stem Cells
Authors: Sandra Pietri, Helene Dubout, Sabrina Ena, Candice Hoste, Enrico Bastianelli
Abstract:
Bone Therapeutics is a bone cell therapy company addressing high unmet medical needs in the field of bone fracture repair, more specifically in non-union and delayed-union fractures where the bone repair process is impaired. The company has developed a unique allogeneic osteoblastic cell product (ALLOB®) derived from bone marrow which is currently tested in humans in the indication of delayed-union fractures. The purpose of our study was to directly compare ALLOB® vs. non-differentiated mesenchymal stem cells (MSC) for their in vitro osteogenic characteristics and their in vivo osteogenic potential in order to determine which cellular type would be the most adapted for bone fracture repair. Methods: Healthy volunteers’ bone marrow aspirates (n=6) were expended (i) into BM-MSCs using a complete MSC culture medium or (ii) into ALLOB® cells according to its manufacturing process. Cells were characterized in vitro by morphology, immunophenotype, gene expression and differentiation potential. Additionally, their osteogenic potential was assessed in vivo in the subperiosteal calvaria bone formation model in nude mice. Results: The in vitro side-by-side comparison studies showed that although ALLOB® and BM-MSC shared some common general characteristics such as the 3 minimal MSC criteria, ALLOB® expressed significantly higher levels of chondro/osteoblastic genes such as BMP2 (fold change (FC) > 100), ALPL (FC > 12), CBFA1 (FC > 3) and differentiated significantly earlier than BM-MSC toward the osteogenic lineage. Moreover the bone formation model in nude mice demonstrated that used at the same cellular concentration, ALLOB® was able to induce significantly more (160% vs.107% for control animals) bone formation than BM-MSC (118% vs. 107 % for control animals) two weeks after administration. Conclusion: Our side-by-side comparison studies demonstrated that in vitro and in vivo, ALLOB® displays superior osteogenic capacity to BM-MScs and is therefore a better candidate for the treatment of bone fractures.Keywords: gene expression, histomorphometry, mesenchymal stem cells, osteogenic differentiation potential, preclinical
Procedia PDF Downloads 3323280 Study of Hybrid Cells Based on Perovskite Materials Using Oghmasimultion
Authors: Nadia Bachir (Dahmani), Fatima Zohra Otmani
Abstract:
Due to its interesting optoelectronic properties, methylammonium perovskite CH3NH3PbI3 is used as the active layer in the development of several solar cells. In this work, the hybrid (organic-inorganic) cell with the architecture FTO/pedotpss/CH3NH3PbI3/pcdtbt/Al is simulated using the Organic and Hybrid Material Nano Simulation Tool (OghmaNano). We studied the influence of certain parameters, such as thickness, on the characteristics of the solar cell. The effect of the device temperature was also investigated. The photovoltaic characteristic curves, such as current-voltage (j-V), are presented in this work. The optimized final parameters are Voc = 0.947 V, FF = 0.8034%, and PCE = 23.16%.Keywords: OghmaNano software, hybrid perovskite cell, CH3NH3PbI3, conversion efficiency
Procedia PDF Downloads 173279 Proliferative Effect of Some Calcium Channel Blockers on the Human Embryonic Kidney Cell Line
Authors: Lukman Ahmad Jamil, Heather M. Wallace
Abstract:
Introduction: Numerous epidemiological studies have shown a positive as well as negative association and no association in some cases between chronic use of calcium channel blockers and the increased risk of developing cancer. However, these associations were enmeshed with controversies in the absence of laboratory based studies to back up those claims. Aim: The aim of this study was to determine in mechanistic terms the association between the long-term administration of nifedipine and diltiazem and increased risk of developing cancer using the human embryonic kidney (HEK293) cell line. Methods: Cell counting using the Trypan blue dye exclusion and 3-4, 5-Dimethylthiazol-2-yl-2, 5-diphenyl-tetrazolium bromide (MTT) assays were used to investigate the effect of nifedipine and diltiazem on the growth pattern of HEK293 cells. Protein assay using modified Lowry method and analysis of intracellular polyamines concentration using Liquid Chromatography – Tandem Mass Spectrometry (LC-MS) were performed to ascertain the mechanism through which chronic use of nifedipine increases the risk of developing cancer. Results: Both nifedipine and diltiazem significantly increased the proliferation of HEK293 cells dose and time dependently. This proliferative effect after 24, 48 and 72-hour incubation period was observed at 0.78, 1.56 and 25 µM for nifedipine and 0.39, 1.56 and 25 µM for diltiazem, respectively. The increased proliferation of the cells was found to be statistically significantly (p<0.05). Furthermore, the increased proliferation of the cells induced by nifedipine was associated with the increase in the protein content and elevated intracellular polyamines concentration level. Conclusion: The chronic use of nifedipine is associated with increased proliferation of cells with concomitant elevation of polyamines concentration and elevated polyamine levels have been implicated in many malignant transformations and hence, these provide a possible explanation on the link between long term use of nifedipine and development of some human cancers. Further studies are needed to evaluate the cause of this association.Keywords: cancer, nifedipine, polyamine, proliferation
Procedia PDF Downloads 1983278 Adaptive Discharge Time Control for Battery Operation Time Enhancement
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.Keywords: battery, recovery effect, low-power, alternating battery cell discharging, adaptive discharge time control
Procedia PDF Downloads 3533277 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water
Authors: Zohreh Rashmei
Abstract:
Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.Keywords: plasma, hydrogen peroxide, disinfection, E. coli
Procedia PDF Downloads 1443276 Design, Development and Application of a Green Manure Fertilizer Based on Mucuna Pruriens (L.) in Pelletized Presentation
Authors: Andres Zuñiga Orozco
Abstract:
Green manure fertilizers have special importance in the development of organic and sustainable agriculture as a substitute or complement to chemical fertilization. They have many advantages, but they have application limitations in greenhouse crops and in open field crops that have low growing size. On the other hand, the logistics of sowing, harvesting and applying have been difficult for producers to adopt. For this reason, a pelletized presentation was designed in conjunction with Trichoderma harzianum. The biopellet was applied in pineapple as the first experience, managing to improve carbon levels in the soil and some nutrients. Then it was applied to tomatoes where it was proven that, nutritionally, it is possible to nourish the crop up to day 60 only with the biopellet, improve carbon levels in soil and control the fungus Fusarium oxysporum. Subsequently, it was applied to coffee seedlings with an organo-mineral formulation. Here, the improvement in the growth and nutrition of the plants was notable, as well as the increase in the microbial activity of the soil. M. pruriens biopellets allow crops to be nourished, allow biocontrolers to be added, improve soil conditions to promote greater microbial activity, reincorporate carbon and CO2 into the soil, are easily applicable, allow dosing and have a favorable shelf-life. They can be applied to all types of crops, both in the greenhouse and in the field.Keywords: Mucuna pruriens, pellets, carbon, Trichoderma, Fusarium
Procedia PDF Downloads 603275 Transcriptional Differences in B cell Subpopulations over the Course of Preclinical Autoimmunity Development
Authors: Aleksandra Bylinska, Samantha Slight-Webb, Kevin Thomas, Miles Smith, Susan Macwana, Nicolas Dominguez, Eliza Chakravarty, Joan T. Merrill, Judith A. James, Joel M. Guthridge
Abstract:
Background: Systemic Lupus Erythematosus (SLE) is an interferon-related autoimmune disease characterized by B cell dysfunction. One of the main hallmarks is a loss of tolerance to self-antigens leading to increased levels of autoantibodies against nuclear components (ANAs). However, up to 20% of healthy ANA+ individuals will not develop clinical illness. SLE is more prevalent among women and minority populations (African, Asian American and Hispanics). Moreover, African Americans have a stronger interferon (IFN) signature and develop more severe symptoms. The exact mechanisms involved in ethnicity-dependent B cell dysregulation and the progression of autoimmune disease from ANA+ healthy individuals to clinical disease remains unclear. Methods: Peripheral blood mononuclear cells (PBMCs) from African (AA) and European American (EA) ANA- (n=12), ANA+ (n=12) and SLE (n=12) individuals were assessed by multimodal scRNA-Seq/CITE-Seq methods to examine differential gene signatures in specific B cell subsets. Library preparation was done with a 10X Genomics Chromium according to established protocols and sequenced on Illumina NextSeq. The data were further analyzed for distinct cluster identification and differential gene signatures in the Seurat package in R and pathways analysis was performed using Ingenuity Pathways Analysis (IPA). Results: Comparing all subjects, 14 distinct B cell clusters were identified using a community detection algorithm and visualized with Uniform Manifold Approximation Projection (UMAP). The proportion of each of those clusters varied by disease status and ethnicity. Transitional B cells trended higher in ANA+ healthy individuals, especially in AA. Ribonucleoprotein high population (HNRNPH1 elevated, heterogeneous nuclear ribonucleoprotein, RNP-Hi) of proliferating Naïve B cells were more prevalent in SLE patients, specifically in EA. Interferon-induced protein high population (IFIT-Hi) of Naive B cells are increased in EA ANA- individuals. The proportion of memory B cells and plasma cells clusters tend to be expanded in SLE patients. As anticipated, we observed a higher signature of cytokine-related pathways, especially interferon, in SLE individuals. Pathway analysis among AA individuals revealed an NRF2-mediated Oxidative Stress response signature in the transitional B cell cluster, not seen in EA individuals. TNFR1/2 and Sirtuin Signaling pathway genes were higher in AA IFIT-Hi Naive B cells, whereas they were not detected in EA individuals. Interferon signaling was observed in B cells in both ethnicities. Oxidative phosphorylation was found in age-related B cells (ABCs) for both ethnicities, whereas Death Receptor Signaling was found only in EA patients in these cells. Interferon-related transcription factors were elevated in ABCs and IFIT-Hi Naive B cells in SLE subjects of both ethnicities. Conclusions: ANA+ healthy individuals have altered gene expression pathways in B cells that might drive apoptosis and subsequent clinical autoimmune pathogenesis. Increases in certain regulatory pathways may delay progression to SLE. Further, AA individuals have more elevated activation pathways that may make them more susceptible to SLE. Procedia PDF Downloads 1773274 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment
Authors: Lina Wu
Abstract:
The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification
Procedia PDF Downloads 523273 Significant Influence of Land Use Type on Earthworm Communities but Not on Soil Microbial Respiration in Selected Soils of Hungary
Authors: Tsedekech Gebremeskel Weldmichael, Tamas Szegi, Lubangakene Denish, Ravi Kumar Gangwar, Erika Micheli, Barbara Simon
Abstract:
Following the 1992 Earth Summit in Rio de Janeiro, soil biodiversity has been recognized globally as a crucial player in guaranteeing the functioning of soil and a provider of several ecosystem services essential for human well-being. The microbial fraction of the soil is a vital component of soil fertility as soil microbes play key roles in soil aggregate formation, nutrient cycling, humification, and degradation of pollutants. Soil fauna, such as earthworms, have huge impacts on soil organic matter dynamics, nutrient cycling, and infiltration and distribution of water in the soil. Currently, land-use change has been a global concern as evidence accumulates that it adversely affects soil biodiversity and the associated ecosystem goods and services. In this study, we examined the patterns of soil microbial respiration (SMR) and earthworm (abundance, biomass, and species richness) across three land-use types (grassland, arable land, and forest) in Hungary. The objectives were i) to investigate whether there is a significant difference in SMR and earthworm (abundance, biomass, and species richness) among land-use types. ii) to determine the key soil properties that best predict the variation in SMR and earthworm communities. Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. For physicochemical parameters, soil organic matter (SOM), pH, CaCO₃, E₄/E₆, available nitrogen (NH₄⁺-N and NO₃⁻-N), potassium (K₂O), phosphorus (P₂O₅), exchangeable Ca²⁺, Mg²⁺, soil moisture content (MC) and bulk density were measured. The analysis of SMR was determined by basal respiration method, and the extraction of earthworms was carried out by hand sorting method as described by ISO guideline. The results showed that there was no statistically significant difference among land-use types in SMR (p > 0.05). However, the highest SMR was observed in grassland soils (11.77 mgCO₂ 50g⁻¹ soil 10 days⁻¹) and lowest in forest soils (8.61 mgCO₂ 50g⁻¹ soil 10 days⁻¹). SMR had strong positive correlations with exchangeable Ca²⁺ (r = 0.80), MC (r = 0.72), and exchangeable Mg²⁺(r = 0.69). We found a pronounced variation in SMR among soil texture classes (p < 0.001), where the highest value in silty clay loam soils and the lowest in sandy soils. This study provides evidence that agricultural activities can negatively influence earthworm communities, in which the arable land had significantly lower earthworm communities compared to forest and grassland respectively. Overall, in our study, land use type had minimal effects on SMR whereas, earthworm communities were profoundly influenced by land-use type particularly agricultural activities related to tillage. Exchangeable Ca²⁺, MC, and texture were found to be the key drivers of the variation in SMR.Keywords: earthworm community, land use, soil biodiversity, soil microbial respiration, soil property
Procedia PDF Downloads 1423272 Cellular Components of the Hemal Node of Egyptian Cattle
Authors: Amira E. Derbalah, Doaa M. Zaghloul
Abstract:
10 clinically healthy hemal nodes were collected from male bulls aged 2-3 years. Light microscopy revealed a capsule of connective tissue consisted mainly of collagen fiber surrounding hemal node, numerous erythrocytes were found in wide subcapsular sinus under the capsule. The parenchyma of the hemal node was divided into cortex and medulla. Diffused lymphocytes, and lymphoid follicles, having germinal centers were the main components of the cortex, while in the medulla there was wide medullary sinus, diffused lymphocytes and few lymphoid nodules. The area occupied with lymph nodules was larger than that occupied with non-nodular structure of lymphoid cords and blood sinusoids. Electron microscopy revealed the cellular components of hemal node including elements of circulating erythrocytes intermingled with lymphocytes, plasma cells, mast cells, reticular cells, macrophages, megakaryocytes and endothelial cells lining the blood sinuses. The lymphocytes were somewhat triangular in shape with cytoplasmic processes extending between adjacent erythrocytes. Nuclei were triangular to oval in shape, lightly stained with clear nuclear membrane indentation and clear nucleoli. The reticular cells were elongated in shape with cytoplasmic processes extending between adjacent lymphocytes, rough endoplasmic reticulum, ribosomes and few lysosomes were seen in their cytoplasm. Nucleus was elongated in shape with less condensed chromatin. Plasma cells were oval to irregular in shape with numerous dilated rough endoplasmic reticulum containing electron lucent material occupying the whole cytoplasm and few mitochondria were found. Nuclei were centrally located and oval in shape with heterochromatin emarginated and often clumped near the nuclear membrane. Occasionally megakaryocytes and mast cells were seen among lymphocytes. Megakaryocytes had multilobulated nucleus and free ribosomes often appearing as small aggregates in their cytoplasm, while mast cell had their characteristic electron dense granule in the cytoplasm, few electron lucent granules were found also, we conclude that, the main function of the hemal node of cattle is proliferation of lymphocytes. No role for plasma cell in erythrophagocytosis could be suggested.Keywords: cattle, electron microscopy, hemal node, histology, immune system
Procedia PDF Downloads 4023271 Bioflocculation Using the Purified Wild Strain of P. aeruginosa Culture in Wastewater Treatment
Authors: Mohammad Hajjartabar, Tahereh Kermani Ranjbar
Abstract:
P. aeruginosa EF2 was isolated and identified from human infection sources before in our previous study. The present study was performed to determine the characteristics and activity role of bioflocculant produced by the bacterium in flocculation of the wastewater active sludge treatment. The bacterium was inoculated and then was grown in an orbital shaker at 250 rpm for 5 days at 35 °C under TSB and peptone water media. After incubation period, culture broths of the bacterial strain was collected and washed. The concentration of the bacteria was adjusted. For the extraction of the bacterial bioflocculant, culture was centrifuged at 6000 rpm for 20 min at 4 °C to remove bacterial cells. Supernatant was decanted and pellet containing bioflocculant was dried at 105 °C to a constant weight according to APHA, 2005. The chemical composition of the extracted bioflocculant from the bacterial sample was then analyzed. Wastewater active sludge sample obtained from aeration tank from one of wastewater treatment plants in Tehran, was first mixed thoroughly. After addition of bioflocculant, improvements in floc density were observed with an increase in bioflocculant. The results of this study strongly suggested that the extracted bioflucculant played a significant role in flocculation of the wastewater sample. The use of wild bacteria and nutrient regulation techniques instead of genetic manipulation opens wide investigation area in the future to improve wastewater treatment processes. Also this may put a new path in front of us to attain and improve the more effective bioflocculant using the purified microbial culture in wastewater treatment.Keywords: wastewater treatment, P. aeruginosa, sludge treatment
Procedia PDF Downloads 1563270 In Vitro Antioxidant and Cytotoxic Activities Against Human Oral Cancer and Human Laryngeal Cancer of Limonia acidissima L. Bark Extracts
Authors: Kriyapa lairungruang, Arunporn Itharat
Abstract:
Limonia acidissima L. (LA) (Common name: wood apple, Thai name: ma-khwit) is a medicinal plant which has long been used in Thai traditional medicine. Its bark is used for treatment of diarrhea, abscess, wound healing and inflammation and it is also used in oral cancer. Thus, this research aimed to investigate antioxidant and cytotoxic activities of the LA bark extracts produced by various extraction methods. Different extraction procedures were used to extract LA bark for biological activity testing: boiling in water, maceration with 95% ethanol, maceration with 50% ethanol and water boiling of each the 95% and the 50% ethanolic residues. All extracts were tested for antioxidant activity using DPPH radical scavenging assay, cytotoxic activity against human laryngeal epidermoid carcinoma (HEp-2) cells and human oral epidermoid carcinoma (KB) cells using sulforhodamine B (SRB) assay. The results found that the 95% ethanolic extract of LA bark showed the highest antioxidant activity with EC50 values of 29.76±1.88 µg/ml. For cytotoxic activity, the 50% ethanolic extract showed the best cytotoxic activity against HEp-2 and KB cells with IC50 values of 9.55±1.68 and 18.90±0.86 µg/ml, respectively. This study demonstrated that the 95% ethanolic extract of LA bark showed moderate antioxidant activity and the 50% ethanolic extract provided potent cytotoxic activity against HEp-2 and KB cells. These results confirm the traditional use of LA for the treatment of oral cancer and laryngeal cancer, and also support its ongoing use.Keywords: antioxidant activity, cytotoxic activity, Laryngeal epidermoid carcinoma, Limonia acidissima L., oral epidermoid carcinoma
Procedia PDF Downloads 4783269 Analysis of the Lung Microbiome in Cystic Fibrosis Patients Using 16S Sequencing
Authors: Manasvi Pinnaka, Brianna Chrisman
Abstract:
Cystic fibrosis patients often develop lung infections that range anywhere in severity from mild to life-threatening due to the presence of thick and sticky mucus that fills their airways. Since many of these infections are chronic, they not only affect a patient’s ability to breathe but also increase the chances of mortality by respiratory failure. With a publicly available dataset of DNA sequences from bacterial species in the lung microbiome of cystic fibrosis patients, the correlations between different microbial species in the lung and the extent of deterioration of lung function were investigated. 16S sequencing technologies were used to determine the microbiome composition of the samples in the dataset. For the statistical analyses, referencing helped distinguish between taxonomies, and the proportions of certain taxa relative to another were determined. It was found that the Fusobacterium, Actinomyces, and Leptotrichia microbial types all had a positive correlation with the FEV1 score, indicating the potential displacement of these species by pathogens as the disease progresses. However, the dominant pathogens themselves, including Pseudomonas aeruginosa and Staphylococcus aureus, did not have statistically significant negative correlations with the FEV1 score as described by past literature. Examining the lung microbiology of cystic fibrosis patients can help with the prediction of the current condition of lung function, with the potential to guide doctors when designing personalized treatment plans for patients.Keywords: bacterial infections, cystic fibrosis, lung microbiome, 16S sequencing
Procedia PDF Downloads 993268 Silica Nanoparticles Induced Oxidative Stress and Inflammation in MRC-5 Human Lung Fibroblasts
Authors: Anca Dinischiotu, Sorina Nicoleta Voicu
Abstract:
Silica nanoparticles (SiO2-NPs) are widely used in consumer products such as paints, plastics, insulation materials, tires, concrete production, as well as in gene delivery systems and imaging procedures. Environmental human exposure to them occurs during utilization of these products, in a time-dependent manner, the uptake being by topic and inhalation route especially. SiO2-NPs enter cells and induce membrane damage, oxidative stress and inflammatory reactions in a concentration-dependent manner. In this study, MRC-5 cells (human fetal lung fibroblasts) were exposed to amorphous SiO2-NPs at a dose of 62.5 μg/ml for 24, 48 and 72 hours. The size distribution of NPs was a lognormal function, in the range 3-14 nm. A time-dependent decrease of total reduced glutathione concentration by 36%, 50%, and 78% and an increase of NO level by 62%, 32%, respectively 24% compared to control were noticed. An up-regulation of NF-kB expression by 20%, 50% respectively 10% and of Nrf-2 by 139%, 58%, and 16% compared to control after 24, 48 and 72 hours was noticed also. The expression of IL-1β, IL-6, IL-8, and COX-2 was up-regulated in a time-dependent manner. Also, the expression of MMP-2 and MMP-9 were down-regulated after 48 and 72 hours, whereas their activities raised in a time-dependent manner. Exposure of cells to NPs up-regulated the expression of inducible NO synthase, as previously was shown, and probably this is the reason for the increased level of NO, that can react with the thiol groups of reduced glutathione molecules, diminishing its concentration Nrf2 is a transcription factor translocated in nucleus, under oxidative stress, where downstream gene expression activates in order to modulate the adaptive intracellular response against oxidative stress. The cross-talk between Nrf2 and NF-kB activities regulates the inflammatory processes. The activation of NF-kB could activate up-regulation of IL-1β, IL-6, and IL-8. The increase of COX-2 expression could be correlated with IL-1β one. Also, probably in response to the pro-inflammatory cytokines, MMP-2 and MMP-9 were induced and activated. In conclusion, the exposure of MRC-5 cells to SiO2-NPs generated inflammation in a time-dependent manner.Keywords: inflammation, MRC-5 cells, oxidative stress, silica nanoparticles
Procedia PDF Downloads 1473267 Safety of Mesenchymal Stem Cells Therapy: Potential Risk of Spontaneous Transformations
Authors: Katarzyna Drela, Miroslaw Wielgos, Mikolaj Wrobel, Barbara Lukomska
Abstract:
Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications. During long-term culture MSCs may undergo genetic or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical application. The aim of our study was to investigate the potential for spontaneous transformation of human neonatal cord blood (HUCB-MSCs) and adult bone marrow (BM-MSCs) derived MSCs. Materials and Methods: HUCB-MSCs and BM-MSCs were isolated by standard Ficoll gradient centrifugations method. Isolated cells were initially plated in high density 106 cells per cm2. After 48 h medium were changed and non-adherent cells were removed. The malignant transformation of MSCs in vitro was evaluated by morphological changes, proliferation rate, ability to enter cell senescence, the telomerase expression and chromosomal abnormality. Proliferation of MSCs was analyzed with WST-1 reduction method and population doubling time (PDT) was calculated at different culture stages. Then the expression pattern of genes characteristic for mesenchymal or epithelial cells, as well as transcriptions factors were examined by RT-PCR. Concomitantly, immunocytochemical analysis of gene-related proteins was employed. Results: Our studies showed that MSCs from all bone marrow isolations ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUCB-MSCs from one of the 15 donors displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. In this sample we observed two different cell phenotypes: one mesenchymal-like exhibited spindle shaped morphology and express specific mesenchymal surface markers (CD73, CD90, CD105, CD166) with low proliferation rate, and the second one with round, densely package epithelial-like cells with significantly increased proliferation rate. The PDT of epithelial-like populations was around 1day and 100% of cells were positive for proliferation marker Ki-67. Moreover, HUCB-MSCs showed a positive expression of human telomerase reverse transcriptase (hTERT), cMYC and exhibit increased number of CFU during the long-term culture in vitro. Furthermore, karyotype analysis revealed chromosomal abnormalities including duplications. Conclusions: Our studies demonstrate that HUCB-MSCs are susceptible to spontaneous malignant transformation during long-term culture. Spontaneous malignant transformation process following in vitro culture has enormous effect on the biosafety issues of future cell-based therapies and regenerative medicine regimens.Keywords: mesenchymal stem cells, spontaneous, transformation, long-term culture
Procedia PDF Downloads 2683266 Let-7 Mirnas Regulate Inflammatory Cytokine Production in Bovine Endometrial Cells after Lipopolysaccharide Challenge by Targeting TNFα
Authors: S. Ibrahim, D. Salilew-Wondim, M. Hoelker, C. Looft, E. Tholen, C. Grosse-Brinkhaus, K. Schellander, C. Neuhoff, D. Tesfaye
Abstract:
Bovine endometrial cells appear to have a key role in innate immune defense of the female genital tract. A better understanding of molecular changes in microRNAs (miRNAs) and their target genes expression may identify reliable prognostic indicators for cows that will resolve inflammation and resume cyclicity. In the current study, we hypothesized that let-7 miRNAs family has a primary role in the innate immune defence of the endometrium tissue against bacterial infection, which is partly achieved via regulating mRNA stability of pro-inflammatory cytokines at the post-transcriptional level. Therefore, we conducted two experiments. In the first experiment, primary bovine endometrial cells were challenged with clinical (3.0 μg/ml) and sub-clinical (0.5 μg/ml) doses of lipopolysaccharide (LPS) for 24h. In the 2nd experiment, we have investigated the potential role of let-7 miRNAs (let-7a and let-7f) using gain and loss of function approaches. Additionally, tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 induced transcript 1 (TGFB1I1) and serum deprivation response (SDPR) genes were validated using reporter assay. Here we addressed for the first time that let-7 miRNAs have a precise role in bovine endometrium, where LPS dysregulated let-7 miRNAs family expression was associated with an increased pro-inflammatory cytokine level by directly/indirectly targeting the TNFα, interleukin 6 (IL6), nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), TGFβ1I1 and SDPR genes. To our knowledge, this is the first study showing that TNFα, TGFβ1I1 and SDPR were identified and validated as novel let-7 miRNAs targets and could have a distinct role in inflammatory immune response of LPS challenged bovine endometrial cells. Our data represent a new finding by which uterine homeostasis is maintained through functional regulation of let-7a by down-regulation of pro-inflammatory cytokines expression (TNFα and IL6) at the mRNA and protein levels. These findings suggest that LPS serves as a negative regulator of let-7 miRNAs expression and provides a mechanism for the persistent pro-inflammatory phenotype, which is a hallmark of bovine subclinical endometritis.Keywords: bovine endometrial cells, let-7, lipopolysaccharide, pro-inflammatory cytokines
Procedia PDF Downloads 3823265 Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application
Authors: Chih-Chia Lin, Ching-Ying Huang, Cheng-Hong Liu, Wen-Lin Wang
Abstract:
A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding.Keywords: PEM fuel cell, laser welding, through-plan, in-plan, resistance
Procedia PDF Downloads 5113264 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines
Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo
Abstract:
A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers
Procedia PDF Downloads 4193263 Rauvolfine B Isolated from the Bark of Rauvolfia reflexa (Apocynaceae) Induces Apoptosis through Activation of Caspase-9 Coupled with S Phase Cell Cycle Arrest
Authors: Mehran Fadaeinasab, Hamed Karimian, Najihah Mohd Hashim, Hapipah Mohd Ali
Abstract:
In this study, three indole alkaloids namely; rauvolfine B, macusine B, and isoreserpiline have been isolated from the dichloromethane crude extract of Rauvolfia reflexa bark (Apocynaceae). The structural elucidation of the isolated compounds has been performed using spectral methods such as UV, IR, MS, 1D, and 2D NMR. Rauvolfine B showed anti proliferation activity on HCT-116 cancer cell line, its cytotoxicity induction was observed using MTT assay in eight different cell lines. Annexin-V is serving as a marker for apoptotic cells and the Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS). Apoptosis was confirmed by using caspase-8 and -9 assays. Cell cycle arrest was also investigated using flowcytometric analysis. rauvolfine B had exhibited significantly higher cytotoxicity against HCT-116 cell line. The treatment significantly arrested HCT-116 cells in the S phase. Together, the results presented in this study demonstrated that rauvolfine B inhibited the proliferation of HCT-116 cells and programmed cell death followed by cell cycle arrest.Keywords: apocynacea, indole alkaloid, apoptosis, cell cycle arrest
Procedia PDF Downloads 3353262 Effect of Radioprotectors on DNA Repair Enzyme and Survival of Gamma-Irradiated Cell Division Cycle Mutants of Saccharomyces pombe
Authors: Purva Nemavarkar, Badri Narain Pandey, Jitendra Kumar
Abstract:
Introduction: The objective was to understand the effect of various radioprotectors on DNA damage repair enzyme and survival in gamma-irradiated wild and cdc mutants of S. pombe (fission yeast) cultured under permissive and restrictive conditions. DNA repair process, as influenced by radioprotectors, was measured by activity of DNA polymerase in the cells. The use of single cell gel electrophoresis assay (SCGE) or Comet Assay to follow gamma-irradiation induced DNA damage and effect of radioprotectors was employed. In addition, studying the effect of caffeine at different concentrations on S-phase of cell cycle was also delineated. Materials and Methods: S. pombe cells grown at permissive temperature (250C) and/or restrictive temperature (360C) were followed by gamma-radiation. Percentage survival and activity of DNA Polymerase (yPol II) were determined after post-irradiation incubation (5 h) with radioprotectors such as Caffeine, Curcumin, Disulphiram, and Ellagic acid (the dose depending on individual D 37 values). The gamma-irradiated yeast cells (with and without the radioprotectors) were spheroplasted by enzyme glusulase and subjected to electrophoresis. Radio-resistant cells were obtained by arresting cells in S-phase using transient treatment of hydroxyurea (HU) and studying the effect of caffeine at different concentrations on S-phase of cell cycle. Results: The mutants of S. pombe showed insignificant difference in survival when grown under permissive conditions. However, growth of these cells under restrictive temperature leads to arrest in specific phases of cell cycle in different cdc mutants (cdc10: G1 arrest, cdc22: early S arrest, cdc17: late S arrest, cdc25: G2 arrest). All the cdc mutants showed decrease in survival after gamma radiation when grown at permissive and restrictive temperatures. Inclusion of the radioprotectors at respective concentrations during post irradiation incubation showed increase in survival of cells. Activity of DNA polymerase enzyme (yPol II) was increased significantly in cdc mutant cells exposed to gamma-radiation. Following SCGE, a linear relationship was observed between doses of irradiation and the tail moments of comets. The radioprotection of the fission yeast by radioprotectors can be seen by the reduced tail moments of the yeast comets. Caffeine also exhibited its radio-protective ability in radio-resistant S-phase cells obtained after HU treatment. Conclusions: The radioprotectors offered notable radioprotection in cdc mutants when added during irradiation. The present study showed activation of DNA damage repair enzyme (yPol II) and an increase in survival after treatment of radioprotectors in gamma irradiated wild type and cdc mutants of S. pombe cells. Results presented here showed feasibility of applying SCGE in fission yeast to follow DNA damage and radioprotection at high doses, which are not feasible with other eukaryotes. Inclusion of caffeine at 1mM concentration to S phase cells offered protection and did not decrease the cell viability. It can be proved that at minimal concentration, caffeine offered marked radioprotection.Keywords: radiation protection, cell cycle, fission yeast, comet assay, s-phase, DNA repair, radioprotectors, caffeine, curcumin, SCGE
Procedia PDF Downloads 1133261 The Dependency of the Solar Based Disinfection on the Microbial Quality of the Source Water
Authors: M. T. Amina, A. A. Alazba, U. Manzoor
Abstract:
Solar disinfection (SODIS) is a viable method for household water treatment and is recommended by the World Health Organization as cost effective approach that can be used without special skills. The efficiency of both SODIS and solar collector disinfection (SOCODIS) system was evaluated using four different sources of water including stored rainwater, storm water, ground water and treated sewage. Samples with naturally occurring microorganisms were exposed to sunlight for about 8-9 hours in 2-L polyethylene terephthalate bottles under similar experimental conditions. Total coliform (TC), Escherichia coli (E. coli) and heterotrophic plate counts (HPC) were used as microbial water quality indicators for evaluating the disinfection efficiency at different sunlight intensities categorized as weak, mild and strong weathers. Heterotrophic bacteria showed lower inactivation rates compared to E. coli and TC in both SODIS and SOCODIS system. The SOCODIS system at strong weather was the strongest disinfection system in this study and the complete inactivation of HPC was observed after 8-9 hours of exposure with SODIS being ineffective for HPC. At moderate weathers, however, the SOCODIS system did not show complete inactivation of HPC due to very high concentrations (up to 5x10^7 CFU/ml) in both storm water and treated sewage. SODIS even remained ineffective for the complete inactivation of E. coli due to its high concentrations of about 2.5x10^5 in treated sewage compared with other waters even after 8-9 hours of exposure. At weak weather, SODIS was not effective at all while SOCODIS system, though incomplete, showed good disinfection efficiency except for HPC and to some extent for high E. coli concentrations in storm water. Largest reduction of >5 log occurred for TC when used stored rainwater even after 6 hours of exposure in the case of SOCODIS system at strong weather. The lowest E. coli and HPC reduction of ~2 log was observed in SODIS system at weak weather. Further tests with varying pH and turbidity are required to understand the effects of reaction parameters that could be a step forward towards maximizing the disinfection efficiency of such systems for the complete inactivation of naturally occurring E. coli or HPC at moderate or even at weak weathers.Keywords: efficiency, microbial, SODIS, SOCODIS, weathers
Procedia PDF Downloads 2633260 Targeted Delivery of Sustained Release Polymeric Nanoparticles for Cancer Therapy
Authors: Jamboor K. Vishwanatha
Abstract:
Among the potent anti-cancer agents, curcumin has been found to be very efficacious against various cancer cells. Despite multiple medicinal benefits of curcumin, poor water solubility, poor physiochemical properties and low bioavailability continue to pose major challenges in developing a formulation for clinical efficacy. To improve its potential application in the clinical area, we formulated poly lactic-co-glycolic acid (PLGA) nanoparticles. The PLGA nanoparticles were formulated using solid-oil/water emulsion solvent evaporation method and then characterized for percent yield, encapsulation efficiency, surface morphology, particle size, drug distribution within nanoparticles and drug polymer interaction. Our studies showed the successful formation of smooth and spherical curcumin loaded PLGA nanoparticles with a high percent yield of about 92.01±0.13% and an encapsulation efficiency of 90.88±0.14%. The mean particle size of the nanoparticles was found to be 145nm. The in vitro drug release profile showed 55-60% drug release from the nanoparticles over a period of 24 hours with continued sustained release over a period of 8 days. Exposure to curcumin loaded nanoparticles resulted in reduced cell viability of cancer cells compared to normal cells. We used a novel non-covalent insertion of a homo-bifunctional spacer for targeted delivery of curcumin to various cancer cells. Functionalized nanoparticles for antibody/targeting agent conjugation was prepared using a cross-linking ligand, bis(sulfosuccinimidyl) suberate (BS3), which has reactive carboxyl group to conjugate efficiently to the primary amino groups of the targeting agents. In our studies, we demonstrated successful conjugation of antibodies, Annexin A2 or prostate specific membrane antigen (PSMA), to curcumin loaded PLGA nanoparticles for targeting to prostate and breast cancer cells. The percent antibody attachment to PLGA nanoparticles was found to be 92.8%. Efficient intra-cellular uptake of the targeted nanoparticles was observed in the cancer cells. These results have emphasized the potential of our multifunctional curcumin nanoparticles to improve the clinical efficacy of curcumin therapy in patients with cancer.Keywords: polymeric nanoparticles, cancer therapy, sustained release, curcumin
Procedia PDF Downloads 325