Search results for: chemical effects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14205

Search results for: chemical effects

13365 Effects of Ergonomics on Labor Productivity in Office Design

Authors: Abdullah Erden, Filiz Erden

Abstract:

In the present information society era, a change is seen in every field together with changing technology. Along with this change, importance given to information and human who is the producer of information increased. Work life and working conditions included in these changes have also been affected. The most important factors that disturb employees in offices are lighting, ventilation, noise and office furniture. Upon arrangement of these according to ergonomic principles, performance and efficiency of employees will increase. Fatigue and stress resulting from office environment are harmful for employees. Attention and efficiency of employee who feels bad will decrease. It should be noted that office employees are human and affected from environment. It should be allowed them to work in comfortable, healthy and peaceful environment. As a result, efficiency will increase and target will be reached. In this study, it has been focused on basic concepts such as office management and efficiency, effects of ergonomics on office efficiency has been examined. Also, a place is given to the factors affecting operational efficiency and effects of physical environment on employees.

Keywords: ergonomics, efficiency, office design, office

Procedia PDF Downloads 462
13364 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste

Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster

Abstract:

Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.

Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials

Procedia PDF Downloads 249
13363 Hydro-Geochemistry and Groundwater Quality Assessment of Rajshahi City in Bangladesh

Authors: M. G. Mostafa, S. M. Helal Uddin, A. B. M. H. Haque, M. R. Hasan

Abstract:

The study was carried out to understand the hydro-geochemistry and ground water quality in Rajshahi City of Bangladesh. 240 groundwater (shallow and deep tubewell) samples were collected during the year 2009-2010 covering pre-monsoon, monsoon and post-monsoon seasons and analyzed for various physico-chemical parameters including major ions. The results reveal that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under hard to very hard category. The concentration of calcium, iron, manganese, arsenic and lead ions were found far above the permissible limit in most of the shallow tubewells water samples. The analysis results show that the mean concentrations of cations and anions were observed in the order: Ca > Mg > Na > K > Fe > Mn > Pb > Zn > Cu > As (total) > Cd and HCO3-> Cl-> SO42-> NO3-, respectively. The concentrations of TH, TDS, HCO3-, NO3-, Ca, Fe, Zn, Cu, Pb, and As (total) were found to be higher during post-monsoon compare to pre-monsoon, whilst K, Mg, Cd, and Cl were found higher during pre-monsoon and monsoon. Ca-HCO3 was identified as the major hydro chemical facie using piper trilinear diagram. Higher concentration of toxic metals including Fe, Mn, As and Pb were found indicating various health hazards. The results also illustrate that the rock water interaction was the major geochemical process controlling the chemistry of groundwater in the study area.

Keywords: physio-chemical parameters, groundwater, geochemistry, Rajshahi city

Procedia PDF Downloads 307
13362 Experimental Investigation of Fluid Dynamic Effects on Crystallisation Scale Growth and Suppression in Agitation Tank

Authors: Prasanjit Das, M. M. K. Khan, M. G. Rasul, Jie Wu, I. Youn

Abstract:

Mineral scale formation is undoubtedly a more serious problem in the mineral industry than other process industries. To better understand scale growth and suppression, an experimental model is proposed in this study for supersaturated crystallised solutions commonly found in mineral process plants. In this experiment, surface crystallisation of potassium nitrate (KNO3) on the wall of the agitation tank and agitation effects on the scale growth and suppression are studied. The new quantitative scale suppression model predicts that at lower agitation speed, the scale growth rate is enhanced and at higher agitation speed, the scale suppression rate increases due to the increased flow erosion effect. A lab-scale agitation tank with and without baffles were used as a benchmark in this study. The fluid dynamic effects on scale growth and suppression in the agitation tank with three different size impellers (diameter 86, 114, 160 mm and model A310 with flow number 0.56) at various ranges of rotational speed (up to 700 rpm) and solution with different concentration (4.5, 4.75 and 5.25 mol/dm3) were investigated. For more elucidation, the effects of the different size of the impeller on wall surface scale growth and suppression rate as well as bottom settled scale accumulation rate are also discussed. Emphasis was placed on applications in the mineral industry, although results are also relevant to other industrial applications.

Keywords: agitation tank, crystallisation, impeller speed, scale

Procedia PDF Downloads 212
13361 Chemical Composition and Characteristics of Organic Solvent Extracts from the Omani Seaweeds Melanothamnus Somalensis and Gelidium Omanense

Authors: Abdullah Al-Nassri, Ahmed Al-Alawi

Abstract:

Seaweeds are classified into three groups: red, green, and brown. Each group of seaweeds consists of several types that have differences in composition. Even at the species level, there are differences in some ingredients, although in general composition, they are the same. Environmental conditions, availability of nutrients, and maturity stage are the main reasons for composition differences. In this study, two red seaweed species, Melanothamnus somalensis & Gelidium omanense, were collected in September 2021 from Sadh (Dhofar governorate, Oman). Five organic solvents were used sequentially to achieve extraction. The solvents were applied in the following order: hexane, dichloromethane, ethyl acetate, acetone, and methanol. Preparative HPLC (PrepLC) was performed to fraction the extracts. The chemical composition was measured; also, total phenols, flavonoids, and tannins were investigated. The structure of the extracts was analyzed by Fourier-transform infrared spectroscopy (FTIR). Seaweeds demonstrated high differences in terms of chemical composition, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gelidium omanense showed high moisture content, lipid content and carbohydrates (9.8 ± 0.15 %, 2.29 ± 0.09 % and 70.15 ± 0.42 %, respectively) compared to Melanothamnus somalensis (6.85 ± 0.01 %, 2.05 ± 0.12 % and 52.7 ± 0.36 % respectively). However, Melanothamnus somalensis showed high ash content and protein (27.68 ± 0.40 % and 52.7 ± 0.36 % respectively) compared to Gelidium omanense (8.07 ± 0.39 % and 9.70 ± 0.22 % respectively). Melanothamnus somalensis showed higher elements and minerals content, especially sodium and potassium. This is attributed to the jelly-like structure of Melanothamnus somalensis, which allows storage of more solutes compared to the leafy-like structure of Gelidium omanense. Furthermore, Melanothamnus somalensis had higher TPC in all fractions except the hexane fraction than Gelidium omanense. Except with hexane, TFC in the other solvents’ extracts was significantly different between Gelidium omanense and Melanothamnus somalensis. In all fractions, except dichloromethane and ethyl acetate fractions, there were no significant differences in TTC between Gelidium omanense and Melanothamnus somalensis. FTIR spectra showed variation between fractions, which is an indication of different functional groups.

Keywords: chemical composition, organic extract, Omani seaweeds, biological activity, FTIR

Procedia PDF Downloads 60
13360 Effects of Paroxetine on Biochemical Parameters and Reproductive Function in Male Rats

Authors: Rachid Mosbah, Aziez Chettoum, Zouhir Djerrou, Alberto Mantovani

Abstract:

Selective serotonin reuptake inhibitors (SSRI) are a class of molecules used in treating depression, anxiety, and mood disorders. Paroxetine (PRT) is one of the mostly prescribed antidepressant which has attracted great attention regarding its side effects in recent years. This study was planned to assess the adverse effects of PRT on the biochemical parameters and reproductive system. Fourteen male Wistar rats were randomly allocated into two groups (7 rats or each): control and treated with PRT at dose of 5mg/kg.bw for two weeks. At the end of the experiment, blood was collected from retro orbital plexus for measuring the biochemical parameters, whereas the reproductive organs were removed for measuring semen quality and the histological investigations. Results showed that PRT induced significant changes in some biochemical parameters and alteration of semen quality including sperm count, spermatids number and sperm viability, motility, and abnormalities. The histopathological examinations of testis and epididymis revealed an alteration of spermatogenesis, cellular disorganization and vacuolization, enlargement of interstitial space, shrinkage and degenerative changes in the epithelium of seminiferous and epididymal tubules with few to nil numbers of spermatozoa in their lumen. In conclusion, PRT treatment caused changes in some biochemical parameters and sperm profile as well as histopathologic effects of reproductive organs.

Keywords: antidepressant, biochemical parameters, reproductive function, paroxetine

Procedia PDF Downloads 120
13359 The Evaluation of the Effects of Atypical Antipsychotics on Sperm Quality by Computer-Assisted Sperm Analysis in Rats

Authors: O. Atli Eklioglu

Abstract:

Atypical antipsychotics such as quetiapine, olanzapine, and risperidone have been frequently and chronically used to treat psychiatric disorders accompanied by psychosis mainly schizophrenia. Since these drugs are commonly used in male patients of reproductive age, it is required to determine the possible effects of them on the reproductive system. In this study, it was aimed to evaluate the possible toxic effects of quetiapine, olanzapine and risperidone, which are the most frequently prescribed and chronically used psychiatric drugs, on sperm parameters. For this purpose, quetiapine (10, 20 and 40 mg/kg), olanzapine (2.5, 5 and 10 mg/kg), and risperidone (1.25, 2.5 and 3 mg/kg) were administered to male rats for 28 consecutive days. At the end of this period, sperm concentration, motility, and morphology were investigated by a computer-assisted sperm analysis system. According to the results, sperm parameters were negatively affected by antipsychotic use.

Keywords: quetiapine, olanzapine, risperidone, sperm count, motility, sperm morphology, computer-assisted sperm analysis

Procedia PDF Downloads 146
13358 Investigation of Overarching Effects of Artificial Intelligence Implementation into Education Through Research Synthesis

Authors: Justin Bin

Abstract:

Artificial intelligence (AI) has been rapidly rising in usage recently, already active in the daily lives of millions, from distinguished AIs like the popular ChatGPT or Siri to more obscure, inconspicuous AIs like those used in social media or internet search engines. As upcoming generations grow immersed in emerging technology, AI will play a vital role in their development. Namely, the education sector, an influential portion of a person’s early life as a student, faces a vast ocean of possibilities concerning the implementation of AI. The main purpose of this study is to analyze the effect that AI will have on the future of the educational field. More particularly, this study delves deeper into the following three categories: school admissions, the productivity of students, and ethical concerns (role of human teachers, purpose of schooling itself, and significance of diplomas). This study synthesizes research and data on the current effects of AI on education from various published literature sources and journals, as well as estimates on further AI potential, in order to determine the main, overarching effects it will have on the future of education. For this study, a systematic organization of data in terms of type (quantitative vs. qualitative), the magnitude of effect implicated, and other similar factors were implemented within each area of significance. The results of the study suggest that AI stands to change all the beforementioned subgroups. However, its specific effects vary in magnitude and favorability (beneficial or harmful) and will be further discussed. The results discussed will reveal to those affiliated with the education field, such as teachers, counselors, or even parents of students, valuable information on not just the projected possibilities of AI in education but the effects of those changes moving forward.

Keywords: artificial intelligence, education, schools, teachers

Procedia PDF Downloads 510
13357 Effects of Heat Source Position on Heat Transfer in an Inclined Square Enclosure Filled with Nanofluids

Authors: Khamis Al Kalbani

Abstract:

The effects of a uniform heat source position on the heat transfer flow inside an inclined square enclosure filled with different types of nanofluids having various shapes of the nanoparticles are investigated numerically following one component thermal equilibrium model. The effects of the Brownian diffusion of the nanoparticles, magnetic field intensity and orientation are taken into consideration in nanofluid modeling. The heat source is placed in the middle of a wall of the enclosure while the opposite wall of it is kept at different temperature. The other walls of the enclosure are kept insulated. The results indicate that the heat source position significantly controls the heat transfer rates of the nanofluids. The distributions of the average heat transfer rates varying the position of the heat source with respect to the geometry inclination angle are calculated for the first time. The outcomes of the present research may be helpful for designing solar thermal collectors, radiators, building insulators and advanced cooling of a nuclear system.

Keywords: heat source, inclined, square enclosure, nanofluids

Procedia PDF Downloads 302
13356 Cannabis Use Reported by Patients in an Academic Medical Practice

Authors: Siddhant Yadav, Ann Vincent, Sanjeev Nanda, Karen M. Fischer, Jessica A. Wright

Abstract:

Statement of the Problem: Despite the growing popularity of cannabis in the general population, there are several unknowns regarding its use, specific reasons for use, patient’s choice of products, health benefits, and adverse effects. The aim of our study was to evaluate patient-reported information related to cannabis use that was recorded in the electronic medical records. Methodology & Theoretical Orientation: We manually reviewed the electronic medical records of cannabis users who were part of a large pharmacogenomic study. Data abstracted included demographics, level of education, concurrent alcohol and tobacco use, type of cannabis utilized, formulation, indication, symptomatic improvement, or adverse effects reported. Following this, we did a descriptive statistical analysis. Findings: Our sample of 164 cannabis users were predominantly female (73.2%); 66% of users reported using cannabis for medical indications. Of the 109 patients who recorded information pertaining to alcohol/tobacco use, two-thirds of cannabis users reported concurrent use of alcohol, and about half of them were former or current tobacco users. The mean age of cannabis use was 66 years. Regarding the type of cannabis, 34.1% reported using marijuana, 32.3% reported CBD use, 1.8% reported using THC, and 1.2% reported using Marinol. Oral formulations (capsules, oils, suspensions, brownies, cakes, and tea) were the most common route (44 %). Indications for use included chronic pain (n=76), anxiety (n=9), counteracting side effects of chemotherapy (n=4), and palliative reasons (n=2). Fifty-eight of the 76 users endorsed improvement in chronic pain (80%), 5 users reported improvement in anxiety, and 2 reported improvement in side effects of chemotherapy. Conclusion & Significance: The majority of our cannabis users were Caucasian females, and there was a high likelihood of coinciding use of alcohol/tobacco in patients using cannabis. Most of our patients used the oral formulation for chronic pain. Importantly, a considerable number of patients reported improvements in chronic pain, anxiety, and side effects of chemotherapy.

Keywords: cannabis use, adverse effects, medical practice, indications

Procedia PDF Downloads 91
13355 Preparations of Fruit Nectars from Fresh Fruit Juices-Analyses before and after Storage

Authors: Youcef Amir

Abstract:

The consumption of beverages continues to grow worldwide due to increasing demography, but pure fruit juices and high-quality nectars can induce protective effects on human health because of their natural bioactive components. In contrast, sodas and gaseous drinks containing synthetic food additives are considered as responsible for consumers of several pathologies such as obesity, diabetes, and non-alcoholic fatty liver disease. The nutritional and therapeutic virtues of fruit juices are generally a remarkable antioxidant power, anti-cancer activity linked to their richness of indigestible and indigestible sugars, vitamins, mineral salts, carotenoids and phenolic compounds. The main reasons, which led us to produce these fruit derivatives, are the non-availability of the fresh fruits mentioned above all along the year and also the existence of variations in the chemical composition of these different fruits as well as for the major or minor components. We tested, therefore, the physicochemical characteristics of each fruit juice and pulp apart and afterward those of the cocktails formulated. The fresh juices used during our experiments were obtained from the following fruits from north-central Algeria: prickly pear, pomegranate, melon, red oranges. The formulations of these fruit juices were tested after several trials comprising sensorial analysis, physicochemical factors (pH, titratable acidity, Brix degree, formal index, water content, total ash, total and reducing sugars, vitamin C, carotenoids, phenolic compounds) and microbial analysis after a storage period. To the pure juices proportions, citric acid E330, sucrose, and water were added followed by pasteurisation. These products were analysed from the physicochemical, microbial and sensorial viewpoints after a storage period of one month according to national legislation to evaluate their stability. The results of the physicochemical parameters of the prepared beverages had shown good physicochemical results, acceptable sensorial characteristics and microbial stability and safety before and after a storage period. We measured appreciable amounts of minor compounds with health properties.

Keywords: fruit juices, microbial analyses, nectars, physico chemical characteristics, sensorial analysis, storage period

Procedia PDF Downloads 223
13354 Effectiveness of a Communication Training on Workplace Bullying Using Mobile Phone Application for Nurses

Authors: Jiyeon Kang, Yeon Jin Jeong, Hoon Heo

Abstract:

Purpose: Bullying in nursing workplace has been a serious problem that increases the turnover of nurses. Few studies have examined the effects of communication training on workplace bullying for nurses, and all used a single-group design and a small sample size. Thus, more rigorous research has been needed to evaluate the effects properly. This research was aimed to identify the effects of the mobile type communication training of responses on bullying behaviors among nurses. Methods: A randomized controlled trial was performed. Subjects were 62 critical care nurses working in university hospitals in Busan, South Korea. We developed a mobile phone application to train nurses to deal with bullying situation. This application includes 6 common bullying situations and appropriate empathetic communication (non-violent communication) samples in the form of webtoons. The experimental group used this application for 4 weeks, and we measured interpersonal relationship, workplace bullying, symptom experience, and intention to leave before, post, and 8 weeks after the intervention from both experimental and control groups. The effect of the intervention was analyzed using repeated measures ANOVA. Results: The mobile type communication training developed in this study was effective for decreasing nurses’ intention to leave workplace (F = 5.11, p = .027). However, it had no effect on interpersonal relationship (F = 2.54, p = .116), workplace bullying (F = 2.99, p = .089) or symptom experience (F = 2.81, p = .099). The beneficial effects on intention to leave lasted at least up to 4 weeks after the training. Conclusion: The mobile type communication training can be utilized as an effective personal coping strategy for workplace bullying among nurses. Further studies on the long-term effects of the communication training are necessary.

Keywords: bullying, communication, mobile applications, nurses, training, workplace

Procedia PDF Downloads 327
13353 Semantic Processing in Chinese: Category Effects, Task Effects and Age Effects

Authors: Yi-Hsiu Lai

Abstract:

The present study aimed to elucidate the nature of semantic processing in Chinese. Language and cognition related to the issue of aging are examined from the perspective of picture naming and category fluency tasks. Twenty Chinese-speaking adults (ranging from 25 to 45 years old) and twenty Chinese-speaking seniors (ranging from 65 to 75 years old) in Taiwan participated in this study. Each of them individually completed two tasks: a picture naming task and a category fluency task. Instruments for the naming task were sixty black-and-white pictures: thirty-five object and twenty-five action pictures. Category fluency task also consisted of two semantic categories – objects (or nouns) and actions (or verbs). Participants were asked to report as many items within a category as possible in one minute. Scores of action fluency and of object fluency were a summation of correct responses in these two categories. Category effects (actions vs. objects) and age effects were examined in these tasks. Objects were further divided into two major types: living objects and non-living objects. Actions were also categorized into two major types: action verbs and process verbs. Reaction time to each picture/question was additionally calculated and analyzed. Results of the category fluency task indicated that the content of information in Chinese seniors was comparatively deteriorated, thus producing smaller number of semantic-lexical items. Significant group difference was also found in the results of reaction time. Category Effect was significant for both Chinese adults and seniors in the semantic fluency task. Findings in the present study helped characterize the nature of semantic processing in Chinese-speaking adults and seniors and contributed to the issue of language and aging.

Keywords: semantic processing, aging, Chinese, category effects

Procedia PDF Downloads 354
13352 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications

Authors: S. V. N. Pammi, Soon-Gil Yoon

Abstract:

In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.

Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics

Procedia PDF Downloads 302
13351 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 71
13350 Effects of a Bioactive Subfraction of Strobilanthes Crispus on the Tumour Growth, Body Weight and Haematological Parameters in 4T1-Induced Breast Cancer Model

Authors: Yusha'u Shu'aibu Baraya, Kah Keng Wong, Nik Soriani Yaacob

Abstract:

Strobilanthes crispus (S. crispus), is a Malaysian herb locally known as ‘Pecah kaca’ or ‘Jin batu’ which have demonstrated potent anticancer effects in both in vitro and in vivo models. In particular, S. crispus subfraction (SCS) significantly reduced tumor growth in N-methyl-N-Nitrosourea-induced breast cancer rat model. However, there is paucity of information on the effects of SCS in breast cancer metastasis. Thus, in this study, the antimetastatic effects of SCS (100 mg/kg) was investigated following 30 days of treatment in 4T1-induced mammary tumor (n = 5) model. The response to treatment was assessed based on the outcome of the tumour growth, body weight and hematological parameters. The results demonstrated that tumor bearing mice treated with SCS (TM-S) had significant (p<0.05) reduction in the mean tumor number and tumor volume as well as tumor weight compared to the tumor bearing mice (TM), i.e. tumor untreated group. Also, there was no secondary tumor formation or tumor-associated lesions in the major organs of TM-S compared to the TM group. Similarly, comparable body weights were observed among the TM-S, normal (uninduced) mice treated with SCS and normal (untreated/control) mice (NM) groups compared to the TM group (p<0.05). Furthermore, SCS administration does not cause significant changes in the hematological parameters as compared to the NM group, which indicates no sign of anemia and toxicity related effects. In conclusion, SCS significantly inhibited the overall tumor growth and metastasis in 4T1-induced breast cancer mouse model suggesting its promising potentials as therapeutic agent for breast cancer treatment.

Keywords: 4T1-cells, breast cancer, metastasis, Strobilanthes crispus

Procedia PDF Downloads 146
13349 The Optimization of Immobilization Conditions for Biohydrogen Production from Palm Industry Wastewater

Authors: A. W. Zularisam, Sveta Thakur, Lakhveer Singh, Mimi Sakinah Abdul Munaim

Abstract:

Clostridium sp. LS2 was immobilised by entrapment in polyethylene glycol (PEG) gel beads to improve the biohydrogen production rate from palm oil mill effluent (POME). We sought to explore and optimise the hydrogen production capability of the immobilised cells by studying the conditions for cell immobilisation, including PEG concentration, cell loading and curing times, as well as the effects of temperature and K2HPO4 (500–2000 mg/L), NiCl2 (0.1–5.0 mg/L), FeCl2 (100–400 mg/L) MgSO4 (50–200 mg/L) concentrations on hydrogen production rate. The results showed that by optimising the PEG concentration (10% w/v), initial biomass (2.2 g dry weight), curing time (80 min) and temperature (37 °C), as well as the concentrations of K2HPO4 (2000 mg/L), NiCl2 (1 mg/L), FeCl2 (300 mg/L) and MgSO4 (100 mg/L), a maximum hydrogen production rate of 7.3 L/L-POME/day and a yield of 0.31 L H2/g chemical oxygen demand were obtained during continuous operation. We believe that this process may be potentially expanded for sustained and large-scale hydrogen production.

Keywords: hydrogen, polyethylene glycol, immobilised cell, fermentation, palm oil mill effluent

Procedia PDF Downloads 267
13348 The Effect on Lead Times When Normalizing a Supply Chain Process

Authors: Bassam Istanbouli

Abstract:

Organizations are living in a very competitive and dynamic environment which is constantly changing. In order to achieve a high level of service, the products and processes of these organizations need to be flexible and evolvable. If the supply chains are not modular and well designed, changes can bring combinatorial effects to most areas of a company from its management, financial, documentation, logistics and its information structure. Applying the normalized system’s concept to segments of the supply chain may help in reducing those ripple effects, but it may also increase lead times. Lead times are important and can become a decisive element in gaining customers. Industries are always under the pressure in providing good quality products, at competitive prices, when and how the customer wants them. Most of the time, the customers want their orders now, if not yesterday. The above concept will be proven by examining lead times in a manufacturing example before and after applying normalized systems concept to that segment of the chain. We will then show that although we can minimize the combinatorial effects when changes occur, the lead times will be increased.

Keywords: supply chain, lead time, normalization, modular

Procedia PDF Downloads 120
13347 The Effects of COVID-19 on the Energy Trends and Production Capacity of Turkish Cement Industry

Authors: Adem Atmaca

Abstract:

More than 500 million COVID-19 cases were noted in February 2022 in Turkey. The country is one of the most impacted countries all around the world with twenty million cases. The cement industry in Turkey ranks among the most energy-intensive sectors with huge production capacities among the biggest exporter countries. The purpose of this paper is to clarify the effects of the pandemic on the cement industry in Turkey by showing the changes in manufacturing capacities and export rates of all facilities in the country. The investigation has revealed that the epidemic has slight effects on the factory production capacities and export rates. Even though the capacity usage rates of the factories decreased dramatically in 2019, it seems that Turkish cement companies turned the pandemic to their advantage by increasing their production capacities, capacity usage rates and export rates gradually by reaching new markets during the pandemic.

Keywords: energy, emissions, cement industry, COVID-19

Procedia PDF Downloads 118
13346 The Effect of Different Metal Nanoparticles on Growth and Survival of Pseudomonas syringae Bacteria

Authors: Omar Alhamd, Peter A. Thomas, Trevor J. Greenhough, Annette K. Shrive

Abstract:

The Pseudomonas syringae species complex includes many plant pathogenic strains with highly specific interactions with varied host species and cultivars. The rapid spread of these bacteria over the last ten years has become a cause for concern. Nanoparticles have previously shown promise in microbiological action. We have therefore investigated in vitro and in vivo the effects of different types and sizes of nanoparticles in order to provide quantitative information about their effect on the bacteria. The effects of several different nanoparticles against several bacteria strains were investigated. The effect of NP on bacterial growth was studied by measuring the optical density, biochemical and nutritional tests, and transmission electron microscopy (TEM) to determine the shape and size of NP. Our results indicate that their effects varied, with either a negative or a positive impact on both bacterial and plant growth. Additionally, the methods of exposure to nanoparticles have a crucial role in accumulation, translocation, growth response and bacterial growth. The results of our studies on the behaviour and effects of nanoparticles in model plants showed. Cerium oxide (CeO₂) and silver (Ag) NP showed significant antibacterial activity against several pathogenic bacteria. It was found that titanium nanoparticles (TiO₂) can have either a negative or a positive impact, according to concentration and size. It is also thought that environmental conditions can have a major influence on bacterial growth. Studies were therefore also carried out under some environmental stress conditions to test bacterial survival and to assess bacterial virulence. All results will be presented including information about the effects of different nanoparticles on Pseudomonas syringae bacteria.

Keywords: plant microbiome, nanoparticles, 16S rRNA gene sequencing, bacterial survival

Procedia PDF Downloads 199
13345 Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd

Authors: Ji Sun Kim, Jae Ho Baek, Kyeong Ho Kim, Ji Hae Ha, Seong Soo Hong, Jung-Wook Park, Man Sig Lee

Abstract:

Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/.

Keywords: carbon, dispersion, Pd/C, specific are, support

Procedia PDF Downloads 348
13344 Salinity Response of Some Cowpea Genotypes in Germination of Periods

Authors: Meryem Aydin, Serdar Karadas, Ercan Ceyhan

Abstract:

The research was conducted to determine effects of salt concentrations on emergence of cowpea genotypes. Trials were performed during the year of 2014 on the laboratory of Agricultural Faculty, Selcuk University. Emergency trial was set up according to “Randomized Plots Design” by two factors and four replications with three replications. Samandag, Akkiz-86, Karnikara and Sarigobek cowpea genotypes have been used as trial material in this study. Effects of the five doses of salt concentrations (control, 30 mM, 60 mM, 90 mM and 120 mM) on the ratio of emergency, speed of emergency, average time for emergency, index of sensibility were evaluated. Responses of the cowpea genotypes for salt concentrations were found different. Comparing to the control, all of the investigated characteristics on the cowpea genotypes showed significant reduction by depending on the increasing salt application. According to the effects of salt application, the cowpea genotypes Samandag and Karnikara were the most tolerant in respect to index of sensibility while the Sarigobek genotypes was the most sensitive.

Keywords: cowpea, Vigna sinensis, emergence, salt tolerant

Procedia PDF Downloads 254
13343 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect

Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn

Abstract:

In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.

Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand

Procedia PDF Downloads 109
13342 The Triple Threat: Microplastic, Nanoplastic, and Macroplastic Pollution and Their Cumulative Impacts on Marine Ecosystem

Authors: Tabugbo B. Ifeyinwa, Josephat O. Ogbuagu, Okeke A. Princewill, Victor C. Eze

Abstract:

The increasing amount of plastic pollution in maritime settings poses a substantial risk to the functioning of ecosystems and the preservation of biodiversity. This comprehensive analysis combines the most recent data on the environmental effects of pollution from macroplastics, microplastics, and nanoplastics within marine ecosystems. Our goal is to provide a comprehensive understanding of the cumulative impacts that plastic waste accumulates on marine life by outlining the origins, processes, and ecological repercussions connected with each size category of plastic debris. Microplastics and nanoplastics have more sneaky effects that are controlled by chemicals. These effects can get through biological barriers and affect the health of cells and the whole body. Compared to macroplastics, which primarily contribute to physical harm through entanglement and ingestion by marine fauna, microplastics, and nanoplastics are associated with non-physical effects. The review underlines a vital need for research that crosses disciplinary boundaries to untangle the intricate interactions that the various sizes of plastic pollution have with marine animals, evaluate the long-term ecological repercussions, and identify effective measures for mitigating the effects of plastic pollution. Additionally, we urge governmental interventions and worldwide cooperation to solve this pervasive environmental concern. Specifically, we identify significant knowledge gaps in the detection and effect assessment of nanoplastics. To protect marine biodiversity and preserve ecosystem services, this review highlights how urgent it is to address the broad spectrum of plastic pollution.

Keywords: macroplastic pollution, marine ecosystem, microplastic pollution, nanoplastic pollution

Procedia PDF Downloads 60
13341 Effects of Grape Seed Oil on Postharvest Life and Quality of Some Grape Cultivars

Authors: Zeki Kara, Kevser Yazar

Abstract:

Table grapes (Vitis vinifera L.) are an important crop worldwide. Postharvest problems like berry shattering, decay and stem dehydration are some of the important factors that limit the marketing of table grapes. Edible coatings are an alternative for increasing shelf-life of fruits, protecting fruits from humidity and oxygen effects, thus retarding their deterioration. This study aimed to compare different grape seed oil applications (GSO, 0.5 g L-1, 1 g L-1, 2 g L-1) and SO2 generating pads effects (SO2-1, SO2-2). Treated grapes with GSO and generating pads were packaged into polyethylene trays and stored at 0 ± 1°C and 85-95% moisture. Effects of the applications were investigated by some quality and sensory evaluations with intervals of 15 days. SO2 applications were determined the most effective treatments for minimizing weight loss and changes in TA, pH, color and appearance value. Grape seed oil applications were determined as a good alternative for grape preservation, improving weight losses and °Brix, TA, the color values and sensory analysis. Commercially, ‘Alphonse Lavallée’ clusters were stored for 75 days and ‘Antep Karası’ clusters for 60 days. The data obtained from GSO indicated that it had a similar quality result to SO2 for up to 40 days storage.

Keywords: postharvest, quality, sensory analyses, Vitis vinifera L.

Procedia PDF Downloads 162
13340 Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra

Authors: Eric Mensah

Abstract:

The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas.

Keywords: land surface temperature, climate, remote sensing, urbanisation

Procedia PDF Downloads 316
13339 Effective Width of Reinforced Concrete U-Shaped Walls Due to Shear Lag Effects

Authors: Ryan D. Hoult

Abstract:

The inherent assumption in the elementary theory of bending that plane sections remain plane is commonly used in the design of reinforced concrete members. However, in reality, a shear flow would develop in non-rectangular sections, where the longitudinal strains in between the web and flanges of the element would lag behind those at the boundary ends. This phenomenon, known as shear lag, can significantly reduce the expected moment capacity of non-rectangular reinforced concrete walls. This study focuses on shear lag effects in reinforced concrete U-shaped walls, which are commonly used as lateral load resisting elements in reinforced concrete buildings. An extensive number of finite element modelling analyses are conducted to estimate the vertical strain distributions across the web and flanges of a U-shaped wall with different axial load ratios and longitudinal reinforcement detailing. The results show that shear lag effects are prominent and sometimes significant in U-shaped walls, particularly for the wall sections perpendicular to the direction of loading.

Keywords: shear lag, walls, U-shaped, moment-curvature

Procedia PDF Downloads 197
13338 Simulation of 1D Dielectric Barrier Discharge in Argon Mixtures

Authors: Lucas Wilman Crispim, Patrícia Hallack, Maikel Ballester

Abstract:

This work aims at modeling electric discharges in gas mixtures. The mathematical model mimics the ignition process in a commercial spark-plug when a high voltage is applied to the plug terminals. A longitudinal unidimensional Cartesian domain is chosen for the simulation region. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions are contemplated at microscopic level. The macroscopic model is represented by a set of uncoupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modeling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The simulation gas is a mixture of atomic Argon neutral, excited and ionized. Spatial and temporal evolution of such species and temperature are presented and discussed.

Keywords: CFD, electronic discharge, ignition, spark plug

Procedia PDF Downloads 156
13337 Mentha crispa Essential Oil and Rotundifolone Analogues: Cytotoxic Effect on Glioblastoma

Authors: Damião Sousa, Hasan Turkez, Ozlem Tozlu, Tamires Lima

Abstract:

Glioblastoma (GBM) is an aggressive cancer from the brain and with high prevalence and significant morbimortality. Therefore, it is necessary to investigate new therapeutic options against this pathology. Thus, the purpose of this study was to evaluate the antitumor activity from Mentha crispa essential oil (MCEO), its major constituent rotundifolone (ROT) and a series of six analogues on human U87MG glioblastoma cell line. The antitumor effects of the compounds on human U87MG-GBM cell line were assessed using in vitro cell viability assays. In addition, biosafety tests were performed on cultured human blood cells. The data show that MCEO, 1,2-perillaldehyde epoxide (EPER1) and perillaldehyde (PALD) were the most cytotoxic compounds against the U87MG cells, with IC50 values of 16.263, 15.087 and 14.888 μg/mL, respectively. The treatment with MCEO, EPER1 and PALD did not lead to damage in blood cells. These chemical analogues may be useful as prototypes for development of novel antitumor drugs due to their promising activities and toxicological safety.

Keywords: antitumor activity, cancer, natural products, terpenes

Procedia PDF Downloads 141
13336 Development of Polymeric Fluorescence Sensor for the Determination of Bisphenol-A

Authors: Neşe Taşci, Soner Çubuk, Ece Kök Yetimoğlu, M. Vezir Kahraman

Abstract:

Bisphenol-A (BPA), 2,2-bis(4-hydroxyphenly)propane, is one of the highest usage volume chemicals in the world. Studies showed that BPA maybe has negative effects on the central nervous system, immune and endocrine systems. Several of analytical methods for the analysis of BPA have been reported including electrochemical processes, chemical oxidation, ozonization, spectrophotometric, chromatographic techniques. Compared with other conventional analytical techniques, optic sensors are reliable, providing quick results, low cost, easy to use, stands out as a much more advantageous method because of the high precision and sensitivity. In this work, a new photocured polymeric fluorescence sensor was prepared and characterized for Bisphenol-A (BPA) analysis. Characterization of the membrane was carried out by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM) techniques. The response characteristics of the sensor including dynamic range, pH effect and response time were systematically investigated. Acknowledgment: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 115Y469.

Keywords: bisphenol-a, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 227