Search results for: spatial efficiency
536 Prediction of Sound Transmission Through Framed Façade Systems
Authors: Fangliang Chen, Yihe Huang, Tejav Deganyar, Anselm Boehm, Hamid Batoul
Abstract:
With growing population density and further urbanization, the average noise level in cities is increasing. Excessive noise is not only annoying but also leads to a negative impact on human health. To deal with the increasing city noise, environmental regulations bring up higher standards on acoustic comfort in buildings by mitigating the noise transmission from building envelope exterior to interior. Framed window, door and façade systems are the leading choice for modern fenestration construction, which provides demonstrated quality of weathering reliability, environmental efficiency, and installation ease. The overall sound insulation of such systems depends both on glasses and frames, where glass usually covers the majority of the exposed surfaces, thus it is the main source of sound energy transmission. While frames in modern façade systems become slimmer for aesthetic appearance, which contribute to a minimal percentage of exposed surfaces. Nevertheless, frames might provide substantial transmission paths for sound travels through because of much less mass crossing the path, thus becoming more critical in limiting the acoustic performance of the whole system. There are various methodologies and numerical programs that can accurately predict the acoustic performance of either glasses or frames. However, due to the vast variance of size and dimension between frame and glass in the same system, there is no satisfactory theoretical approach or affordable simulation tool in current practice to access the over acoustic performance of a whole façade system. For this reason, laboratory test turns out to be the only reliable source. However, laboratory test is very time consuming and high costly, moreover different lab might provide slightly different test results because of varieties of test chambers, sample mounting, and test operations, which significantly constrains the early phase design of framed façade systems. To address this dilemma, this study provides an effective analytical methodology to predict the acoustic performance of framed façade systems, based on vast amount of acoustic test results on glass, frame and the whole façade system consist of both. Further test results validate the current model is able to accurately predict the overall sound transmission loss of a framed system as long as the acoustic behavior of the frame is available. Though the presented methodology is mainly developed from façade systems with aluminum frames, it can be easily extended to systems with frames of other materials such as steel, PVC or wood.Keywords: city noise, building facades, sound mitigation, sound transmission loss, framed façade system
Procedia PDF Downloads 65535 Olive Stone Valorization to Its Application on the Ceramic Industry
Authors: M. Martín-Morales, D. Eliche-Quesada, L. Pérez-Villarejo, M. Zamorano
Abstract:
Olive oil is a product of particular importance within the Mediterranean and Spanish agricultural food system, and more specifically in Andalusia, owing to be the world's main production area. Olive oil processing generates olive stones which are dried and cleaned to remove pulp and olive stones fines to produce biofuel characterized to have high energy efficiency in combustion processes. Olive stones fine fraction is not too much appreciated as biofuel, so it is important the study of alternative solutions to be valorized. Some researchers have studied recycling different waste to produce ceramic bricks. The main objective of this study is to investigate the effects of olive stones addition on the properties of fired clay bricks for building construction. Olive stones were substituted by volume (7.5%, 15%, and 25%) to brick raw material in three different sizes (lower than 1 mm, lower than 2 mm and between 1 and 2 mm). In order to obtain comparable results, a series without olive stones was also prepared. The prepared mixtures were compacted in laboratory type extrusion under a pressure of 2.5MPa for rectangular shaped (30 mm x 60 mm x 10 mm). Dried and fired industrial conditions were applied to obtain laboratory brick samples. Mass loss after sintering, bulk density, porosity, water absorption and compressive strength of fired samples were investigated and compared with a sample manufactured without biomass. Results obtained have shown that olive stone addition decreased mechanical properties due to the increase in water absorption, although values tested satisfied the requirements in EN 772-1 about methods of test for masonry units (Part 1: Determination of compressive strength). Finally, important advantages related to the properties of bricks as well as their environmental effects could be obtained with the use of biomass studied to produce ceramic bricks. The increasing of the percentage of olive stones incorporated decreased bulk density and then increased the porosity of bricks. On the one hand, this lower density supposes a weight reduction of bricks to be transported, handled as well as the lightening of building; on the other hand, biomass in clay contributes to auto thermal combustion which involves lower fuel consumption during firing step. Consequently, the production of porous clay bricks using olive stones could reduce atmospheric emissions and improve their life cycle assessment, producing eco-friendly clay bricks.Keywords: clay bricks, olive stones, sustainability, valorization
Procedia PDF Downloads 156534 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 70533 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 56532 Cognitive Performance Post Stroke Is Affected by the Timing of Evaluation
Authors: Ayelet Hersch, Corrine Serfaty, Sigal Portnoy
Abstract:
Stroke survivors commonly report persistent fatigue and sleep disruptions during rehabilitation and post-recovery. While limited research has explored the impact of stroke on a patient's chronotype, there is a gap in understanding the differences in cognitive performance based on treatment timing. Study objectives: (a) To characterize the sleep chronotype in sub-acute post-stroke individuals. (b) Explore cognitive task performance differences during preferred and non-preferred hours. (c) Examine the relationships between sleep quality and cognitive performance. For this intra-subject study, twenty participants (mean age 60.2±8.6) post-first stroke (6-12 weeks post stroke) underwent assessments at preferred and non-preferred chronotypic times. The assessment included demographic surveys, the Munich Chronotype Questionnaire, Montreal Cognitive Assessment (MoCA), Rivermead Behavioral Memory Test (RBMT), a fatigue questionnaire, and 4-5 days of actigraphy (wrist-worn wGT3X-BT, ActiGraph) to record sleep characteristics. Four sleep quality indices were extracted from actigraphy wristwatch recordings: The average of total sleep time per day (minutes), the average number of awakenings during the sleep period per day, the efficiency of sleep (total hours of sleep per day divided by hours spent in bed per day, averaged across the days and presented as percentage), and the Wake after Sleep Onset (WASO) index, indicating the average number of minutes elapsed from the onset of sleep to the first awakening. Stroke survivors exhibited an earlier sleep chronotype post-injury compared to pre-injury. Enhanced attention, as indicated by higher RBMT scores, occurred during preferred hours. Specifically, 30% of the study participants demonstrated an elevation in their final scores during their preferred hours, transitioning from the category of "mild memory impairment" to "normal memory." However, no significant differences emerged in executive functions, attention tasks, and MoCA scores between preferred and non-preferred hours. The Wake After Sleep Onset (WASO) index correlated with MoCA/RBMT scores during preferred hours (r=0.53/0.51, p=0.021/0.027, respectively). The number of awakenings correlated with MoCA letter task performance during non-preferred hours (r=0.45, p=0.044). Enhanced attention during preferred hours suggests a potential relationship between chronotype and cognitive performance, highlighting the importance of personalized rehabilitation strategies in stroke care. Further exploration of these relationships could contribute to optimizing the timing of cognitive interventions for stroke survivors.Keywords: sleep chronotype, chronobiology, circadian rhythm, rehabilitation timing
Procedia PDF Downloads 69531 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes
Authors: Rikke Lybæk
Abstract:
This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management
Procedia PDF Downloads 116530 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation
Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu
Abstract:
Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing
Procedia PDF Downloads 165529 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration
Authors: Sujatha Edla
Abstract:
Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic
Procedia PDF Downloads 66528 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics
Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee
Abstract:
Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru
Procedia PDF Downloads 93527 Sustainable Development and Modern Challenges of Higher Educational Institutions in the Regions of Georgia
Authors: Natia Tsiklashvili, Tamari Poladashvili
Abstract:
Education is one of the fundamental factors of economic prosperity in all respects. It is impossible to talk about the sustainable economic development of the country without substantial investments in human capital and investment into higher educational institutions. Education improves the standard of living of the population and expands the opportunities to receive more benefits, which will be equally important for both the individual and the society as a whole. There are growing initiatives among educated people such as entrepreneurship, technological development, etc. At the same time, the distribution of income between population groups is improving. The given paper discusses the scientific literature in the field of sustainable development through higher educational institutions. Scholars of economic theory emphasize a few major aspects that show the role of higher education in economic growth: a) Alongside education, human capital gradually increases which leads to increased competitiveness of the labor force, not only in the national but also in the international labor market (Neoclassical growth theory), b) The high level of education can increase the efficiency of the economy, investment in human capital, innovation, and knowledge are significant contributors to economic growth. Hence, it focuses on positive externalities and spillover effects of a knowledge-based economy which leads to economic development (endogenous growth theory), c) Education can facilitate the diffusion and transfer of knowledge. Hence, it supports macroeconomic sustainability and microeconomic conditions of individuals. While discussing the economic importance of education, we consider education as the spiritual development of the human that advances general skills, acquires a profession, and improves living conditions. Scholars agree that human capital is not only money but liquid assets, stocks, and competitive knowledge. The last one is the main lever in the context of increasing human competitiveness and high productivity. To address the local issues, the present article researched ten educational institutions across Georgia, including state and private HEIs. Qualitative research was done by analyzing in-depth interweaves of representatives from each institution, and respondents were rectors/vice-rectors/heads of quality assurance service at the institute. The result shows that there is a number of challenges that institution face in order to maintain sustainable development and be the strong links to education and the labor market. Mostly it’s contacted with bureaucracy, insufficient finances they receive, and local challenges that differ across the regions.Keywords: higher education, higher educational institutions, sustainable development, regions, Georgia
Procedia PDF Downloads 88526 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition
Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed
Abstract:
Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil
Procedia PDF Downloads 340525 Hybrid Precoder Design Based on Iterative Hard Thresholding Algorithm for Millimeter Wave Multiple-Input-Multiple-Output Systems
Authors: Ameni Mejri, Moufida Hajjaj, Salem Hasnaoui, Ridha Bouallegue
Abstract:
The technology advances have most lately made the millimeter wave (mmWave) communication possible. Due to the huge amount of spectrum that is available in MmWave frequency bands, this promising candidate is considered as a key technology for the deployment of 5G cellular networks. In order to enhance system capacity and achieve spectral efficiency, very large antenna arrays are employed at mmWave systems by exploiting array gain. However, it has been shown that conventional beamforming strategies are not suitable for mmWave hardware implementation. Therefore, new features are required for mmWave cellular applications. Unlike traditional multiple-input-multiple-output (MIMO) systems for which only digital precoders are essential to accomplish precoding, MIMO technology seems to be different at mmWave because of digital precoding limitations. Moreover, precoding implements a greater number of radio frequency (RF) chains supporting more signal mixers and analog-to-digital converters. As RF chain cost and power consumption is increasing, we need to resort to another alternative. Although the hybrid precoding architecture has been regarded as the best solution based on a combination between a baseband precoder and an RF precoder, we still do not get the optimal design of hybrid precoders. According to the mapping strategies from RF chains to the different antenna elements, there are two main categories of hybrid precoding architecture. Given as a hybrid precoding sub-array architecture, the partially-connected structure reduces hardware complexity by using a less number of phase shifters, whereas it sacrifices some beamforming gain. In this paper, we treat the hybrid precoder design in mmWave MIMO systems as a problem of matrix factorization. Thus, we adopt the alternating minimization principle in order to solve the design problem. Further, we present our proposed algorithm for the partially-connected structure, which is based on the iterative hard thresholding method. Through simulation results, we show that our hybrid precoding algorithm provides significant performance gains over existing algorithms. We also show that the proposed approach reduces significantly the computational complexity. Furthermore, valuable design insights are provided when we use the proposed algorithm to make simulation comparisons between the hybrid precoding partially-connected structure and the fully-connected structure.Keywords: alternating minimization, hybrid precoding, iterative hard thresholding, low-complexity, millimeter wave communication, partially-connected structure
Procedia PDF Downloads 325524 Phage Therapy as a Potential Solution in the Fight against Antimicrobial Resistance
Authors: Sanjay Shukla
Abstract:
Excessive use of antibiotics is a main problem in the treatment of wounds and other chronic infections and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most effective approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of current study was to investigate the efficiency of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in double agar overlay method out of 150 sewage samples. In TEM recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9 and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate was very safe, did not show any appearance of abscess formation which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureus which indicates that they are good prophylactic agent. The S. aureus inoculated mice were completely recovered by bacteriophage administration with 100% recovery which was very good as compere to conventional therapy. In present study ten chronic cases of wound were treated with phage lysate and follow up of these cases was done regularly up to ten days (at 0, 5 and 10 d). Result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for treatment of septic chronic wounds.Keywords: phage therapy, phage lysate, antimicrobial resistance, S. aureus
Procedia PDF Downloads 122523 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations
Authors: Till Gramberg
Abstract:
In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering
Procedia PDF Downloads 87522 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System
Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li
Abstract:
The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.Keywords: afterburner, combustion, field synergy, solid oxide fuel cell
Procedia PDF Downloads 137521 Strategies for Improving and Sustaining Quality in Higher Education
Authors: Anshu Radha Aggarwal
Abstract:
Higher Education (HE) in the India has experienced a series of remarkable changes over the last fifteen years as successive governments have sought to make the sector more efficient and more accountable for investment of public funds. Rapid expansion in student numbers and pressures to widen Participation amongst non-traditional students are key challenges facing HE. Learning outcomes can act as a benchmark for assuring quality and efficiency in HE and they also enable universities to describe courses in an unambiguous way so as to demystify (and open up) education to a wider audience. This paper examines how learning outcomes are used in HE and evaluates the implications for curriculum design and student learning. There has been huge expansion in the field of higher education, both technical and non-technical, in India during the last two decades, and this trend is continuing. It is expected that another about 400 colleges and 300 universities will be created by the end of the 13th Plan Period. This has lead to many concerns about the quality of education and training of our students. Many studies have brought the issues ailing our curricula, delivery, monitoring and assessment. Govt. of India, (via MHRD, UGC, NBA,…) has initiated several steps to bring improvement in quality of higher education and training, such as National Skills Qualification Framework, making accreditation of institutions mandatory in order to receive Govt. grants, and so on. Moreover, Outcome-based Education and Training (OBET) has also been mandated and encouraged in the teaching/learning institutions. MHRD, UGC and NBAhas made accreditation of schools, colleges and universities mandatory w.e.f Jan 2014. Outcome-based Education and Training (OBET) approach is learner-centric, whereas the traditional approach has been teacher-centric. OBET is a process which involves the re-orientation/restructuring the curriculum, implementation, assessment/measurements of educational goals, and achievement of higher order learning, rather than merely clearing/passing the university examinations. OBET aims to bring about these desired changes within the students, by increasing knowledge, developing skills, influencing attitudes and creating social-connect mind-set. This approach has been adopted by several leading universities and institutions around the world in advanced countries. Objectives of this paper is to highlight the issues concerning quality in higher education and quality frameworks, to deliberate on the various education and training models, to explain the outcome-based education and assessment processes, to provide an understanding of the NAAC and outcome-based accreditation criteria and processes and to share best-practice outcomes-based accreditation system and process.Keywords: learning outcomes, curriculum development, pedagogy, outcome based education
Procedia PDF Downloads 528520 An Energy and Economic Comparison of Solar Thermal Collectors for Domestic Hot Water Applications
Authors: F. Ghani, T. S. O’Donovan
Abstract:
Today, the global solar thermal market is dominated by two collector types; the flat plate and evacuated tube collector. With regards to the number of installations worldwide, the evacuated tube collector is the dominant variant primarily due to the Chinese market but the flat plate collector dominates both the Australian and European markets. The market share of the evacuated tube collector is, however, growing in Australia due to a common belief that this collector type is ‘more efficient’ and, therefore, the better choice for hot water applications. In this study, we investigate this issue further to assess the validity of this statement. This was achieved by methodically comparing the performance and economics of several solar thermal systems comprising of; a low-performance flat plate collector, a high-performance flat collector, and an evacuated tube collector coupled with a storage tank and pump. All systems were simulated using the commercial software package Polysun for four climate zones in Australia to take into account different weather profiles in the study and subjected to a thermal load equivalent to a household comprising of four people. Our study revealed that the energy savings and payback periods varied significantly for systems operating under specific environmental conditions. Solar fractions ranged between 58 and 100 per cent, while payback periods range between 3.8 and 10.1 years. Although the evacuated tube collector was found to operate with a marginally higher thermal efficiency over the selective surface flat plate collector due to reduced ambient heat loss, the high-performance flat plate collector outperformed the evacuated tube collector on thermal yield. This result was obtained as the flat plate collector possesses a significantly higher absorber to gross collector area ratio over the evacuated tube collector. Furthermore, it was found for Australian regions operating with a high average solar radiation intensity and ambient temperature, the lower performance collector is the preferred choice due to favorable economics and reduced stagnation temperature. Our study has provided additional insight into the thermal performance and economics of the two prevalent solar thermal collectors currently available. A computational investigation has been carried out specifically for the Australian climate due to its geographic size and significant variation in weather. For domestic hot water applications were fluid temperatures between 50 and 60 degrees Celsius are sought, the flat plate collector is both technically and economically favorable over the evacuated tube collector. This research will be useful to system design engineers, solar thermal manufacturers, and those involved in policy to encourage the implementation of solar thermal systems into the hot water market.Keywords: solar thermal, energy analysis, flat plate, evacuated tube, collector performance
Procedia PDF Downloads 215519 Characterization of Herberine Hydrochloride Nanoparticles
Authors: Bao-Fang Wen, Meng-Na Dai, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Xun-Bao Yin, Yu-Han Zhao, Hong-Wei Sun, Wei-Fen Zhang
Abstract:
A drug-loaded nanoparticles containing berberine hydrochloride (BH/FA-CTS-NPs) was prepared. The physicochemical characterizations of BH/FA-CTS-NPs and the inhibitory effect on the HeLa cells were investigated. Folic acid-conjugated chitosan (FA-CTS) was prepared by amino reaction of folic acid active ester and chitosan molecules; BH/FA-CTS-NPs were prepared using ionic cross-linking technique with BH as a model drug. The morphology and particle size were determined by Transmission Electron Microscope (TEM). The average diameters and polydispersity index (PDI) were evaluated by Dynamic Light Scattering (DLS). The interaction between various components and the nanocomplex were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The entrapment efficiency (EE), drug-loading (DL) and in vitro release were studied by UV spectrophotometer. The effect of cell anti-migratory and anti-invasive actions of BH/FA-CTS-NPs were investigated using MTT assays, wound healing assays, Annexin-V-FITC single staining assays, and flow cytometry, respectively. HeLa nude mice subcutaneously transplanted tumor model was established and treated with different drugs to observe the effect of BH/FA-CTS-NPs in vivo on HeLa bearing tumor. The BH/FA-CTS-NPs prepared in this experiment have a regular shape, uniform particle size, and no aggregation phenomenon. The results of DLS showed that mean particle size, PDI and Zeta potential of BH/FA-CTS NPs were (249.2 ± 3.6) nm, 0.129 ± 0.09, 33.6 ± 2.09, respectively, and the average diameter and PDI were stable in 90 days. The results of FT-IR demonstrated that the characteristic peaks of FA-CTS and BH/FA-CTS-NPs confirmed that FA-CTS cross-linked successfully and BH was encapsulated in NPs. The EE and DL amount were (79.3 ± 3.12) % and (7.24 ± 1.41) %, respectively. The results of in vitro release study indicated that the cumulative release of BH/FA-CTS NPs was (89.48±2.81) % in phosphate-buffered saline (PBS, pH 7.4) within 48h; these results by MTT assays and wund healing assays indicated that BH/FA-CTS NPs not only inhibited the proliferation of HeLa cells in a concentration and time-dependent manner but can induce apoptosis as well. The subcutaneous xenograft tumor formation rate of human cervical cancer cell line HeLa in nude mice was 98% after inoculation for 2 weeks. Compared with BH group and BH/CTS-NPs group, the xenograft tumor growth of BH/FA-CTS-NPs group was obviously slower; the result indicated that BH/FA-CTS-NPs could significantly inhibit the growth of HeLa xenograft tumor. BH/FA-CTS NPs with the sustained release effect could be prepared successfully by the ionic crosslinking method. Considering these properties, block proliferation and impairing the migration of the HeLa cell line, BH/FA-CTS NPs could be an important compound for consideration in the treatment of cervical cancer.Keywords: folic-acid, chitosan, berberine hydrochloride, nanoparticles, cervical cancer
Procedia PDF Downloads 124518 Real-Time Working Environment Risk Analysis with Smart Textiles
Authors: Jose A. Diaz-Olivares, Nafise Mahdavian, Farhad Abtahi, Kaj Lindecrantz, Abdelakram Hafid, Fernando Seoane
Abstract:
Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment.Keywords: ergonomics, mobile technologies, risk assessment, smart textiles
Procedia PDF Downloads 120517 Application of Geosynthetics for the Recovery of Located Road on Geological Failure
Authors: Rideci Farias, Haroldo Paranhos
Abstract:
The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area.Keywords: geosynthetics, geocomposite, geogrid, road, recovery, geological failure
Procedia PDF Downloads 173516 Functional Surfaces and Edges for Cutting and Forming Tools Created Using Directed Energy Deposition
Authors: Michal Brazda, Miroslav Urbanek, Martina Koukolikova
Abstract:
This work focuses on the development of functional surfaces and edges for cutting and forming tools created through the Directed Energy Deposition (DED) technology. In the context of growing challenges in modern engineering, additive technologies, especially DED, present an innovative approach to manufacturing tools for forming and cutting. One of the key features of DED is its ability to precisely and efficiently deposit Fully dense metals from powder feedstock, enabling the creation of complex geometries and optimized designs. Gradually, it becomes an increasingly attractive choice for tool production due to its ability to achieve high precision while simultaneously minimizing waste and material costs. Tools created using DED technology gain significant durability through the utilization of high-performance materials such as nickel alloys and tool steels. For high-temperature applications, Nimonic 80A alloy is applied, while for cold applications, M2 tool steel is used. The addition of ceramic materials, such as tungsten carbide, can significantly increase the tool's resistance. The introduction of functionally graded materials is a significant contribution, opening up new possibilities for gradual changes in the mechanical properties of the tool and optimizing its performance in different sections according to specific requirements. In this work, you will find an overview of individual applications and their utilization in the industry. Microstructural analyses have been conducted, providing detailed insights into the structure of individual components alongside examinations of the mechanical properties and tool life. These analyses offer a deeper understanding of the efficiency and reliability of the created tools, which is a key element for successful development in the field of cutting and forming tools. The production of functional surfaces and edges using DED technology can result in financial savings, as the entire tool doesn't have to be manufactured from expensive special alloys. The tool can be made from common steel, onto which a functional surface from special materials can be applied. Additionally, it allows for tool repairs after wear and tear, eliminating the need for producing a new part and contributing to an overall cost while reducing the environmental footprint. Overall, the combination of DED technology, functionally graded materials, and verified technologies collectively set a new standard for innovative and efficient development of cutting and forming tools in the modern industrial environment.Keywords: additive manufacturing, directed energy deposition, DED, laser, cutting tools, forming tools, steel, nickel alloy
Procedia PDF Downloads 53515 Innovating Electronics Engineering for Smart Materials Marketing
Authors: Muhammad Awais Kiani
Abstract:
The field of electronics engineering plays a vital role in the marketing of smart materials. Smart materials are innovative, adaptive materials that can respond to external stimuli, such as temperature, light, or pressure, in order to enhance performance or functionality. As the demand for smart materials continues to grow, it is crucial to understand how electronics engineering can contribute to their marketing strategies. This abstract presents an overview of the role of electronics engineering in the marketing of smart materials. It explores the various ways in which electronics engineering enables the development and integration of smart features within materials, enhancing their marketability. Firstly, electronics engineering facilitates the design and development of sensing and actuating systems for smart materials. These systems enable the detection and response to external stimuli, providing valuable data and feedback to users. By integrating sensors and actuators into materials, their functionality and performance can be significantly enhanced, making them more appealing to potential customers. Secondly, electronics engineering enables the creation of smart materials with wireless communication capabilities. By incorporating wireless technologies such as Bluetooth or Wi-Fi, smart materials can seamlessly interact with other devices, providing real-time data and enabling remote control and monitoring. This connectivity enhances the marketability of smart materials by offering convenience, efficiency, and improved user experience. Furthermore, electronics engineering plays a crucial role in power management for smart materials. Implementing energy-efficient systems and power harvesting techniques ensures that smart materials can operate autonomously for extended periods. This aspect not only increases their market appeal but also reduces the need for constant maintenance or battery replacements, thus enhancing customer satisfaction. Lastly, electronics engineering contributes to the marketing of smart materials through innovative user interfaces and intuitive control mechanisms. By designing user-friendly interfaces and integrating advanced control systems, smart materials become more accessible to a broader range of users. Clear and intuitive controls enhance the user experience and encourage wider adoption of smart materials in various industries. In conclusion, electronics engineering significantly influences the marketing of smart materials by enabling the design of sensing and actuating systems, wireless connectivity, efficient power management, and user-friendly interfaces. The integration of electronics engineering principles enhances the functionality, performance, and marketability of smart materials, making them more adaptable to the growing demand for innovative and connected materials in diverse industries.Keywords: electronics engineering, smart materials, marketing, power management
Procedia PDF Downloads 64514 Ethicality of Algorithmic Pricing and Consumers’ Resistance
Authors: Zainab Atia, Hongwei He, Panagiotis Sarantopoulos
Abstract:
Over the past few years, firms have witnessed a massive increase in sophisticated algorithmic deployment, which has become quite pervasive in today’s modern society. With the wide availability of data for retailers, the ability to track consumers using algorithmic pricing has become an integral option in online platforms. As more companies are transforming their businesses and relying more on massive technological advancement, pricing algorithmic systems have brought attention and given rise to its wide adoption, with many accompanying benefits and challenges to be found within its usage. With the overall aim of increasing profits by organizations, algorithmic pricing is becoming a sound option by enabling suppliers to cut costs, allowing better services, improving efficiency and product availability, and enhancing overall consumer experiences. The adoption of algorithms in retail has been pioneered and widely used in literature across varied fields, including marketing, computer science, engineering, economics, and public policy. However, what is more, alarming today is the comprehensive understanding and focus of this technology and its associated ethical influence on consumers’ perceptions and behaviours. Indeed, due to algorithmic ethical concerns, consumers are found to be reluctant in some instances to share their personal data with retailers, which reduces their retention and leads to negative consumer outcomes in some instances. This, in its turn, raises the question of whether firms can still manifest the acceptance of such technologies by consumers while minimizing the ethical transgressions accompanied by their deployment. As recent modest research within the area of marketing and consumer behavior, the current research advances the literature on algorithmic pricing, pricing ethics, consumers’ perceptions, and price fairness literature. With its empirical focus, this paper aims to contribute to the literature by applying the distinction of the two common types of algorithmic pricing, dynamic and personalized, while measuring their relative effect on consumers’ behavioural outcomes. From a managerial perspective, this research offers significant implications that pertain to providing a better human-machine interactive environment (whether online or offline) to improve both businesses’ overall performance and consumers’ wellbeing. Therefore, by allowing more transparent pricing systems, businesses can harness their generated ethical strategies, which fosters consumers’ loyalty and extend their post-purchase behaviour. Thus, by defining the correct balance of pricing and right measures, whether using dynamic or personalized (or both), managers can hence approach consumers more ethically while taking their expectations and responses at a critical stance.Keywords: algorithmic pricing, dynamic pricing, personalized pricing, price ethicality
Procedia PDF Downloads 95513 Combined Effect of Vesicular System and Iontophoresis on Skin Permeation Enhancement of an Analgesic Drug
Authors: Jigar N. Shah, Hiral J. Shah, Praful D. Bharadia
Abstract:
The major challenge faced by formulation scientists in transdermal drug delivery system is to overcome the inherent barriers related to skin permeation. The stratum corneum layer of the skin is working as the rate limiting step in transdermal transport and reduce drug permeation through skin. Many approaches have been used to enhance the penetration of drugs through this layer of the skin. The purpose of this study is to investigate the development and evaluation of a combined approach of drug carriers and iontophoresis as a vehicle to improve skin permeation of an analgesic drug. Iontophoresis is a non-invasive technique for transporting charged molecules into and through tissues by a mild electric field. It has been shown to effectively deliver a variety of drugs across the skin to the underlying tissue. In addition to the enhanced continuous transport, iontophoresis allows dose titration by adjusting the electric field, which makes personalized dosing feasible. Drug carrier could modify the physicochemical properties of the encapsulated molecule and offer a means to facilitate the percutaneous delivery of difficult-to-uptake substances. Recently, there are some reports about using liposomes, microemulsions and polymeric nanoparticles as vehicles for iontophoretic drug delivery. Niosomes, the nonionic surfactant-based vesicles that are essentially similar in properties to liposomes have been proposed as an alternative to liposomes. Niosomes are more stable and free from other shortcoming of liposomes. Recently, the transdermal delivery of certain drugs using niosomes has been envisaged and niosomes have proved to be superior transdermal nanocarriers. Proniosomes overcome some of the physical stability related problems of niosomes. The proniosomal structure was liquid crystalline-compact niosomes hybrid which could be converted into niosomes upon hydration. The combined use of drug carriers and iontophoresis could offer many additional benefits. The system was evaluated for Encapsulation Efficiency, vesicle size, zeta potential, Transmission Electron Microscopy (TEM), DSC, in-vitro release, ex-vivo permeation across skin and rate of hydration. The use of proniosomal gel as a vehicle for the transdermal iontophoretic delivery was evaluated in-vitro. The characteristics of the applied electric current, such as density, type, frequency, and on/off interval ratio were observed. The study confirms the synergistic effect of proniosomes and iontophoresis in improving the transdermal permeation profile of selected analgesic drug. It is concluded that proniosomal gel can be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.Keywords: iontophoresis, niosomes, permeation enhancement, transdermal delivery
Procedia PDF Downloads 384512 Variation in pH Values and Tenderness of Meat of Cattle Fed Different Levels of Lipids
Authors: Erico Da Silva Lima, Tiago Neves Pereira Valente, Roberto De Oliveira Roça
Abstract:
Introduction: Over the last few years the market has increased its demand for high quality meat. Based on this premise some producers have continuously improved their efficiency in breeding beef cattle with the purpose to support this demand. It is well recognized that final quality of beef is intimately linked to animal’s diet. The key objective of this study is to evaluate the influence of feeding animals with cottonseed and its lipids and the final results in terms of pH and shear forces of the meat. Materials and Methods: The study was carried out in the Chapéu de Couro Farm in Aguaí/SP, Brazil. A group of 39 uncastrated Nellore cattle. Mean age of the animals was 36 months and initial mean live weight was 494.1 ± 10.1. Animals were randomly assigned to one of three treatments, based on dry matter: feed with control diet 2.50% cottonseed, feed with 11.50% cottonseed, and feed with 3.13% cottonseed added of 1.77% protected lipid. Forage:concentrate ratio was 50:50 on a dry matter basis. Sugar cane chopped was used as forage. After slaughter, carcasses were identified and divided into two halves that were kept in a cold chamber for 24 h at 2°C. Using pH meter was determined post-mortem pH in Longissimus thoracis muscle between the 12th and 13th rib of the left half carcass. After, part of each animal was removed, and divided in three samples (steaks). Steaks were 2.5 cm thick and were identified and stored individually in plastic bags under vacuum. Samples were frozen in a freezer at -18°C. The same samples cooked were refrigerated by 12 h the 4°C, and then cut into cylinders 1.10 Øcm with the support of a drill press avoiding fats and nerves. Shear force was calculated in these samples cut into cylinders through the Brookfield texture CT3 Texture Analyzer 25 k equipped with a set of blade Warner-Bratzler. Results and Discussion: No differences (P > 0.05) in pH 24 h after slaughter were observed in the meat of Nellore cattle fed different sources of fat, and mean value for this variable was 5.59. However, for the shear force differences (P < 0.05) were founded. For diet with 2,50% cottonseed the lowest value found 5.10 (kg) while for the treatment with 11.50% cottonseed the great value found was 6.30 (kg). High shear force values mean greater texture of meat that indicates less tenderness. The texture of the meat can be influenced by age, weight to the slaughter of animals. For cattle breed Nellore Bos taurus indicus more high value of shear force. Conclusions: The add the cottonseed or protected lipid in diet is not affected pH values in meat. The whole cottonseed does not contribute to the improvement of tenderness of the meat. Acknowledgments: IFGoiano, FAPEG and CNPq (Brazil).Keywords: beef quality, cottonseed, protected fat, shear force
Procedia PDF Downloads 233511 The Growth Role of Natural Gas Consumption for Developing Countries
Authors: Tae Young Jin, Jin Soo Kim
Abstract:
Carbon emissions have emerged as global concerns. Intergovernmental Panel of Climate Change (IPCC) have published reports about Green House Gases (GHGs) emissions regularly. United Nations Framework Convention on Climate Change (UNFCCC) have held a conference yearly since 1995. Especially, COP21 held at December 2015 made the Paris agreement which have strong binding force differently from former COP. The Paris agreement was ratified as of 4 November 2016, they finally have legal binding. Participating countries set up their own Intended Nationally Determined Contributions (INDC), and will try to achieve this. Thus, carbon emissions must be reduced. The energy sector is one of most responsible for carbon emissions and fossil fuels particularly are. Thus, this paper attempted to examine the relationship between natural gas consumption and economic growth. To achieve this, we adopted the Cobb-Douglas production function that consists of natural gas consumption, economic growth, capital, and labor using dependent panel analysis. Data were preprocessed with Principal Component Analysis (PCA) to remove cross-sectional dependency which can disturb the panel results. After confirming the existence of time-trended component of each variable, we moved to cointegration test considering cross-sectional dependency and structural breaks to describe more realistic behavior of volatile international indicators. The cointegration test result indicates that there is long-run equilibrium relationship between selected variables. Long-run cointegrating vector and Granger causality test results show that while natural gas consumption can contribute economic growth in the short-run, adversely affect in the long-run. From these results, we made following policy implications. Since natural gas has positive economic effect in only short-run, the policy makers in developing countries must consider the gradual switching of major energy source, from natural gas to sustainable energy source. Second, the technology transfer and financing business suggested by COP must be accelerated. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).Keywords: developing countries, economic growth, natural gas consumption, panel data analysis
Procedia PDF Downloads 239510 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses
Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim
Abstract:
Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.Keywords: interaction, distance education, interactivity, online courses
Procedia PDF Downloads 195509 Evaluation of Prehabilitation Prior to Surgery for an Orthopaedic Pathway
Authors: Stephen McCarthy, Joanne Gray, Esther Carr, Gerard Danjoux, Paul Baker, Rhiannon Hackett
Abstract:
Background: The Go Well Health (GWH) platform is a web-based programme that allows patients to access personalised care plans and resources, aimed at prehabilitation prior to surgery. The online digital platform delivers essential patient education and support for patients prior to undergoing total hip replacements (THR) and total knee replacements (TKR). This study evaluated the impact of an online digital platform (ODP) in terms of functional health outcomes, health related quality of life and hospital length of stay following surgery. Methods: A retrospective cohort study comparing a cohort of patients who used the online digital platform (ODP) to deliver patient education and support (PES) prior to undergoing THR and TKR surgery relative to a cohort of patients who did not access the ODP and received usual care. Routinely collected Patient Reported Outcome Measures (PROMs) data was obtained on 2,406 patients who underwent a knee replacement (n=1,160) or a hip replacement (n=1,246) between 2018 and 2019 in a single surgical centre in the United Kingdom. The Oxford Hip and Knee Score and the European Quality of Life Five-Dimensional tool (EQ5D-5L) was obtained both pre-and post-surgery (at 6 months) along with hospital LOS. Linear regression was used to compare the estimate the impact of GWH on both health outcomes and negative binomial regressions were used to impact on LOS. All analyses adjusted for age, sex, Charlson Comorbidity Score and either pre-operative Oxford Hip/Knee scores or pre-operative EQ-5D scores. Fractional polynomials were used to represent potential non-linear relationships between the factors included in the regression model. Findings: For patients who underwent a knee replacement, GWH had a statistically significant impact on Oxford Knee Scores and EQ5D-5L utility post-surgery (p=0.039 and p=0.002 respectively). GWH did not have a statistically significant impact on the hospital length of stay. For those patients who underwent a hip replacement, GWH had a statistically significant impact on Oxford Hip Scores and EQ5D-5L utility post (p=0.000 and p=0.009 respectively). GWH also had a statistically significant reduction in the hospital length of stay (p=0.000). Conclusion: Health Outcomes were higher for patients who used the GWH platform and underwent THR and TKR relative to those who received usual care prior to surgery. Patients who underwent a hip replacement and used GWH also had a reduced hospital LOS. These findings are important for health policy and or decision makers as they suggest that prehabilitation via an ODP can maximise health outcomes for patients following surgery whilst potentially making efficiency savings with reductions in LOS.Keywords: digital prehabilitation, online digital platform, orthopaedics, surgery
Procedia PDF Downloads 193508 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids
Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki
Abstract:
Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction
Procedia PDF Downloads 111507 Artificial Intelligence: Reimagining Education
Authors: Silvia Zanazzi
Abstract:
Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.Keywords: education, artificial intelligence, teaching, learning
Procedia PDF Downloads 24