Search results for: pollutant removal efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7786

Search results for: pollutant removal efficiency

6976 Improvement plan for Integrity of Intensive Care Unit Patients Withdrawn from Life-Sustaining Medical Care

Authors: Shang-Sin Shiu, Shu-I Chin, Hsiu-Ju Chen, Ru-Yu Lien

Abstract:

The Hospice and Palliative Care Act has undergone three revisions, making it less challenging for terminal patients to withdraw life support systems. However, the adequacy of care before withdraw is a crucial factor in end-of-life medical treatment. The author observed that intensive care unit (ICU) nursing staff often rely on simple flowcharts or word of mouth, leading to inadequate preparation and failure to meet patient needs before withdraw. This results in confusion or hesitation among those executing the process. Therefore, there is a motivation to improve the withdraw of patient care processes, establish standardized procedures, ensure the accuracy of removal execution, enhance end-of-life care self-efficacy for nursing staff, and improve the overall quality of care. The investigation identified key issues: the lack of applicable guidelines for ICU care for withdraw from life-sustaining, insufficient education and training on withdraw and end-of-life care, scattered locations of withdraw-related tools, and inadequate self-efficacy in withdraw from life-sustaining care. Solutions proposed include revising withdraw care processes and guidelines, integrating tools and locations, conducting educational courses, and forming support groups. After the project implementation, the accuracy of removal cognition improved from 78% to 96.5%, self-efficacy in end-of-life care after removal increased from 54.7% to 93.1%, and the correctness of care behavior progressed from 27.7% to 97.8%. It is recommended to regularly conduct courses on removing life support system care and grief consolation to enhance the quality of end-of-life care.

Keywords: the intensive care unit (ICU) patients, nursing staff, withdraw life support systems, self-efficacy

Procedia PDF Downloads 43
6975 Removal of Heavy Metal from Wastewater using Bio-Adsorbent

Authors: Rakesh Namdeti

Abstract:

The liquid waste-wastewater- is essentially the water supply of the community after it has been used in a variety of applications. In recent years, heavy metal concentrations, besides other pollutants, have increased to reach dangerous levels for the living environment in many regions. Among the heavy metals, Lead has the most damaging effects on human health. It can enter the human body through the uptake of food (65%), water (20%), and air (15%). In this background, certain low-cost and easily available biosorbent was used and reported in this study. The scope of the present study is to remove Lead from its aqueous solution using Olea EuropaeaResin as biosorbent. The results showed that the biosorption capacity of Olea EuropaeaResin biosorbent was more for Lead removal. The Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich (D-R) models were used to describe the biosorption equilibrium of Lead Olea EuropaeaResin biosorbent, and the biosorption followed the Langmuir isotherm. The kinetic models showed that the pseudo-second-order rate expression was found to represent well the biosorption data for the biosorbent.

Keywords: novel biosorbent, central composite design, Lead, isotherms, kinetics

Procedia PDF Downloads 56
6974 Effect of Moisture Removal from Molten Salt on Corrosion of Alloys

Authors: Bhavesh D. Gajbhiye, Divya Raghunandanan, C. S. Sona, Channamallikarjun S. Mathpati

Abstract:

Molten fluoride salt FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a promising candidate as high temperature coolant for next generation nuclear reactors due to its superior thermophysical properties. Corrosion of alloys in molten FLiNaK has however been recognized as a serious issue in the selection of structural materials. Corrosion experiments of alloys Inconel-625 (Fe-Ni alloy) and Hastelloy-B (Ni-Mo alloy) were performed in FLiNaK salt. The tests were carried out at a temperature of 650°C in graphite crucibles for 60 hours under inert atmosphere. Corrosion experiments were performed to study the effect of moisture removal in the salt by pre heating and vacuum drying. Weight loss of the alloy samples due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloy samples was analyzed by Scanning Electron Microscopy. A significant decrease in the corrosion rate was observed for the alloys studied in moisture removed salt.

Keywords: FLiNaK, hastelloy, inconel, weight loss

Procedia PDF Downloads 478
6973 Profit Efficiency and Technology Adoption of Boro Rice Production in Bangladesh

Authors: Fazlul Hoque, Tahmina Akter Joya, Asma Akter, Supawat Rungsuriyawiboon

Abstract:

Rice is the staple food in Bangladesh, and therefore, self-sufficiency in rice production remains a major concern. However, Bangladesh is experiencing insufficiency in rice production due to high production cost and low national average productivity of 2.848 ton/ha in comparison to other rice-growing countries in the world. This study aims to find out the profit efficiency and determinants of profit efficiency in Boro rice cultivation in Manikganj and Dhaka districts of Bangladesh. It also focuses on technology adoption and effect of technology adoption on profit efficiency of Boro rice cultivation in Bangladesh. The data were collected from 300 households growing Boro rice through face to face interviews by one set structured questionnaire; Frontier Version 4.1 and STATA 15 software were employed to analyze the data according to the purpose of the study. Maximum likelihood estimates of the specified profit model showed that profit efficiency of the farmer varied between 23% and 97% with a mean of 76% which implied as 24% of the profit is lost due to a combination of technical and allocative inefficiencies in Boro rice cultivation in the study area. The inefficiency model revealed that the education level of the farmer, farm size, variety of seed, and training and extension service influence the profit inefficiency significantly. The study also explained that the level of technology adoption index affects profit efficiency. The technology adoption in Boro rice cultivation is influenced by the education level of the farmer, farm size and farm capital.

Keywords: farmer, maximum likelihood estimation, profit efficiency, rice

Procedia PDF Downloads 119
6972 Dual Role of Microalgae: Carbon Dioxide Capture Nutrients Removal

Authors: Mohamad Shurair, Fares Almomani, Simon Judd, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

This study evaluated the use of mixed indigenous microalgae (MIMA) as a treatment process for wastewaters and CO2 capturing technology at different temperatures. The study follows the growth rate of MIMA, removals of organic matter, removal of nutrients from synthetic wastewater and its effectiveness as CO2 capturing technology from flue gas. A noticeable difference between the growth patterns of MIMA was observed at different CO2 and different operational temperatures. MIMA showed the highest growth grate when injected with CO2 dosage of 10% and limited growth was observed for the systems injected with 5% and 15 % of CO2 at 30 ◦C. Ammonia and phosphorus removals for Spirulina were 69%, 75%, and 83%, and 20%, 45%, and 75% for the media injected with 0, 5 and 10% CO2. The results of this study show that simple and cost-effective microalgae-based wastewater treatment systems can be successfully employed at different temperatures as a successful CO2 capturing technology even with the small probability of inhibition at high temperatures

Keywords: greenhouse, climate change, CO2 capturing, green algae

Procedia PDF Downloads 322
6971 Chemical Bath Deposition Technique of CdS Used in Closed Space Sublimation of CdTe Solar Cell

Authors: Z. Mahmood, F. U. Babar, S. Naz, H. U. Rehman

Abstract:

Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Ellipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here). The efficiency came out to be approximately 16.5 % and the CIGS (copper-indium–gallium-selenide) maximum efficiency is 20 %. The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).

Keywords: Chemical Bath Deposition Technique (CBD), cadmium sulphide (CdS), CdTe, CSS (Closed Space Sublimation)

Procedia PDF Downloads 348
6970 Experimental and Computational Investigations of Baffle Position Effects on ‎the Performance of Oil and Water Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah‏‎, Md Azlin Md Said ‎

Abstract:

Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow ‎uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. ‎In this study, the effect on hydraulic performance of different baffle structure positions inside a tank ‎was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the ‎numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For ‎laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The ‎measurements were compared with the result of the computational model. The results of the ‎experimental and computational simulations indicate that the best location of a baffle structure is ‎achieved when the standard deviation of the velocity profile and the volume of the circulation zone ‎inside the tank are minimized.‎

Keywords: gravity separator tanks, CFD, baffle position, two phase flow, ADV, oil droplet

Procedia PDF Downloads 308
6969 Valorization of Sawdust for the Treatment of Purified Water for Irrigation

Authors: Dalila Oulhaci, Mohammed Zahaf

Abstract:

The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture.

Keywords: wasterwater, sawdust, purification, irrigation, touggourt (Algeria)

Procedia PDF Downloads 68
6968 Improving Energy Efficiency through Industrial Symbiosis: A Conceptual Framework of Energy Management in Energy-Intensive Industries

Authors: Yuanjun Chen, Yongjiang Shi

Abstract:

Rising energy prices have drawn a focus to global energy issues, and the severe pollution that has resulted from energy-intensive industrial sectors has yet to be addressed. By combining Energy Efficiency with Industrial Symbiosis, the practices of efficient energy utilization and improvement can be not only enriched at the factory level but also upgraded into “within and/or between firm level”. The academic contribution of this paper provides a conceptual framework of energy management through IS. The management of waste energy within/between firms can contribute to the reduction of energy consumption and provides a solution to the environmental issues.

Keywords: energy efficiency, energy management, industrial symbiosis, energy-intensive industry

Procedia PDF Downloads 415
6967 A Reference Framework Integrating Lean and Green Principles within Supply Chain Management

Authors: M. Bortolini, E. Ferrari, F. G. Galizia, C. Mora

Abstract:

In the last decades, an increasing set of companies adopted lean philosophy to improve their productivity and efficiency promoting the so-called continuous improvement concept, reducing waste of time and cutting off no-value added activities. In parallel, increasing attention rises toward green practice and management through the spread of the green supply chain pattern, to minimise landfilled waste, drained wastewater and pollutant emissions. Starting from a review on contributions deepening lean and green principles applied to supply chain management, the most relevant drivers to measure the performance of industrial processes are pointed out. Specific attention is paid on the role of cost because it is of key importance and it crosses both lean and green principles. This analysis leads to figure out an original reference framework for integrating lean and green principles in designing and managing supply chains. The proposed framework supports the application, to the whole value chain or to parts of it, e.g. distribution network, assembly system, job-shop, storage system etc., of the lean-green integrated perspective. Evidences show that the combination of the lean and green practices lead to great results, higher than the sum of the performances from their separate application. Lean thinking has beneficial effects on green practices and, at the same time, methods allowing environmental savings generate positive effects on time reduction and process quality increase.

Keywords: environmental sustainability, green supply chain, integrated framework, lean thinking, supply chain management

Procedia PDF Downloads 382
6966 Environmental Performance of Different Lab Scale Chromium Removal Processes

Authors: Chiao-Cheng Huang, Pei-Te Chiueh, Ya-Hsuan Liou

Abstract:

Chromium-contaminated wastewater from electroplating industrial activity has been a long-standing environmental issue, as it can degrade surface water quality and is harmful to soil ecosystems. The traditional method of treating chromium-contaminated wastewater has been to use chemical coagulation processes. However, this method consumes large amounts of chemicals such as sulfuric acid, sodium hydroxide, and sodium bicarbonate in order to remove chromium. However, a series of new methods for treating chromium-containing wastewater have been developed. This study aimed to compare the environmental impact of four different lab scale chromium removal processes: 1.) chemical coagulation process (the most common and traditional method), in which sodium metabisulfite was used as reductant, 2.) electrochemical process using two steel sheets as electrodes, 3.) reduction by iron-copper bimetallic powder, and 4.) photocatalysis process by TiO2. Each process was run in the lab, and was able to achieve 100% removal of chromium in solution. Then a Life Cycle Assessment (LCA) study was conducted based on the experimental data obtained from four different case studies to identify the environmentally preferable alternative to treat chromium wastewater. The model used for calculating the environmental impact was TRACi, and the system scope includes the production phase and use phase of chemicals and electricity consumed by the chromium removal processes, as well as the final disposal of chromium containing sludge. The functional unit chosen in this study was the removal of 1 mg of chromium. Solution volume of each case study was adjusted to 1 L in advance and the chemicals and energy consumed were proportionally adjusted. The emissions and resources consumed were identified and characterized into 15 categories of midpoint impacts. The impact assessment results show that the human ecotoxicity category accounts for 55 % of environmental impact in Case 1, which can be attributed to the sulfuric acid used for pH adjustment. In Case 2, production of steel sheet electrodes is an energy-intensive process, thus contributed to 20 % of environmental impact. In Case 3, sodium bicarbonate is used as an anti-corrosion additive, which results mainly in 1.02E-05 Comparative Toxicity Unit (CTU) in the human toxicity category and 0.54E-05 (CTU) in acidification of air. In Case 4, electricity consumption for power supply of UV lamp gives 5.25E-05 (CTU) in human toxicity category, 1.15E-05 (kg Neq) in eutrophication. In conclusion, Case 3 and Case 4 have higher environmental impacts than Case 1 and Case 2, which can be attributed mostly to higher energy and chemical consumption, leading to high impacts in the global warming and ecotoxicity categories.

Keywords: chromium, lab scale, life cycle assessment, wastewater

Procedia PDF Downloads 250
6965 The Effect of Flue Gas Condensation on the Exergy Efficiency and Economic Performance of a Waste-To-Energy Plant

Authors: Francis Chinweuba Eboh, Tobias Richards

Abstract:

In this study, a waste-to-energy combined heat and power plant under construction was modelled and simulated with the Aspen Plus software. The base case process plant was evaluated and compared when integrated with flue gas condensation (FGC) in order to find out the impact of the exergy efficiency and economic feasibility as well as the effect of overall system exergy losses and revenue generated in the investigated plant. The economic evaluations were carried out using the vendor cost data from Aspen process economic analyser. The results indicate that 4 % increase in the exergy efficiency and 29 % reduction in the exergy loss in the flue gas were obtained when the flue gas condensation was incorporated. Furthermore, with the integrated FGC, the net present values (NPV) and income generated in the base process plant were increased by 29 % and 10 % respectively after 20 years of operation.

Keywords: economic feasibility, exergy efficiency, exergy losses, flue gas condensation, waste-to-energy

Procedia PDF Downloads 176
6964 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 323
6963 The Optimum Aeration Time of Wastewater Treatment by Surface Aerators in Suan Sunandha Rajabhat University

Authors: Anat Thanpinta

Abstract:

This research aimed to study on the efficiency of wastewater treatment by comparing the different aeration times of surface aerators in Suan Sunandha Rajabhat University. In doing so, the operation of surface aerators was divided into 2 groups which included the groups of 8 hours (8-0/opened-closed) and 4 hours (2-2/opened-closed) of aeration time per day. As a result of the study, it was found that the efficiency of wastewater treatment in the forms of DO, BOD, turbidity and NO2- by 8 hours (8-0/opened-closed) and 4 hours (2-2/opened-closed) of aeration time per day of surface aerators was not statistically different [Sig. = .644, .488, .716 and .054 > α (.05)] while the efficiency in the forms of NO3- and P was significantly different at the statistical level of .01 [Sig. = .001 and .000 < α (.01)].

Keywords: aeration time, surface aerator, wastewater treatment, efficiency

Procedia PDF Downloads 288
6962 A Comparative Study of Photo and Electro-Fenton Reactions Efficiency in Degradation of Cationic Dyes Mixture

Authors: S. Bouafia Chergui, Nihal Oturan, Hussein Khalaf, Mehmet A. Oturan

Abstract:

The aim of this work was to compare the degradation of a mixture of three cationic dyes by advanced oxidation processes (electro-Fenton, photo-Fenton) in aqueous solution. These processes are based on the in situ production of hydroxyl radical, a highly strong oxidant, which allows the degradation of organic pollutants until their mineralization into CO2 and H2O. Under optimal operating conditions, the evolution of total organic carbon (TOC) and electrical energy efficiency have been investigated for the two processes.

Keywords: photo-fenton, electro-fenton, energy efficiency, water treatment

Procedia PDF Downloads 490
6961 Numerical Analysis of Fluid Mixing in Three Split and Recombine Micromixers at Different Inlets Volume Ratio

Authors: Vladimir Viktorov, M. Readul Mahmud, Carmen Visconte

Abstract:

Numerical simulation were carried out to study the mixing of miscible liquid at different inlets volume ratio (1 to 3) within two existing mixers namely Chain, Tear-drop and one new “C-H” mixer. The new passive C-H micromixer is developed based on split and recombine principles, combining the operation concepts of known Chain mixer and H mixer. The mixing performances of the three micromixers were predicted by a preliminary numerical analysis of the flow patterns inside the channel in terms of the segregation or distribution of path lines. Afterward, the efficiency and the pressure drop were investigated numerically, taking into account species transport. All numerical calculations were computed at a wide range of Reynolds number from 1 to 100. Among the presented three micromixers, tear-drop provides fairly good efficiency except in the middle range of Re numbers but has high-pressure drop. In addition, inlets flow ratio has a significant influence on efficiency, especially at the Re number range of 10 to 50, Moreover maximum increase of efficiency is almost 10% when inlets flow ratio is increased by 1. Chain mixer presents relatively low mixing efficiency at low and middle range of Re numbers (5≤Re≤50) but has reasonable pressure drop. Furthermore, Chain mixer shows almost no dependence on inlets flow ratio. Whereas, C-H mixer poses excellent mixing efficiency (more than 93%) for all range of Re numbers and causes the lowest pressure drop, On top of that efficiency has slight dependency on inlets flow ratio. In addition, C-H mixer shows respectively about three and two times lower pressure drop than Tear-drop and Chain mixers.

Keywords: CFD, micromixing, passive micromixer, SAR

Procedia PDF Downloads 467
6960 Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns

Authors: Hamadi Cherif, Christophe Coquelet, Paolo Stringari, Denis Clodic, Laura Pellegrini, Stefania Moioli, Stefano Langè

Abstract:

Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm.

Keywords: biogas, hydrogen sulfide, reactive absorption, sodium hydroxide, structured packed column

Procedia PDF Downloads 330
6959 Number of Perovskite Layers and the Effect of Antisolvent on Perovskite Solar Cell Efficiency

Authors: Ece Çetin, İsmail Boz, Mehtap Şafak Boroğlu

Abstract:

Energy is one of the most important components of production processes, economic activities, and daily life. Non-renewable energy sources cause serious environmental problems with the increase of greenhouse gases. Obtaining energy from renewable sources is also essential for sustainable economic growth. Solar energy is also an important renewable energy source with its unlimited and clean features. In this study, the effect of 1, 2, and 3 layers of perovskite film number and antisolvent dripping on perovskite based solar cell efficiency was investigated. The yield increased as the number of perovskite films increased. In addition, the yields obtained with the antisolvent dripped in the last 5 seconds are higher than the ones dropped in the last 17 seconds. The highest efficiency was obtained with 3 perovskite films, and antisolvent dropped in the last 5 seconds.

Keywords: antisolvent, efficiency, perovskite, solar cell

Procedia PDF Downloads 97
6958 Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods

Authors: Y. Galerkin, L. Marenina

Abstract:

Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration.

Keywords: vane diffuser, return channel, crossover, efficiency, loss coefficient, inlet flow angle

Procedia PDF Downloads 417
6957 Onmanee Prajuabjinda, Pakakrong Thondeeying, Jipisute Chunthorng-Orn, Bhanuz Dechayont, Arunporn Itharat

Authors: Ekrem Erdem, Can Tansel Tugcu

Abstract:

Improved resource efficiency of production is a key requirement for sustainable growth, worldwide. In this regards, by considering the energy and tourism as the extra inputs to the classical Coub-Douglas production function, this study aims at investigating the efficiency changes in the North African countries. To this end, the study uses panel data for the period 1995-2010 and adopts the Malmquist index based on the data envelopment analysis. Results show that tourism increases technical and scale efficiencies, while it decreases technological and total factor productivity changes. On the other hand, when the production function is augmented by the energy input, technical efficiency change decreases, while the technological change, scale efficiency change and total factor productivity change increase. Thus, in order to satisfy the needs for sustainable growth, North African governments should take some measures for increasing the contribution that the tourism makes to economic growth and some others for efficient use of resources in the energy sector.

Keywords: data envelopment analysis, economic efficiency, North African countries, sustainable growth

Procedia PDF Downloads 321
6956 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration

Authors: P. Barreto, A. Guevara, V. Ibujes

Abstract:

In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.

Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions

Procedia PDF Downloads 113
6955 Oil Contaminate Removal from Wastewater with Novel Nanofiber-Based Membranes

Authors: Zhaoyang Liu

Abstract:

Oil pollution is typically caused by oil and gas-related operations such as vessel accidents, which can pollute waterways as well as the environment and damage the ecosystem. Tanker ship cleaning contributes to oil spills, which have a negative impact on coastal countries due to protracted service disruption. It is critical for coastal countries to develop efficient oil taint cleanup technology. There are various oil/water separation technologies, such as gravity separation, hydrocyclone, air flotation, and membrane filtration, among others. Among these, membrane filtration has been shown to produce high-quality effluent. Commercial membranes, on the other hand, nevertheless face significant practical challenges, such as a high susceptibility for membrane fouling when dealing with greasy effluent. We developed a unique anti-fouling filtering membrane for oil/water separation in this work. The membrane was made of inorganic nanofibers, which possesses the advantages of low membrane fouling, high permeation flux and long-term durability. This results from this study could facilitate to pave a new way for membranes filtration’s practical applications in oil/gas industry.

Keywords: oil, contaminate, wastewater, removal

Procedia PDF Downloads 59
6954 Knowledge Management Efficiency of Personnel in Rajamangala University of Technology Srivijaya Songkhla, Thailand

Authors: Nongyao Intasaso, Atchara Rattanama, Navarat Pewnual

Abstract:

This research is survey research purposed to study the factor affected to knowledge management efficiency of personnel in Rajamangala University of Technology Srivijaya, and study the problem of knowledge management affected to knowledge development of personnel in the university. The tool used in this study is structures questioner standardize rating scale in 5 levels. The sample selected by purposive sampling and there are 137 participation calculated in 25% of population. The result found that factor affected to knowledge management efficiency in the university included (1) result from the organization factor found that the university provided project or activity that according to strategy and mission of knowledge management affected to knowledge management efficiency in highest level (x̅ = 4.30) (2) result from personnel factor found that the personnel are eager for knowledge and active to learning to develop themselves and work (Personal Mastery) affected to knowledge management efficiency in high level (x̅ = 3.75) (3) result from technological factor found that the organization brought multimedia learning aid to facilitate learning process affected to knowledge management efficiency in high level (x̅ = 3.70) and (4) the result from learning factor found that the personnel communicated and sharing knowledge and opinion based on acceptance to each other affected to knowledge management efficiency in high level (x̅ = 3.78). The problem of knowledge management in the university included the personnel do not change their work behavior, insufficient of collaboration, lack of acceptance in knowledge and experience to each other, and limited budget. The solutions to solve these problems are the university should be support sufficient budget, the university should follow up and evaluate organization development based on knowledge using, the university should provide the activity emphasize to personnel development and assign the committee to process and report knowledge management procedure.

Keywords: knowledge management, efficiency, personnel, learning process

Procedia PDF Downloads 286
6953 Valorization of a Forest Waste, Modified P-Brutia Cones, by Biosorption of Methyl Geen

Authors: Derradji Chebli, Abdallah Bouguettoucha, Abdelbaki Reffas Khalil Guediri, Abdeltif Amrane

Abstract:

The removal of Methyl Green dye (MG) from aqueous solutions using modified P-brutia cones (PBH and PBN), has been investigated work. The physical parameters such as pH, temperature, initial MG concentration, ionic strength are examined in batch experiments on the sorption of the dye. Adsorption removal of MG was conducted at natural pH 4.5 because the dye is only stable in the range of pH 3.8 to 5. It was observed in experiments that the P-brutia cones treated with NaOH (PBN) exhibited high affinity and adsorption capacity compared to the MG P-brutia cones treated with HCl (PBH) and biosorption capacity of modified P-brutia cones (PBN and PBH) was enhanced by increasing the temperature. This is confirmed by the thermodynamic parameters (ΔG° and ΔH°) which show that the adsorption of MG was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase in the randomness for both adsorbent (PBN and PBH) during the adsorption process. The kinetic model pseudo-first order, pseudo-second order, and intraparticle diffusion coefficient were examined to analyze the sorption process; they showed that the pseudo-second-order model is the one that best describes the adsorption process (MG) on PBN and PBH with a correlation coefficient R²> 0.999. The ionic strength has shown that it has a negative impact on the adsorption of MG on two supports. A reduction of 68.5% of the adsorption capacity for a value Ce=30 mg/L was found for the PBH, while the PBN did not show a significant influence of the ionic strength on adsorption especially in the presence of NaCl. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P-brutia cones with a correlation factor R²>0.999. The capacity adsorption of P-brutia cones, was confirmed for the removal of a dye, MG, from aqueous solution. We note also that P-brutia cones is a material very available in the forest and low-cost biomaterial

Keywords: adsorption, p-brutia cones, forest wastes, dyes, isotherm

Procedia PDF Downloads 365
6952 Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach

Authors: Joe Hachem, Marianne Cuif-Sjostrand, Thierry Schuhler, Dominique Orhon, Assaad Zoughaib

Abstract:

The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency.

Keywords: gas turbines, exhaust gas recirculation, design parameters optimization, thermodynamic approach

Procedia PDF Downloads 134
6951 Research on Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu

Abstract:

In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible.

Keywords: fly ash, drilled solid wastes, metallurgical slag, recycling, building materials

Procedia PDF Downloads 297
6950 Synthesis, Characterization of Organic and Inorganic Zn-Al Layered Double Hydroxides and Application for the Uptake of Methyl Orange from Aqueous Solution

Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohammed Abdennouri, Noureddine Barka

Abstract:

Zn-Al layered double hydroxides containing carbonate, nitrate and dodecylsulfate as the interlamellar anions have been prepared through a coprecipitation method. The resulting compounds were characterized using XRD, ICP, FTIR, TGA/DTA, TEM/EDX and pHPZC analysis. The XRD patterns revealed that carbonate and nitrate could be intercalated into the interlayer structure with basal spacing of 22.74 and 26.56 Å respectively. Bilayer intercalation of dodecylsulfate molecules was achieved in Zn-Al LDH with a basal spacing of 37.86 Å. The TEM observation indicated that the materials synthesized via coprecipitation present nanoscale LDH particle. The average particle size of Zn-AlCO3 is 150 to 200 nm. Irregular circular to hexagonal shaped particles with 30 to 40 nm in diameter was observed in the Zn-AlNO3 morphology. TEM image of Zn-AlDs display nanostructured sheet like particles with size distribution between 5 to 10 nm. The sorption characteristics and mechanisms of methyl orange dye on organic LDH were investigated and were subsequently compared with that on the inorganic Zn-Al layered double hydroxides. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. The adsorption behavior onto inorganic LDHs was obviously influenced by initial pH. However, the adsorption capacity of organic LDH was influenced indistinctively by initial pH and the removal percentage of MO was practically constant at various value of pH. As the MO concentration increased, the curve of adsorption capacity became L-type onto LDHs. The adsorption behavior for Zn-AlDs was proposed by the dissolution of dye in a hydrophobic interlayer region (i.e., adsolubilization). The results suggested that Zn-AlDs could be applied as a potential adsorbent for MO removal in a wide range of pH.

Keywords: adsorption, dodecylsulfate, kinetics, layered double hydroxides, methyl orange removal

Procedia PDF Downloads 277
6949 Summary of Technical Approaches to Improve Energy Efficiency in Electric Motor Drive Systems

Authors: Manuel Valencia Alejaandro Paz, Luz Nidia Quintero Jairo Palacios

Abstract:

In present paper a set of technical approaches to improve the energy efficiency in processes controlled by electric motor drive systems EMDS are listed and analyzed. Energy saving becomes fundamental to improve the sustainability and competitiveness of organizations all around the world; increasing costs of electricity had impulse the use of different strategies to reduce the electric power condition. A summary of these techniques is presented and evaluated in the potential for energy saving policies.

Keywords: energy saving, EMDS, induction motor, energy efficiency, sustainability

Procedia PDF Downloads 361
6948 Comparative Study of Mechanical and Physiological Gait Efficiency Following Anterior Cruciate Ligament Reconstruction

Authors: Radwa E. Sweif, Amira A. A. Abdallah

Abstract:

Background: Evaluation of gait efficiency is used to examine energy consumption especially in patients with movement disorders. Hypothesis/Purpose: This study compared the physiological and mechanical measures of gait efficiency between patients with ACL reconstruction (ACLR) and healthy controls and correlated among these measures. Methods: Seventeen patients with ACLR and sixteen healthy controls with mean ± SD age 23.06±4.76 vs 24.85±6.47 years, height 173.93±6.54 vs 175.64±7.37cm, and weight 74.25±12.1 vs 76.52±10.14 kg, respectively, participated in the study. The patients were operated on six months prior to testing. They should have completed their accelerated rehabilitation program during this period. A 3D motion analysis system was used for collecting the mechanical measures (Biomechanical Efficiency Quotient (BEQ), the maximum degree of knee internal rotation during stance phase and speed of walking). The physiological measures (Physiological Cost Index (PCI) and Rate of Perceived Exertion (RPE)) were collected after performing the 6- minute walking test. Results: MANOVA showed that the maximum degree of knee internal rotation, PCI, and RPE increased and the speed decreased significantly (p<0.05) in the patients compared with the controls with no significant difference for the BEQ. Finally, there were significant (p<0.05) positive correlations between each of the PCI & RPE and each of the BEQ, speed of walking and the maximum degree of knee internal rotation in each group. Conclusion: It was concluded that there are alterations in both mechanical and physiological measures of gait efficiency in patients with ACLR after being rehabilitated, clarifying the need for performing additional endurance as well as knee stability training programs. Moreover, the positive correlations indicate that using either of the mechanical or physiological measures for evaluating gait efficiency is acceptable.

Keywords: ACL reconstruction, mechanical, physiological, gait efficiency

Procedia PDF Downloads 425
6947 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold

Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos

Abstract:

Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.

Keywords: ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO₂ / In₂O₃ bilayer

Procedia PDF Downloads 254