Search results for: microstructure and mechanical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10777

Search results for: microstructure and mechanical properties

2467 Investigation of Pollution and the Physical and Chemical Condition of Polour River, East of Tehran, Iran

Authors: Azita Behbahaninia

Abstract:

This research has been carried out to determine the water quality and physico-chemical properties Polour River, one of the most branch of Haraz River. Polour River was studied for a period of one year Samples were taken from different stations along the main branch of River polour. In water samples determined pH, DO, SO4, Cl, PO4, NO3, EC, BOD, COD, Temprature, color and number of Caliform per liter. ArcGIS was used for the zoning of phosphate concentration in the polour River basin. The results indicated that the river is polluted in polour village station, because of discharge domestic wastewater and also river is polluted in Ziar village station, because of agricultural wastewater and water is contaminated in aquaculture station, because of fish ponds wastewater. Statistical analysis shows that between independent traits and coliform regression relationship is significant at the 1% level. Coefficient explanation index indicated independent traits control 80% coliform and 20 % is for unknown parameters. The causality analysis showed Temperature (0.6) has the most positive and direct effect on coliform and sulfate has direct and negative effect on coliform. The results of causality analysis and the results of the regression analysis are matched and other forms direct and indirect effects were negligible and ignorable. Kruskal-Wallis test showed, there is different between sampling stations and studied characters. Between stations for temperature, DO, COD, EC, sulfate and coliform is at 1 % and for phosphate 5 % level of significance.

Keywords: coliform, GIS, pollution, phosphate, river

Procedia PDF Downloads 468
2466 Antibacterial Activity of Melaleuca Cajuputi Oil against Resistant Strain Bacteria

Authors: R. M. Noah, N. M. Nasir, M. R. Jais, M. S. S. Wahab, M. H. Abdullah, A. S. S. Raj

Abstract:

Infectious diseases are getting more difficult to treat due to the resistant strains of bacteria. Current generations of antibiotics are most likely ineffective against multi-drug resistant strains bacteria. Thus, there is an urgent need in search of natural antibiotics in particular from medicinal plants. One of the common medicinal plants, Melaleuca cajuputi, has been reported to possess antibacterial properties. The study was conducted to evaluate and justify the presence of antibacterial activity of Melaleuca cajuputi essential oil (EO) against the multi-drug resistant bacteria. Clinical isolates obtained from the teaching hospital were re-assessed to confirm the exact identity of the bacteria to be tested, namely methicillin-resistant staphylococcus aureus (MRSA), carbapenem-resistant enterobacteriaceae (CRE), and extended-spectrum beta-lactamases producer (ESBLs). A well diffusion method was done to observe the inhibition zones of the essential oil against the bacteria. Minimum inhibitory concentration (MIC) was determined using the microdilution method in 96-well flat microplate. The absorbance was measured using a microplate reader. Minimum bactericidal concentration (MBC) was performed using the agar medium method. The zones of inhibition produced by the EO against MRSA, CRE, and ESBL were comparable to that of generic antibiotics used, gentamicin and augmentin. The MIC and MBC results highlighted the antimicrobial efficacy of the EO. The outcome of this study indicated that the EO of Melaleuca cajuputi had antibacterial activity on the multi-drug resistant bacteria. This finding was eventually substantiated by electron microscopy work.

Keywords: melaleuca cajuputi, antibacterial, resistant bacteria, essential oil

Procedia PDF Downloads 122
2465 An Evaluation of Different Weed Management Techniques in Organic Arable Systems

Authors: Nicola D. Cannon

Abstract:

A range of field experiments have been conducted since 1991 to 2017 on organic land at the Royal Agricultural University’s Harnhill Manor Farm near Cirencester, UK to explore the impact of different management practices on weed infestation in organic winter and spring wheat. The experiments were designed using randomised complete block and some with split plot arrangements. Sowing date, variety choice, crop height and crop establishment technique have all shown a significant impact on weed infestations. Other techniques have also been investigated but with less clear, but, still often significant effects on weed control including grazing with sheep, undersowing with different legumes and mechanical weeding techniques. Tillage treatments included traditional plough based systems, minimum tillage and direct drilling. Direct drilling had significantly higher weed dry matter than the other two techniques. Taller wheat varieties which do not contain Rht1 or Rht2 had higher weed populations than the wheat without dwarfing genes. Early sown winter wheat had greater weed dry matter than later sown wheat. Grazing with sheep interacted strongly with sowing date, with shorter varieties and also late sowing dates providing much less forage but, grazing did reduce weed biomass in June. Undersowing had mixed impacts which were related to the success of establishment of the undersown legume crop. Weeds are most successfully controlled when a range of techniques are implemented to give the wheat crop the greatest chance of competing with weeds.

Keywords: crop establishment, drilling date, grazing, undersowing, varieties, weeds

Procedia PDF Downloads 183
2464 Finite Element Analysis of Steel-Concrete Composite Structures Considering Bond-Slip Effect

Authors: WonHo Lee, Hyo-Gyoung Kwak

Abstract:

A numerical model considering slip behavior of steel-concrete composite structure is introduced. This model is based on a linear bond stress-slip relation along the interface. Single node was considered at the interface of steel and concrete member in finite element analysis, and it improves analytical problems of model that takes double nodes at the interface by adopting spring elements to simulate the partial interaction. The slip behavior is simulated by modifying material properties of steel element contacting concrete according to the derived formulation. Decreased elastic modulus simulates the slip occurrence at the interface and decreased yield strength simulates drop in load capacity of the structure. The model is verified by comparing numerical analysis applying this model with experimental studies. Acknowledgment—This research was supported by a grant(13SCIPA01) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement(KAIA) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.

Keywords: bond-slip, composite structure, partial interaction, steel-concrete structure

Procedia PDF Downloads 178
2463 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 182
2462 The Effect of Different Concentrations of Trichoderma harzianum Fungus on the Phytochemical and Antioxidative Parameters of Cauliflower (Brassica oleracea convar.botrytisl) in Soils Contaminated with Lead

Authors: Mohammad Javad Shakori, Esmaeil Babakhanzadeh Sajirani, Vajihe Esmaili

Abstract:

Today, the increasing contamination is an environmental concern. There is relationship between plants and microorganisms many years ago. In this regard, an experiment was conducted in order to investigate the effect of different levels of lead across three levels ‘zero, 50, and 100 mg/L’ and Trichoderma Harzanium fungus across three levels ‘5, 10, and 15%’ in a factorial design in the form of fully randomized blocks in three replications under form conditions in the climatic conditions of Shahroud in Dehlama Village. This research was performed in 2014-2015 on cauliflower. In this experiment, chlorophyll a, b, total, cartenoid, phenol, flavonoid, and antioxidant properties of cauliflowers were measured. The results indicated that the greatest level of chlorophyll a (75.723 mg/wet weight), chlorophyll b (27.378 mg/wet weight), and total chlorophyll (109.074 mg/wet weight) was related to the interactive effects of 5% treatment of Trichoderma fungus and 0mg/L lead. The results also indicated that the greatest amount of antioxidant (79.88% of free radical) and flavonoides (22.889 mg of coercetin/g of dry weight) was related to the interactive effects of lead 50 mg/L and the treatment of Trichoderma fungus 5%. Further, the greatest level of phenol (21.33 mg of Gaelic acid/ dry weight) was related to the interactive effects of lead 100 mg/L and Trichoderma fungus 5% . As carotenoids are a type of antioxidant and precursor of vitamin A, with the development of alignment effect with other antioxidants such as the total phenol, flavonoid, achieved desirable levels of antioxidant.

Keywords: antioxidant, lead, flavonoid, cauliflower, chlorophyll

Procedia PDF Downloads 276
2461 Application of Active Chitosan Coating Incorporated with Spirulina Extract as a Potential Food Packaging Material for Enhancing Quality and Shelf Life of Shrimp

Authors: Rafik Balti, Nourhene Zayoud, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse

Abstract:

Application of edible films and coatings with natural active compounds for enhancing storage stability of food products is a promising active packaging approach. Shrimp are generally known as valuable seafood products around the world because of their delicacy and good nutritional. However, shrimp is highly vulnerable to quality deterioration associated with biochemical, microbiological or physical changes during postmortem storage, which results in the limited shelf life of the product. Chitosan is considered as a functional packaging component for maintaining the quality and increasing the shelf life of perishable foods. The present study was conducted to evaluate edible coating of crab chitosan containing variable levels of ethanolic extract of Spirulina on microbiological (mesophilic aerobic, psychrotrophic, lactic acid bacteria, and enterobacteriacea), chemical (pH, TVB-N, TMA-N, PV, TBARS) and sensory (odor, color, texture, taste, and overall acceptance) properties of shrimp during refrigerated storage. Also, textural and color characteristics of coated shrimp were performed. According to the obtained results, crab chitosan in combination with Spirulina extract was very effective in order to extend the shelf life of shrimp during storage in refrigerated condition.

Keywords: food packaging, chitosan, spirulina extract, white shrimp, shelf life

Procedia PDF Downloads 210
2460 Computational Fluid Dynamics Simulation of a Nanofluid-Based Annular Solar Collector with Different Metallic Nano-Particles

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

Motivation- Solar energy constitutes the most promising renewable energy source on earth. Nanofluids are a very successful family of engineered fluids, which contain well-dispersed nanoparticles suspended in a stable base fluid. The presence of metallic nanoparticles (e.g. gold, silver, copper, aluminum etc) significantly improves the thermo-physical properties of the host fluid and generally results in a considerable boost in thermal conductivity, density, and viscosity of nanofluid compared with the original base (host) fluid. This modification in fundamental thermal properties has profound implications in influencing the convective heat transfer process in solar collectors. The potential for improving solar collector direct absorber efficiency is immense and to gain a deeper insight into the impact of different metallic nanoparticles on efficiency and temperature enhancement, in the present work, we describe recent computational fluid dynamics simulations of an annular solar collector system. The present work studies several different metallic nano-particles and compares their performance. Methodologies- A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressible laminar flow comprising water- (and other) based nanofluid containing a variety of metallic nanoparticles (copper oxide, aluminum oxide, and titanium oxide nanoparticles) is examined. The Tiwari-Das model is deployed for which thermal conductivity, specific heat capacity and viscosity of the nanofluid suspensions is evaluated as a function of solid nano-particle volume fraction. Radiative heat transfer is also incorporated using the ANSYS solar flux and Rosseland radiative models. The ANSYS FLUENT finite volume code (version 18.1) is employed to simulate the thermo-fluid characteristics via the SIMPLE algorithm. Mesh-independence tests are conducted. Validation of the simulations is also performed with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation achieved. The influence of volume fraction on temperature, velocity, pressure contours is computed and visualized. Main findings- The best overall performance is achieved with copper oxide nanoparticles. Thermal enhancement is generally maximized when water is utilized as the base fluid, although in certain cases ethylene glycol also performs very efficiently. Increasing nanoparticle solid volume fraction elevates temperatures although the effects are less prominent in aluminum and titanium oxide nanofluids. Significant improvement in temperature distributions is achieved with copper oxide nanofluid and this is attributed to the superior thermal conductivity of copper compared to other metallic nano-particles studied. Important fluid dynamic characteristics are also visualized including circulation and temperature shoots near the upper region of the annulus. Radiative flux is observed to enhance temperatures significantly via energization of the nanofluid although again the best elevation in performance is attained consistently with copper oxide. Conclusions-The current study generalizes previous investigations by considering multiple metallic nano-particles and furthermore provides a good benchmark against which to calibrate experimental tests on a new solar collector configuration currently being designed at Salford University. Important insights into the thermal conductivity and viscosity with metallic nano-particles is also provided in detail. The analysis is also extendable to other metallic nano-particles including gold and zinc.

Keywords: heat transfer, annular nanofluid solar collector, ANSYS FLUENT, metallic nanoparticles

Procedia PDF Downloads 143
2459 Antioxidant and Antimicrobial Activities of Phenolic Extracts of Endemic Plants Marrubium deserti and Ammodaucus leucotrichus from Algeria

Authors: Sifi Ibrahim, Benaddou Fatima Zohra, Yousfi Mohamed

Abstract:

The Marrubium deserti and Ammodaucus leucotrichus L. an Algerian endemic species, has several applications in traditional medicine for example as a remedy for asthma and diabetes, and was found to have antibacterial properties. In this work, an antioxidant and antimicrobial activities was performed on phenolic extracts of Marrubium deserti, Ammodaucus leucotrichus plants. The yield of methanol maceration of these plants is 12.4% and 20.4% respectively. The content of total polyphenols, flavonoids and anthocyanin in methanolic extracts, are varied between 19.52±1.88 and 59.24±3.45 mg/g gallic acid equivalent, and 2.08±0.29 to 1.46±0.39 mg/g quercetin equivalent, and 0.395 to 1.934µmol/g respectively. The total chlorophylls and carotenoids were be ranged from 0.149±0.20 to 1.537±0.20 g/ml and 1.537±0.20 to 0.149 ± 0.20 g/ml, respectively. According to DPPH and FRAP test, the values of EC50 was shows a higher activity of Marrubium deserti than Ammodaucus leucotrichus with EC50 values (DPPH) were 34.53±0.71 μg/mL and 258.60±15.67 mg/ml respectively. The TEAC values of FRAP test was a highly superior for Marrubium deserti 209.66±0.26 mg Equivalent Trolox/g dry residue than Ammodaucus leucotrichus 45.88±2.93 mg Trolox Equivalent/g dry residue. The antimicrobial activity against nine strains of bacteria (Staphylococcus aureus(+), Staphylococcus aureus (-), Bacillus cereus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi), was showed that the tested extracts are a significant antibacterial activity with inhibition zones ranging from 10 to 50 mm. the value of CMI were ranging from 0.89 to 14.29 mg/ml.

Keywords: phenolic extract, antioxidant activity, antimicrobial activity, Marrubium deserti, Ammodaucus leucotrichus

Procedia PDF Downloads 395
2458 Prime Graphs of Polynomials and Power Series Over Non-Commutative Rings

Authors: Walaa Obaidallah Alqarafi, Wafaa Mohammed Fakieh, Alaa Abdallah Altassan

Abstract:

Algebraic graph theory is defined as a bridge between algebraic structures and graphs. It has several uses in many fields, including chemistry, physics, and computer science. The prime graph is a type of graph associated with a ring R, where the vertex set is the whole ring R, and two vertices x and y are adjacent if either xRy=0 or yRx=0. However, the investigation of the prime graph over rings remains relatively limited. The behavior of this graph in extended rings, like R[x] and R[[x]], where R is a non-commutative ring, deserves more attention because of the wider applicability in algebra and other mathematical fields. To study the prime graphs over polynomials and power series rings, we used a combination of ring-theoretic and graph-theoretic techniques. This paper focuses on two invariants: the diameter and the girth of these graphs. Furthermore, the work discusses how the graph structures change when passing from R to R[x] and R[[x]]. In our study, we found that the set of strong zero-divisors of ring R represents the set of vertices in prime graphs. Based on this discovery, we redefined the vertices of prime graphs using the definition of strong zero divisors. Additionally, our results show that although the prime graphs of R[x] and R[[x]] are comparable to the graph of R, they have different combinatorial characteristics since these extensions contain new strong zero-divisors. In particular, we find conditions in which the diameter and girth of the graphs, as they expand from R to R[x] and R[[x]], do not change or do change. In conclusion, this study shows how extending a non-commutative ring R to R[x] and R[[x]] affects the structure of their prime graphs, particularly in terms of diameter and girth. These findings enhance the understanding of the relationship between ring extensions and graph properties.

Keywords: prime graph, diameter, girth, polynomial ring, power series ring

Procedia PDF Downloads 18
2457 Development of Drug Delivery Systems for Endoplasmic Reticulum Amino Peptidases Modulators Using Electrospinning

Authors: Filipa Vasconcelos

Abstract:

The administration of endoplasmic reticulum amino peptidases (ERAP1 or ERAP2) inhibitors can be used for therapeutic approaches against cancer and auto-immune diseases. However, one of the main shortcomings of drug delivery systems (DDS) is associated with the drug off-target distribution, which can lead to an increase in its side effects on the patient’s body. To overcome such limitations, the encapsulation of four representative compounds of ERAP inhibitors into Polycaprolactone (PCL), Polyvinyl-alcohol (PVA), crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes is proposed as a safe and controlled drug release system. The use of electrospun fibrous meshes as a DDS allows efficient solvent evaporation giving limited time to the encapsulated drug to recrystallize, continuous delivery of the drug while the fibers degrade, prevention of initial burst release (sustained release), tunable dosages, and the encapsulation of other agents. This is possible due to the fibers' small diameters and resemblance to the extracellular matrix (confirmed by scanning electron microscopy results), high specific surface area, and good mechanical strength/stability. Furthermore, release studies conducted on PCL, PVA, crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes with each of the ERAP compounds encapsulated demonstrated that they were capable of releasing >60%, 50%, 40%, and 45% of the total ERAP concentration, respectively. Fibrous meshes with ERAP_E compound encapsulated achieved higher released concentrations (75.65%, 62.41%, 56.05%, and 65.39%, respectively). Toxicity studies of fibrous meshes with encapsulated compounds are currently being accessed in vitro, as well as pharmacokinetics and dynamics studies. The last step includes the implantation of the drug-loaded fibrous meshes in vivo.

Keywords: drug delivery, electrospinning, ERAP inhibitors, liposomes

Procedia PDF Downloads 106
2456 The Study of X- Bracing on Limit State Behaviour of Buckling Restrained Brace (BRB) in Steel Frames Using Pushover Analysis

Authors: Peyman Shadman Heidari, Hamid Bastani, Pouya Shadman Heidari

Abstract:

Nowadays, using energy dampers in structures is highly considered for the dissipation and absorption of earthquake energy. The main advantage of using energy damper is absorbing the earthquake energy in some sections apart from the structure frame. Among different types of dampers, hysteresis dampers are of special place because of low cost, high reliability and the lack of mechanical parts. In this paper, a special kind of hysteresis damper is considered under the name of buckling brace, which is provided with the aim of the study and investigation of cross braces in boundary behaviour of steel frames using nonlinear static analysis. In this paper, ninety three models of steel frames with cross braces of buckling type are processed with different bays and heights and their plasticity index, behaviour coefficient, distribution type and the number of plastic hinges formed were calculated. Finally, the mean behaviour coefficient was compared with standard behaviour coefficient of 2800 and the suitable mode of braces placing in improving nonlinear behaviour and suitable distribution of plastic hinges were presented. In addition, it was determined that for some placing mode of braces the behaviour coefficient will increase to 15 times of recommended 2800 standard coefficient and in some placing modes, the braced bays will show considerable difference with suggested 2800 standard behaviour coefficient relative to each other.

Keywords: buckling restrained brace, plasticity index, behaviour coefficient, resistance coefficient, plastic joints

Procedia PDF Downloads 513
2455 Resin-coated Controlled Release Fertilizer (CRF) for Oil Palm: Laboratory and Main Nursery Evaluation

Authors: Umar Adli Amran, Tan Choon Chek, Mohd Shahkhirat Norizan, Then Kek Hoe

Abstract:

Controlled release fertilizer (CRF) enables a regulated nutrients release for more efficient plant uptake compared to the normal granular fertilizer. It reduces nutrients loss via surface run-off and leaching, hence promotes sustainable agriculture. Although the performance of CRF in providing consistent and timely nutrients supply is well known, its expensive price limits it usage in a large scale plantation. This study is conducted to evaluate the properties and performance of bio-based polyurethane (PU)-coated CRF via laboratory and oil palm main nursery trial. The CRF is produced by coating of a normal commercial compound granular fertilizer from FGV Fertiliser Sdn. Bhd., namely Felda 10 (10.5-8-20-3+0.5B), and designated as CRF FGV10. Based on laboratory evaluation, the CRF FGV10 can sustain nutrients release for more than 6 months. Vegetative growth parameters such as girth size, palm height, third frond length, and the total number of fronds produced were recorded. Besides that, dry biomass of the oil palm seedlings was also determined. From the evaluation, it is proved that at 50% reduction of nutrients application rate and for only two times application (T3), CRF FGV10 enabled the oil palm seedlings to achieve similar vegetative growth with the control samples (T1). It is also proven that only PU-coated CRF FGV10 had allowed the reduction of fertilizer rate and application rounds.

Keywords: nutrition, oil palm seedlings, polyurethane, sustainable manuring, vegetative growth

Procedia PDF Downloads 61
2454 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films

Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou

Abstract:

Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.

Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO

Procedia PDF Downloads 83
2453 Biochar Affects Compressive Strength of Portland Cement Composites: A Meta-Analysis

Authors: Zhihao Zhao, Ali El-Nagger, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang

Abstract:

One strategy to reduce CO₂ emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3-13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 °C/min, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochars with small particle sizes increased the compressive strength of Portland cement composites by 2-7% compared to those without biochar addition. Biochar dosage of < 2.5% of the binder weight enhanced both compressive strengths and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We conclude that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.

Keywords: biochar, Portland cement, constructure, compressive strength, meta-analysis

Procedia PDF Downloads 67
2452 Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture

Authors: Kai-Wei Huang, Yi-Feng Lin

Abstract:

The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory.

Keywords: carbon dioxide capture, membrane contactor, ceramic membrane, ceramic hollow fiber membrane

Procedia PDF Downloads 350
2451 Vibration Absorption Strategy for Multi-Frequency Excitation

Authors: Der Chyan Lin

Abstract:

Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.

Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber

Procedia PDF Downloads 157
2450 Influence of Menstrual Cycle on the Pharmacokinetics of Antibiotics

Authors: Sandhyarani Guggilla

Abstract:

For several reasons no two individuals can be considered identical and hence individualization of therapy is the current trend in treating the patients. Influence of menstrual cycle on the pharmacokinetics of Doxycycline. Twelve healthy female volunteers have been included in the study after obtaining written informed consent. The age ranged from 16 to 25 years. Experimental design: The volunteer selection and recruitment will be carried out after obtaining informed consent from each volunteer. The drug administration will be done to each volunteer at 7 a.m along with a glass of water after an overnight fasting on 3rd, 13th and 23rd day of menstrual cycle. These saliva samples will be stored under frozen conditions until HPLC analysis. Results: In the present study the changes in estrogen levels during ovulatory phase have not shown any influence onAUCo-t of Doxycycline. Only AUCo-t of doxycycline showed an increasing trend with increasing levels of estrogen in ovulatory phase, but not in other phases. Even though the FSH levels differed significantly among volunteers during different phases FSH does not seem to influence the overall pharmacokinetic behavior of Doxycycline during different phases. The present study indicated only the trend that the hormone levels may influence the pharmacokinetic behavior of the Doxycycline. Conclusion: In the present study the changes in hormones have shown an increasing C-max, increasing AUCo-t of Doxycycline pharmacokinetics significantly in follicular phase than ovulatory and luteal phases among volunteers during different phases. In other pharmacokinetic properties like clearance, biological half-life, volume of distribution, mean residence time the change was not significant.

Keywords: menstrual cycle, doxycycline, estrogen, FSH, ovulatory phase

Procedia PDF Downloads 267
2449 Energy Conservation in Heat Exchangers

Authors: Nadia Allouache

Abstract:

Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.

Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis

Procedia PDF Downloads 288
2448 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage

Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish

Abstract:

In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.

Keywords: automobile, clutch, friction, fork

Procedia PDF Downloads 124
2447 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 431
2446 Antiangiogenic Potential of Phellodendron amurense Bark Extract Observed on Chorioallantoic Membrane

Authors: Ľudmila Ballová, Slavomír Kurhajec, Eva Petrovová, Jarmila Eftimová

Abstract:

Angiogenesis, a formation of new blood vessels from a pre-existing vasculature, plays an important role in pathologic processes such as the growth and metastasis of tumours. Tumours cannot grow beyond a few millimetres without blood supply from the newly formed blood vessels from the host tissue, a process called tumour-induced angiogenesis. The successful research of antiangiogenic treatment of cancer has focused on nutraceuticals with angiogenesis-modulating properties. Berberine, as a major active component of the bark of Phellodendron amurense Rupr., has shown antitumour activity by intervening into different steps of carcinogenesis. The influence of ethanolic extract of Phellodendron amurese bark on the angiogenesis was tested in vivo on chick chorioallantoic membrane (CAM). The irritancy of the CAM after the application of the crude bark extract dissolved in normal saline (10 mg/mL) was investigated on embryonic day 7. No significant signs of the irritancy, such as vasoconstriction, hyperaemia, haemorrhage or coagulation were observed which indicates the harmless character of the extract. A significant reduction in vessel sprouting and higher percentage of avascular zone was observed in the case of CAM treated with the extract in comparison with non-treated CAM (control), which is a proof of the antiangiogenic potential of the extract. These results could contribute to the development of novel drugs for the treatment of cancer or other diseases, in which angiogenesis plays a significant role.

Keywords: angiogenesis, berberine, chorioallantoic membrane, irritancy, phellodendron amurense

Procedia PDF Downloads 383
2445 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles

Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei

Abstract:

Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.

Keywords: citrate method, gold nanoparticles, Parsival, population balance equations, Turkevich organizer theory

Procedia PDF Downloads 203
2444 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 51
2443 Food Effects and Food Choices: Aligning the Two for Better Health

Authors: John Monro, Suman Mishra

Abstract:

Choosing foods for health benefits requires information that accurately represents the relative effectiveness of foods with respect to specific health end points, or with respect to responses leading to health outcomes. At present consumers must rely on nutrient composition data, and on health claims to guide them to healthy food choices. Nutrient information may be of limited usefulness because it does not reflect the effect of food structure and food component interactions – that is, whole food effects. Health claims demand stringent criteria that exclude most foods, even though most foods have properties through which they may contribute to positive health outcomes in a diet. In this presentation, we show how the functional efficacy of foods may be expressed in the same format as nutrients, with weight units, as virtual food components that allow a nutrition information panel to show not only what a food is, but also what it does. In the presentation, two body responses linked to well-being are considered – glycaemic response and colonic bulk – in order to illustrate the concept. We show how the nutrient information on available carbohydrates and dietary fibre values obtained by food analysis methods fail to provide information of the glycaemic potency or the colonic bulking potential of foods, because of failings in the methods and approach taken to food analysis. It is concluded that a category of food values that represent the functional efficacy of foods is required to accurately guide food choices for health.

Keywords: dietary fibre, glycaemic response, food values, food effects, health

Procedia PDF Downloads 502
2442 Effect of Steel Fibers on M30 Fly Ash Concrete

Authors: Saksham

Abstract:

Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.

Keywords: concrete, sustainability, durability, compressive strength

Procedia PDF Downloads 52
2441 Biobased Toughening Filler for Polylactic Acid from Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Polymethylmethacrylate

Authors: Panyawutthi Rimdusit, Krittapas Charoensuk, Sarawut Rimdusit

Abstract:

A biobased toughening filler for polylactic acid (PLA) based on natural rubber is developed in this work. Deproteinized natural rubber (DPNR) was modified by grafting polymerization with methyl methacrylate monomer (MMA) and further crosslinked by e-beam irradiation and spray drying process to achieve ultrafine full vulcanized powdered natural rubber grafted with polymethylmethacrylate (UFPNRg-PMMA) to solves in the challenges of incompatibility between natural rubber and PLA. Intriguingly, UFPNR-g-PMMA revealed outstanding and unique properties with minimal particle aggregation. The average particle size of rubber powder obtained from UFPNR-g-PMMA at PMMA grafting content of 20 phr reduced to 3.3±1.2 µm, compared to that of neat UFPNR of 5.3±2.3 µm which also showed partial particle aggregation. It is also found that the impact strength of the filled PLA was enhanced to 33.4±5.6 kJ/m2 at PLA/UFPNR-gPMMA 20 wt% compared to neat PLA of 9.6±3 kJ/m2. The thermal degradation temperature of the PLA composites was enhanced with increasing UFPNR-g-PMMA content without affecting the glass transition temperature of the composites. The fracture surface of PLA/ UFPNR-g-PMMA suggested internal cavitation and crazes are the main effects of rubber toughening PLA with substantial interfacial interaction between the filler and the matrix.

Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polylactic acid, polymer composites

Procedia PDF Downloads 11
2440 Research on the Effect of Accelerated Aging Illumination Mode on Bifacial Solar Modules

Authors: T. H. Huang, C. L. Fern, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. Bifacial solar cells not only absorb light from the front side but also absorb light reflected from the ground on the back side, surpassing the performance of single-sided solar cells. Due to the asymmetry of the two sides of the light, in addition to the difference in photovoltaic conversion efficiency, there will also be differences in heat distribution, which will affect the electrical properties and material structure of the bifacial solar cell itself. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with UVC light sources and halogen lamps for accelerated aging, as well as a control group without aging. After two weeks of accelerated aging, the bifacial solar cells were visual observation, and infrared thermal images were taken; then, the samples were subjected to IV measurement, and samples were taken for SEM, Raman, and XRD analyses in order to identify the defects that lead to failure and chemical changes, as well as to analyze the reasons for the degradation of their characteristics. From the results of the analysis, it is found that aging will cause carbonization of the polymer material on the surface of bifacial solar cells, and the crystal structure will be affected.

Keywords: bifacial solar cell, accelerated aging, temperature, characterization, electrical measurement

Procedia PDF Downloads 113
2439 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 87
2438 Evaluation of the Skid Resistance of Asphalt Concrete Made of Local Low-Performance Aggregates Based on New Accelerated Polishing Machine

Authors: Saci Abdelhakim Ferkous, Khedoudja Soudani, Smail Haddadi

Abstract:

This paper presents the results of a laboratory experimental study that explores the skid resistance of asphalt concrete mixtures made of local low-performance aggregates by partially replacing sand with olive mill waste (OMW). OMW was mixed with aggregates using a dry process by replacing sand with contents of 5%, 7%, 10% and 15%. The mechanical performances of the mixtures were evaluated using the Marshall and Duriez tests. A modified accelerated polishing machine was used as polishing equipment, and a British pendulum tester (BPT) was used to test the skid resistance of the samples. Finally, texture parameter analysis was performed using scanning electron microscopy (SEM) and Mountains Map software to assess the effect of OMW on the friction coefficient evolution. Using a distinct road wheel for a modified version of an accelerated polishing machine, which is normally used to determine the polished stone value of aggregates, the results showed that the addition of OMW up to 10% conferred a better skid resistance in comparison to normal asphalt concrete. The presence of olive mill waste in the mixture until 15% guarantees a gain of 22%-29% in skid resistance after polishing compared with the reference mix. Indeed, from texture parameter analysis, it was observed that there was differential wear of the lightweight aggregates (OMW) compared to the other aggregates during the polishing process, which created a new surface microtexture that had new peaks and led to a good level of friction compared to the mixtures without OMW. In general, it was found that OMW is a promising modifier for asphalt mixtures with both engineering and economic merits.

Keywords: skid resistance, olive mill waste, polishing resistance, accelerated polishing machine, local materials, sustainable development.

Procedia PDF Downloads 56