Search results for: temperature assisted growth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13462

Search results for: temperature assisted growth

5362 Effects of Phase and Morphology on the Electrochemical and Electrochromic Performances of Tungsten Oxide and Tungsten-Molybdenum Oxide Nanostructures

Authors: Jinjoo Jung, Hayeon Won, Doyeong Jeong, Do Hyung Kim

Abstract:

We present the electrochemical and electrochromic performance of the novel crystalline tungsten oxide and tungsten-molybdenum oxide nanostructures synthesized by utilizing solvo-thermal method with hexacarbonyl tungsten, hexacarbonyl molybdenum, and ethyl alcohol. The morphology and phase of the prepared products were highly dependent on the synthesis conditions such as synthesis and annealing temperature, synthesis time, and precursor ratio. The tungsten oxide nanostructures (TCNs) have urchin-like or spherical nanostructure with different phase of W18O49 and WO3. The morphology of tungsten-molybdenum oxide nanostructures (TMONs) is basically similar to that of TCNs. However, the morphology and phase of TMONs are more diverse and are strongly dependent on the composition ratios of W/Mo in the precursor. The electrochemical properties depending on their morphologies and phases of TCNs and TMONs are compared using cyclic voltammetry and galvanostatic charge/discharge tests. The relationship between the electrochromic performance and phase structures/morphologies of nanostructured TCNs and TMONs are systematically investigated.

Keywords: electrochemical, electrochromic, tungsten oxide, tungsten-molybdenum oxide

Procedia PDF Downloads 590
5361 Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles

Authors: Shinen B., Bavor J., Dorjkhand B., Suvd B., Maitsetseg B.

Abstract:

A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade.

Keywords: bioavailability, heavy metals, nanoparticles, remediation

Procedia PDF Downloads 191
5360 The Effects of Terrein: A Secondary Metabolite from Aspergillus terreus as Anticancer and Antimetastatic Agent on Lung Cancer Cells

Authors: Paiwan Buachan, Maneekarn Namsa-Aid, Suchada Jongrungruangchok, Foengchat Jarintanan, Wanlaya Uthaisang-Tanechpongtamb

Abstract:

Lung cancer or pulmonary carcinoma is the uncontrolled growth of abnormal cells in one or both of the lungs. These abnormal cells can spread to other organs of the body through lymphatic system or bloodstream which is called metastatic stage that leading cause of cancer death. Terrein (C₈H₁₀O₃; MW= 154.06 kDa) is a secondary bioactive fungal metabolite, which was isolated from the Aspergillus terreus. In this study, we investigated the effects of terrein on the inhibition of human lung cancer cell proliferation and metastasis. The A549 human non-small cell lung cancer cell line was used as a model. Terrein significantly inhibited lung cancer cell proliferation measuring by a colorimetric MTT assay (IC₅₀ 0.32 mM) and significantly inhibited metastatic processes including migration, invasion, and adhesion that determined by wound healing assay, transwell assay, and adhesion assay, respectively. These findings indicate that terrein could be a potential therapeutic agent for lung cancer.

Keywords: terrein, lung cancer, anticancer, antimetastatic

Procedia PDF Downloads 171
5359 Evaluation of Soil Thermal-Entropy Properties with a Single-Probe Heat-Pulse Technique

Authors: Abdull Halim Abdull, Nasiman Sapari, Mohammad Haikal Asyraf Bin Anuar

Abstract:

Although soil thermal properties are required in many areas to improve oil recovery, they are seldom measured on a routine basis. Reasons for this are unclear, but may be related to a lack of suitable instrumentation and entropy theory. We integrate single probe thermal gradient for the radial conduction of a short-duration heat pulse away from a single electrode source, and compared it with the theory for an instantaneously heated line source. By measuring the temperature response at a short distance from the line source, and applying short-duration heat-pulse theory, we can extract all the entropy properties, the thermal diffusivity, heat capacity, and conductivity, from a single heat-pulse measurement. Results of initial experiments carried out on air-dry sand and clay materials indicate that this heat-pulse method yields soil thermal properties that compare well with thermal properties measured by single electrode.

Keywords: entropy, single probe thermal gradient, soil thermal, probe heat

Procedia PDF Downloads 447
5358 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L

Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar

Abstract:

Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.

Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness

Procedia PDF Downloads 250
5357 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints

Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl

Abstract:

The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.

Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction

Procedia PDF Downloads 439
5356 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth

Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie

Abstract:

Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.

Keywords: Spent bleaching earth, reactivation, regeneration, thermal treatment, dye removal, thermodynamic

Procedia PDF Downloads 183
5355 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)

Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram

Abstract:

Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.

Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition

Procedia PDF Downloads 246
5354 Synthesis and Characterization of CaZrTi2O7 from Tartrate Precursor Employing Microwave Heating Technique

Authors: B. M. Patil, S. R. Dharwadkar

Abstract:

Zirconolite (CaZrTi2O7) is one of the three major phases in the synthetic ceramic 'SYNROC' which is used for immobilization of high-level nuclear waste and also acts as photocatalytic and photophysical properties. In the present work the nanocrystalline CaZrTi2O7 was synthesized from Calcium Zirconyl Titanate tartrate precursor (CZTT) employing two different heating techniques such as Conventional heating (Muffle furnace) and Microwave heating (Microwave Oven). Thermal decomposition of the CZTT precursors in air yielded nanocrystalline CaZrTi2O7 powder as the end product. The products obtained by annealing the CZTT precursor using both heating method were characterized using simultaneous TG-DTA, FTIR, XRD, SEM, TEM, NTA and thermodilatometric study. The physical characteristics such as crystallinity, morphology and particle size of the product obtained by heating the CZTT precursor at the different temperatures in a Muffle furnace and Microwave oven were found to be significantly different. The microwave heating technique considerably lowered the synthesis temperature of CaZrTi2O7. The influence of microwave heating was more pronounced as compared to Muffle furnace heating. The details of the synthesis of CaZrTi2O7 from CZTT precursor are discussed.

Keywords: CZTT, CaZrTi2O7, microwave, SYNROC, zirconolite

Procedia PDF Downloads 165
5353 Teacher Culture Inquiry of Classroom Observation at an Elementary School in Taiwan

Authors: Tsai-Hsiu Lin

Abstract:

Three dimensions of teacher culture hinder educational improvement: individualism, conservatism and presentism. To promote the professional development of teachers, these three aspects in teacher culture should be eliminated. Classroom observation may be a useful method of eliminating individualism. The Ministry of Education in Taiwan has attempted to reduce the isolation of teachers to promote their professional growth. Because classroom observation discourse varies, teachers are generally unwilling to allow their teaching to be observed. However, classroom observations take place in the country in the form of school evaluations. The main purpose of this study was to explore the differences in teachers’ conservatism, individualism and presentism after classroom observations had been conducted at an elementary school in Taiwan. The research method was a qualitative case study involving interviews with the school principal, the director of academic affairs, and two classroom teachers. The following conclusions were drawn: (1) Educators in different positions viewed classroom observations differently; (2) The classroom teachers did not highly value classroom observation; (3) There was little change in the teachers’ conservatism, individualism and presentism after classroom observation.

Keywords: classroom observation, Lortie’s Trinity, teacher culture, teacher professional development

Procedia PDF Downloads 307
5352 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane

Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato

Abstract:

Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.

Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell

Procedia PDF Downloads 154
5351 Determinants of Inward Foreign Direct Investment: New Evidence from Bangladesh

Authors: Mohammad Maruf Hasan

Abstract:

Foreign Direct Investment (FDI) has been increased at a remarkable position around the globe in which emerging economies are getting more FDI compared to industrialized economies. This study aims to examine the determinants of inward FDI flows in Bangladesh. To estimate the long and short-run impact of the FDI determinants for 1996-2020, we employed the Autoregressive-Distributed Lag (ARDL) model. Results show that: (1) macroeconomic determinants, such as economic growth, infrastructure, and market size, have a significant and strong positive effect.(2) Inflation exchange rate shows insignificant effects, while trade openness has mixed (short-run negative, long-run positive) effects on FDI inflows in both the long and short run. (3) Current institutional determinants rule of law has a positive effect on FDI inflows but is statistically insignificant, political stability has a negative, and the rule of law has a considerable beneficial impact on inflows of FDI. (4) The macroeconomic factors have been determined to impact Bangladesh's FDI inflows. Finally, a stable macroeconomic climate is more effective at luring FDI, as this study confirms. From a policy perspective, this study will help the government and policymakers to make a new investment policy.

Keywords: determinants, FDI, ARDL, Bangladesh

Procedia PDF Downloads 73
5350 Need of National Space Legislation for Space Faring Nations

Authors: Muhammad Naveed, Yang Caixia

Abstract:

The need for national space legislation is pivotal, particularly in light of the fact that in recent years space activities have grown immensely both in volume and diversity. Countries are progressively developing capabilities in space exploration and scientific discoveries, market their capabilities to manufacture satellites, provide launch services from their facilities and are looking to privatize and commercialize their space resources. Today, nations are also seeking to comprehend the technological and financial potential of the private sector and are considering to share their financial burdens with them and to limit their exposures to risks, but they are lagging behind in legal framework in this regard. In the perspective of these emerging developments, it is therefore, felt that national space legislation should be enacted with the goal of building and implementing a vibrant and transparent legal framework at the national level to hasten investments and to ensure growth in this capital intensive - highly yield strategic sector. This study looks at (I) the international legal framework that governs space activities; (II) motivation behind making national space laws; and (III) the need for national space legislation. The paper concludes with some recommendations with regards to the conceivable future direction for national space legislation, in particular space empowered sub-areas for countries.

Keywords: international conventions, national legislation, space faring nations, space law

Procedia PDF Downloads 277
5349 Economic Forecasting Analysis for Solar Photovoltaic Application

Authors: Enas R. Shouman

Abstract:

Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.

Keywords: photovoltaic, financial methods, solar energy, economics, PV panel

Procedia PDF Downloads 109
5348 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network

Authors: Sharad Shrivastava, Arun Jalan

Abstract:

In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.

Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network

Procedia PDF Downloads 437
5347 Hybrid Conductive Polymer Composites: Effect of Mixed Fillers and Polymer Blends on Pyroresistive Properties

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

High-density polyethylene (HDPE) filled with silver coated glass flakes (5µm) was investigated and the effect on PTC by addition of a second filler (100µm silver coated glass flake) or matrix (polypropylene elastomer) to the composite were examined. The addition of the secondary filler promoted the electrical properties of the composite. The bigger flakes acted like a bridge between the small flakes and this helped to enhance the electrical properties. The PTC behaviour of the composite was also improved by the addition of the bigger flakes due to the increase in separation distance between particles caused by the bigger flakes. Addition of small amount of polypropylene elastomer enhanced not only PTC effect but also improved substantially the flexibility of the composite as well as reduces the overall filler content. SEM images showed that the fillers were dispersed in the HDPE phase.

Keywords: positive temperature coefficient, conductive polymer composite, electrical conductivity, high density polyethylene

Procedia PDF Downloads 471
5346 Investigation the Polluting Effect of Heavy Elements on Underground Water in Behbahan Plain, South West Zagros

Authors: Zohreh Marbooti, Rezvan Khavari

Abstract:

Groundwater as an essential part of natural resources seems to be an important issue in environmental engineering, so preservation and purification of it can have a critical value for any community. This paper investigates the concentration of elements of Pb, Cd, As, Se. For ground water in Behbahan (a city on south west of Iran), to this purpose a group of 30 wells were studied to examine the concentration of the elements of Pb, Cd, As, Se, and also to determine PH, EC, TDS, temperature and the ions of HCO32-, SO42-, Cl-, Na+, Mg2+, Ca2+, K+ for the wells. Results of the analyses show that the concentration of the elements of Pb, As and, Cd in 33,13,56 percent of the wells respectively and Se in all the samples were greater than normal range of WHO. Since there is a low correlation between Pb and major ions of (HCO32-, SO42-, Cl-, Na+, Mg2+, Ca2+, K+) it can be revealed that Pb overconcentration caused by human contamination. Relative great correlation between Se and the ions showed that Se derived from Gypsum and Dolomit. The big correlation between As and major cations and onions, imply that As can originate from dissolution and liquidation of mineral evaporation in the zone. The high rate of Cadmium concentration in urban sewagewater is due to the small industries, workshops and, mills wastewater.

Keywords: heavy elements, underground water, pollution, waste water

Procedia PDF Downloads 561
5345 Natural Dyeing of Textile Cotton Fabric and Its Characterization

Authors: Rabia Almas

Abstract:

Today’s world is demanding natural and biological colorants on priority bases as an alternative to toxic and unsustainable synthetic dyes. Sustainable natural colors from plants and/or living organisms such as bacteria's and fungi attracted the world research scholars and textile industries recently due to the excitement and opportunities they covered. So, in the present study, natural colors from food waste, such as orange peels and peanuts, were extracted and applied to cotton fabric. The dyeing recipes were optimized in terms of dye concentration, processing temperature and time for higher color strength. The characterization of the dyes and fabric, such as Fourier transform infrared spectroscopy, Scanning Electron Microscopy, and fastness properties were measured for the identification of the chemical groups involved for a better understanding of the dyeing behavior. The results revealed that proper mordanting and concentration of dye on cotton fabric could give high color strength and good fastness to wash and light and these natural dyes can be used as an alternative to synthetic toxic colorants.

Keywords: textile, textile dyes, natural dyes, bio colors

Procedia PDF Downloads 84
5344 An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers

Authors: Salwa Mowafi, Mohamed Rehan, Hany Kafafy

Abstract:

In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles.

Keywords: microwave irradiation technique, multi-functionality properties, silver nanoparticles, wool fibers

Procedia PDF Downloads 207
5343 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization

Authors: Hassan Naseh, Javad Roozgard

Abstract:

This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.

Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization

Procedia PDF Downloads 589
5342 Delivery of Doxorubicin to Glioblastoma Multiforme Using Solid Lipid Nanoparticles with Surface Aprotinin and Melanotransferrin Antibody for Enhanced Chemotherapy

Authors: Yung-Chih Kuo, I-Hsuan Lee

Abstract:

Solid lipid nanoparticles (SLNs) conjugated with aprotinin (Apr) and melanotransferrin antibody (Anti-MTf) were used to carry doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) chemotherapy. Dox-entrapped SLNs with grafted Apr and Anti-MTf (Apr-Anti-MTf-Dox-SLNs) were applied to a cultured monolayer comprising human brain-microvascular endothelial cells (HBMECs) with regulation of human astrocyte (HAs) and to a proliferated colony of U87MG cells. Based on the average particle diameter, zeta potential, entrapping efficiency of Dox, and grafting efficiency of Apr and Anti-MTf, we found that 40% (w/w) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in lipids were appropriate for fabricating Apr-Anti-MTf-Dox-SLNs. In addition, Apr-Anti-MTf-Dox-SLNs could prevent Dox from fast dissolution and did not induce a serious cytotoxicity to HBMECs and HAs when compared with free Dox. Moreover, the treatments with Apr-Anti-MTf-Dox-SLNs enhanced the ability of Dox to infuse the BBB and to inhibit the growth of GBM. The current Apr-Anti-MTf-Dox-SLNs can be a promising pharmacotherapeutic preparation to penetrate the BBB for malignant brain tumor treatment.

Keywords: solid lipid nanoparticle, glioblastoma multiforme, blood–brain barrier, doxorubicin

Procedia PDF Downloads 362
5341 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator

Authors: Kriengkrai Assawamartbunlue, Channarong Wantha

Abstract:

This paper presents the effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e. absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and it is very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.

Keywords: acoustic properties, Carnot’s efficiency, interference of waves, operating pressure, optimal operating frequency, stack performance, standing wave, thermoacoustic refrigerator

Procedia PDF Downloads 486
5340 A Study of the Formation, Existence and Stability of Localised Pulses in PDE

Authors: Ayaz Ahmad

Abstract:

TOPIC: A study of the formation ,existness and stability of localised pulses in pde Ayaz Ahmad ,NITP, Abstract:In this paper we try to govern the evolution deterministic variable over space and time .We analysis the behaviour of the model which allows us to predict and understand the possible behaviour of the physical system .Bifurcation theory provides a basis to systematically investigate the models for invariant sets .Exploring the behaviour of PDE using bifurcation theory which provides many challenges both numerically and analytically. We use the derivation of a non linear partial differential equation which may be written in this form ∂u/∂t+c ∂u/∂x+∈(∂^3 u)/(∂x^3 )+¥u ∂u/∂x=0 We show that the temperature increased convection cells forms. Through our work we look for localised solution which are characterised by sudden burst of aeroidic spatio-temporal evolution. Key word: Gaussian pulses, Aeriodic ,spatio-temporal evolution ,convection cells, nonlinearoptics, Dr Ayaz ahmad Assistant Professor Department of Mathematics National institute of technology Patna ,Bihar,,India 800005 [email protected] +91994907553

Keywords: Gaussian pulses, aeriodic, spatio-temporal evolution, convection cells, nonlinear optics

Procedia PDF Downloads 340
5339 Smart and Active Package Integrating Printed Electronics

Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares

Abstract:

In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).

Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic

Procedia PDF Downloads 109
5338 Antibacterial Activity of Noble Metal Functionalized Magnetic Core-Zeolitic Shell Nanostructures

Authors: Mohsen Padervand

Abstract:

Functionalized magnetic core-zeolitic shell nanostructures were prepared by the hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared spectra (FTIR), nitrogen adsorption-desorption isotherms (BET) and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles at the presence of organic templates was well approved. The antibacterial activity of prepared samples was investigated by the inactivation of E.coli as a gram negative bacterium. A new mechanism was proposed to inactivate the bacterium over the prepared samples. Minimum Inhibitory Concentration (MIC) and reuse ability were studied too. TEM images of the destroyed microorganism after the treatment time were applied to illustrate the inactivation mechanism. The interaction of the noble metals with organic components on the surface of nanostructures studied theoretically and the results were used to interpret the experimental results.

Keywords: nickel ferrite nanoparticles, magnetic core-zeolitic shell, antibacterial activity, E. coli

Procedia PDF Downloads 331
5337 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks

Authors: Maya S. Rathod, Bahadur Singh Hathan

Abstract:

Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, hardness, antioxidant activity, total phenolic content and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100 g premix having 16.8 % moisture content (w.b).

Keywords: extrusion, mustard leaves powder, optimization, response surface methodology

Procedia PDF Downloads 545
5336 N₂O₂ Salphen-Like Ligand and Its Pd(II), Ag(I) and Cu(II) Complexes as Potentially Anticancer Agents: Design, Synthesis, Antimicrobial, CT-DNA Binding and Molecular Docking

Authors: Laila H. Abdel-Rahman, Mohamed Shaker S. Adam, Ahmed M. Abu-Dief, Hanan El-Sayed Ahmed

Abstract:

In this investigation, Cu(II), Pd(II) and Ag(I) complexes with the tetra-dentate DSPH Schiff base ligand were synthesized. The DSPH Schiff base and its complexes were characterized by using different physicochemical and spectral analysis. The results revealed that the metal ions coordinated with DSPH ligand through azomethine nitrogen and phenolic oxygen. Cu(II), Pd(II) and Ag(I) complexes are present in a 1:1 molar ratio. Pd(II) and Ag(I) complexes have square planar geometries while, Cu(II) has a distorted octahedral (Oh) geometry. All investigated complexes are nonelectrolytes. The investigated compounds were tested against different strains of bacteria and fungi. Both prepared compounds showed good results of inhibition against the selected pathogenic microorganism. Moreover, the interaction of investigated complexes with CT-DNA was studied via various techniques and the binding modes are mainly intercalative and grooving modes. Operating Environment MOE package was used to do docking studies for the investigated complexes to explore the potential binding mode and energy. Furthermore, the growth inhibitory effect of the investigated compounds was examined on some cancer cells lines.

Keywords: tetradentate, antimicrobial, CT-DNA interaction, docking, anticancer

Procedia PDF Downloads 244
5335 Effects of Type and Concentration Stabilizers on the Characteristics of Nutmeg Oil Nanoemulsions Prepared by High-Pressure Homogenization

Authors: Yuliani Aisyah, Sri Haryani, Novi Safriani

Abstract:

Nutmeg oil is one of the essential oils that have the ability as an antibacterial so it potentially uses to inhibit the growth of undesirable microbes in food. However, the essential oil that has low solubility in water, high volatile content, and strong aroma properties is difficult to apply in to foodstuffs. Therefore, the oil-in-water nanoemulsion system was used in this research. Gelatin, lecithin and tween 80 with 10%, 20%, 30% concentrations have been examined for the preparation of nutmeg oil nanoemulsions. The physicochemical properties and stability of nutmeg oil nanoemulsion were analyzed on viscosity, creaming index, emulsifying activity, droplet size, and polydispersity index. The results showed that the type and concentration stabilizer had a significant effect on viscosity, creaming index, droplet size and polydispersity index (P ≤ 0,01). The nanoemulsions stabilized with tween 80 had the best stability because the creaming index value was 0%, the emulsifying activity value was 100%, the droplet size was small (79 nm) and the polydispersity index was low (0.10) compared to the nanoemulsions stabilized with gelatin and lecithin. In brief, Tween 80 is strongly recommended to be used for stabilizing nutmeg oil nanoemulsions.

Keywords: nanoemulsion, nutmeg oil, stabilizer, stability

Procedia PDF Downloads 159
5334 Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation

Authors: Richard, Iyan Subiyanto, Chairul Hudaya

Abstract:

Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste.

Keywords: activated carbon, energy storage material, green coke, specific surface area

Procedia PDF Downloads 168
5333 Using Bamboo Structures for Protecting Mangrove Ecosystems: A Nature-Based Approach

Authors: Sourabh Harihar, Henk Jan Verhagen

Abstract:

The nurturing of a mangrove ecosystem requires a protected coastal environment with adequate drainage of the soil substratum. In a conceptual design undertaken for a mangrove rejuvenation project along the eastern coast of Mumbai (India), various engineering alternatives have been thought of as a protective coastal structure and drainage system. One such design uses bamboo-pile walls in creating shielded compartments in the form of various layouts, coupled with bamboo drains. The bamboo-based design is found to be environmentally and economically advantageous over other designs like sand-dikes which are multiple times more expensive. Moreover, employing a natural material such as bamboo helps the structure naturally blend with the developing mangrove habitat, allaying concerns about dismantling the structure post mangrove growth. A cost-minimising and eco-friendly bamboo structure, therefore, promises to pave the way for large rehabilitation projects in future. As mangrove ecosystems in many parts of the world increasingly face the threat of destruction due to urban development and climate change, protective nature-based designs that can be built in a short duration are the need of the hour.

Keywords: bamboo, environment, mangrove, rehabilitation

Procedia PDF Downloads 282