Search results for: subcritical water
7876 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir
Authors: Ahmad Fahim Nasiry, Shigeo Honma
Abstract:
We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding
Procedia PDF Downloads 3317875 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model
Authors: V. S. Manivasagam, R. Nagarajan
Abstract:
Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.Keywords: AquaCrop, crop modeling, rainfed maize, water stress
Procedia PDF Downloads 2697874 Amphibians and Water Quality: An Assessment of Diversity and Physico-Chemical Parameters of Habitats for Amphibians in Sindh, Pakistan
Authors: Kalsoom Shaikh, Saima Memon, Riffat Sultana
Abstract:
Water pollution affects amphibians because they are intimately water dependent. The permeable skin makes amphibians very sensitive to the physico-chemical parameters of their aquatic environment. They spawn in water bodies where quality of water can affect the growth, development, and survival of their eggs which may die even before hatching into larvae or developing into adults due to water contamination. Considering the importance of amphibians in agriculture, food web, ecosystem and pharmaceutics as well as adverse impact of environmental degradation on them, present study was proposed to comprehensively determine the status of their diversity and habitats in Sindh province of Pakistan so as to execute monitoring for their conservation in future. Physico-chemical parameters including pH, EC (electric conductivity), TDS (total dissolved solids), T-Hard (total hardness), T-Alk (total alkalinity), Cl (chloride), CO₂ (carbon dioxide), SO₄ (sulphate), PO₄ (phosphate), NO₂ (nitrite) and NO₃ (nitrate) were analyzed from amphibian habitats using instruments and methodology of analytical grade. The results of present study after being compared with scientific data provided by different researchers and EPA (environmental protection agency), it was concluded that amphibian habitats consisted of high values of analyzed parameters except pH and CO₂. Entire study area required an urgent implementation of conservation actions for saving amphibians.Keywords: amphibians, diversity, habitats, physico-chemical parameters, water quality, Pakistan, Sindh Province
Procedia PDF Downloads 2247873 Optimization of Water Desalination System Powered by High Concentrated Photovoltaic Panels in Kuwait Climate Conditions
Authors: Adel A. Ghoneim
Abstract:
Desalination using solar energy is an interesting option specifically at regions with abundant solar radiation since such areas normally have scarcity of clean water resources. Desalination is the procedure of eliminating dissolved minerals from seawater or brackish water to generate fresh water. In this work, a simulation program is developed to determine the performance of reverse osmosis (RO) water desalination plant powered by high concentrated photovoltaic (HCPV) panels in Kuwait climate conditions. The objective of such a photovoltaic thermal system is to accomplish a double output, i.e., co-generation of both electricity and fresh water that is applicable for rural regions with high solar irradiation. The suggested plan enables to design an RO plant that does not depend on costly batteries or additional land and significantly reduce the government costs to subsidize the water generation cost. Typical weather conditions for Kuwait is employed as input to the simulation program. The simulation program is utilized to optimize the system efficiency as well as the distillate water production. The areas and slopes of HCPV modules are varied to attain maximum yearly power production. Maximum yearly distillate production and HCPV energy generation are found to correspond to HCPV facing south with tilt of 27° (Kuwait latitude-3°). The power needed to produce 1 l of clean drinking water ranged from 2 to 8 kW h/m³, based on the salinity of the feed water and the system operating conditions. Moreover, adapting HCPV systems achieve an avoided greenhouse gases emission by about 1128 ton CO₂ annually. Present outcomes certainly illustrate environmental advantages of water desalination system powered by high concentrated photovoltaic systems in Kuwait climate conditions.Keywords: desalination, high concentrated photovoltaic systems, reverse osmosis, solar radiation
Procedia PDF Downloads 1427872 Role of Numerical Simulation as a Tool to Enhance Climate Change Adaptation and Resilient Societies: A Case Study from the Philippines
Authors: Pankaj Kumar
Abstract:
Rapid global changes resulted in unfavorable hydrological, ecological, and environmental changes and cumulatively affected natural resources. As a result, the local communities become vulnerable to water stress, poor hygiene, the spread of diseases, food security, etc.. However, the central point for this vulnerability revolves around water resources and the way people interrelate with the hydrological system. Also, most of the efforts to minimize the adverse effect of global changes are centered on the mitigation side. Hence, countries with poor adaptive capacities and poor governance suffer most in case of disasters. However, several transdisciplinary numerical tools are well designed and are capable of answering “what-if questions” through scenario analysis using a system approach. This study has predicted the future water environment in Marikina River in the National Capital Region, Metro Manila of Philippines, using Water Evaluation and Planning (WEAP), an integrated water resource management tool. Obtained results can answer possible adaptation measures along with their associated uncertainties. It also highlighted various challenges for the policy planners to design adaptation countermeasures as well as to track the progress of achieving SDG 6.0.Keywords: water quality, Philippines, climate change adaptation, hydrological simulation, wastewater management, weap
Procedia PDF Downloads 1057871 Groundwater Based Irrigation for Paddy Farming in Gangetic Plains of India: Consequences and Mitigations
Authors: Dhananjoy Dutta
Abstract:
Field studies in lower Gangetic plains of India reveal that over-abstraction of groundwater for irrigation to paddy leads to a substantial depletion of groundwater over the decades, resulting in negative effects on lowering of the water table, drying up of surface water sources and aquifer pollution with leached-out arsenic. The aggravating arsenic toxicity in drinking water is manifested in health problems and ‘arsenicosis’ of people. A social conflict arises between farmers, who intend to grow paddy for livelihoods, and the groundwater authority, which enacts the ‘Regulation Laws’ by putting a check on the excessive installation of private tube-wells for irrigation. Hence, considering the challenges of resource sustainability, health issues, and food security, the study calls for a paradigm shift in policy from further groundwater development to sustainable water resources management and evaluates some strategies integrating supply and demand side management for mitigating the problems.Keywords: groundwater, irrigation, paddy farming, water table depletion, arsenic pollution, gangetic plains
Procedia PDF Downloads 307870 Potential Risk Factors Associated with Sole Hemorrhages Causing Lameness in Egyptian Water Buffaloes and Native Breed Cows
Authors: Waleed El-Said Abou El-Amaiem
Abstract:
Sole hemorrhages are considered as a main cause for sub clinical laminitis. In this study we aimed at discussing the most prominent risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. The final multivariate logistic regression model showed, a significant association between sub acute ruminal acidosis (P< 0.05), limb affected (P< 0.05) and weight (P< 0.05) and sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. According to our knowledge, this is the first paper to discuss the risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows.Keywords: lameness, buffalo, sole hemorrhages, breed cows
Procedia PDF Downloads 4517869 Protein-Thiocyanate Composite as a Sensor for Iron III Cations
Authors: Hosam El-Sayed, Amira Abou El-Kheir, Salwa Mowafi, Marwa Abou Taleb
Abstract:
Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Proteinium thiocyanate (PTC) composite was prepared by reaction of a regenerated film with potassium thiocyanate in acid medium. In another experiment, the said acidified proteins were reacted with potassium thiocyante before dissolution and regeneration in a form of PTC composite. The possibility of using PTC composite for determination of the concentration of iron III ions in domestic as well as industrial water was examined. The concentration of iron III cations in water was determined spectrophotometrically by measuring the intensity of blood red colour of iron III thiocyanate obtained by interaction of PTC with iron III cation in the tested water sample.Keywords: iron III cations, protein, sensor, thiocyanate, water
Procedia PDF Downloads 4297868 Physiological Response of Water-Restricted Xhosa Goats Supplemented with Vitamin C
Authors: O.F. Akinmoladun, F.N. Fon, C.T. Mpendulo, O. Okoh
Abstract:
The sustainability of livestock production is under threat as a result of water scarcity, fluctuating precipitation, and high environmental temperature. These combined stressors have impacted negatively on general animal production and welfare, necessitating a very reliable and cost-effective management practices, especially in arid and water-limited regions of the world. Instead of the above, this study was designed to investigate the growth performance and physiological response of water-restricted Xhosa ear-lobe goats fed diets supplemented with single or multiple vitamin C (VC) during summer. The total forty-eight goats used for the experiment were balanced for body weight and randomly assigned to the seven treatment groups (seven goats/treatment): GI (W100%); GII (W70%); GIII (W50%); GIV (W70%+3g/day VC); GV ((W50% +3g/day VC); GVI (W70%+3g/d VC+extra 5g on every eight-day); GVII (W50%+3g/d VC+extra 5g on every eight-day). The design was a complete randomized design and VC was administered per os. At the end of the 75-day feeding trial, GIII (W50%) animals were the most affected (P<0.05) and the effect was more pronounced in their body condition scores (BCs). Weight loss and depression in feed intake due to water restriction (P<0.05) were attenuated by VC treated groups (GIV-GVII). Changes in body thermal gradient (BTG) and rectal temperature (RcT) were similar (P>0.05) across the various experimental groups. The attenuation effect of VC was significant in responses to respiratory rate (RR) and cortisol. Supplementation of VC (either single or multiple) did not significantly (P>0.05) improve water restriction effect on body condition scores (BCs) and FAMACHA©. The current study found out that Xhosa ear lobe goats can adapt to the prevailing bioclimatic changes and limited water intake. However, supplementation of vitamin C can be beneficial at modulating these stressful stimuli. Continuous consistencies in the outcome of vitamin C on water-stressed animals can help validate recommendations especially to farmers in the arid and water-limited regions across the globe.Keywords: vitamin C, Xhosa ear-lobe, thermotolerance, water stress
Procedia PDF Downloads 1317867 Effect of Temperature on Pervaporation Performance of Ag-Poly Vinyl Alcohol Nanocomposite Membranes
Authors: Asmaa Selim, Peter Mizsey
Abstract:
Bio-ethanol is considered of higher potential as a green renewable energy source owing to its environmental benefits and its high efficiency. In the present study, silver nanoparticles were in-situ generated in a poly (vinyl alcohol) in order to improve its potentials for pervaporation of ethanol-water mixture using solution-casting. Effect of silver content on the pervaporation separation index and the enrichment factor of the membrane at 15 percentage mass water at 40ᵒC was reported. Pervaporation data for nanocomposite membranes showed around 100% increase in the water permeance values while the intrinsic selectivity decreased. The water permeances of origin crosslinked PVA membrane, and the 2.5% silver loaded PVA membrane are 26.65 and 70.45 (g/m².kPa.h) respectively. The values of total flux and water flux are closed to each other, indicating that membranes could be effectively used to break the azeotropic point of ethanol-water. Effect of temperature on the pervaporation performance, permeation parameter and diffusion coefficient of both water and ethanol was discussed. The negative heat of sorption ∆Hs values calculated on the basis of the estimated Arrhenius activation energy values indicating that the sorption process was controlled by Langmuir’s mode. The overall results showed that the membrane containing 0.5 mass percentage of Ag salt exhibited excellent PV performance.Keywords: bio-ethanol, diffusion coefficient, nanocomposite, pervaporation, poly (vinyl alcohol), silver nanoparticles
Procedia PDF Downloads 1707866 Vaporization of a Single N-Pentane Liquid Drop in a Flowing Immiscible Liquid Media
Authors: Hameed B. Mahood, Ali Sh. Baqir
Abstract:
Vaporization of a single n-pentane drop in a direct contact with another flowing immiscible liquid (warm water) has been experimentally investigated. The experiments were carried out utilising a cylindrical Perspex tube of diameter 10 cm and height and 150 cm. Saturated liquid n-pentane and warm water at 45oC were used as the dispersed and continuous phases, respectively. Photron FASTCAM SA 1.1high speed camera (75,000f/s) with software V. 321 was implemented during the experiments. Five different continuous phase flow rates (warm water) (10, 20, 30, 40, and 46 L⁄h) were used in the study. The results indicated that the increase of the continuous phase (warm water) flow rate results in increasing of the drop/bubble diameter.Keywords: drop evaporation, direct contact heat transfer, drop/bubble growth, experimental technique
Procedia PDF Downloads 3537865 Design and Implementation of an Efficient Solar-Powered Pumping System
Authors: Mennatallah M. Fouad, Omar Hussein, Lamia A. Shihata
Abstract:
The main problem in many rural areas is the absence of electricity and limited access to water. The novelty of this work lies in implementing a small-scale experimental setup for a solar-powered water pumping system with a battery back-up system. Cooling and cleaning of the PV panel are implemented to enhance its overall efficiency and output. Moreover, a simulation for a large scale solar-powered pumping system is performed using PVSyst software. Results of the experimental setup show that the PV system with a battery backup proved to be a feasible and viable system to operate the water pumping system. Excess water from the pumping system is used to cool and clean the PV panel and achieved an average percentage increase in the PV output by 21.8%. Simulation results have shown that the system provides adequate output to power the solar-powered system and saves 0.3 tons of CO₂ compared to conventional fossil fuels. It is recommended for hot countries to adopt this system, which would help in decreasing the dependence on the depleting fossil fuels, provide access to electricity to areas where there is no electricity supply and also provide a source of water for crop growth as well as decrease the carbon emissions.Keywords: efficient solar pumping, PV cleaning, PV cooling, PV-operated water pump
Procedia PDF Downloads 1357864 Gendered Water Insecurity: a Structural Equation Approach for Female-Headed Households in South Africa
Authors: Saul Ngarava, Leocadia Zhou, Nomakhaya Monde
Abstract:
Water crises have the fourth most significant societal impact after weapons of mass destruction, climate change, and extreme weather conditions, ahead of natural disasters. Intricacies between women and water are central to achieving the 2030 Sustainable Development Goals (SDGs). The majority of the 1.2 billion poor people worldwide, with two-thirds being women, and mostly located in Sub Sahara Africa (SSA) and South Asia, do not have access to safe and reliable sources of water. There exist gendered differences in water security based on the division of labour associating women with water. Globally, women and girls are responsible for water collection in 80% of the households which have no water on their premises. Women spend 16 million hours a day collecting water, while men and children spend 6 million and 4 million per day, respectively, which is time foregone in the pursuit of other livelihood activities. Due to their proximity and activities concerning water, women are vulnerable to water insecurity through exposures to water-borne diseases, fatigue from physically carrying water, and exposure to sexual and physical harassment, amongst others. Proximity to treated water and their wellbeing also has an effect on their sensitivity and adaptive capacity to water insecurity. The great distances, difficult terrain and heavy lifting expose women to vulnerabilities of water insecurity. However, few studies have quantified the vulnerabilities and burdens on women, with a few taking a phenomenological qualitative approach. Vulnerability studies have also been scanty in the water security realm, with most studies taking linear forms of either quantifying exposures, sensitivities or adaptive capacities in climate change studies. The current study argues for the need for a water insecurity vulnerability assessment, especially for women into research agendas as well as policy interventions, monitoring, and evaluation. The study sought to identify and provide pathways through which female-headed households were water insecure in South Africa, the 30th driest country in the world. This was through linking the drinking water decision as well as the vulnerability frameworks. Secondary data collected during the 2016 General Household Survey (GHS) was utilised, with a sample of 5928 female-headed households. Principal Component Analysis and Structural Equation Modelling were used to analyse the data. The results show dynamic relationships between water characteristics and water treatment. There were also associations between water access and wealth status of the female-headed households. Association was also found between water access and water treatment as well as between wealth status and water treatment. The study concludes that there are dynamic relationships in water insecurity (exposure, sensitivity, and adaptive capacity) for female-headed households in South Africa. The study recommends that a multi-prong approach is required in tackling exposures, sensitivities, and adaptive capacities to water insecurity. This should include capacitating and empowering women for wealth generation, improve access to water treatment equipment as well as prioritising the improvement of infrastructure that brings piped and safe water to female-headed households.Keywords: gender, principal component analysis, structural equation modelling, vulnerability, water insecurity
Procedia PDF Downloads 1217863 Assessment of Spatial and Temporal Variations of Some Biological Water Quality Parameters in Mat River, Albania
Authors: Etleva Hamzaraj, Eva Kica, Anila Paparisto, Pranvera Lazo
Abstract:
Worldwide demographic developments of recent decades have been associated with negative environmental consequences. For this reason, there is a growing interest in assessing the state of natural ecosystems or assessing human impact on them. In this respect, this study aims to evaluate the change in water quality of the Mat River for a period of about ten years to highlight human impact. In one year, period of study, several biological and environmental parameters are determined to evaluate river water quality, and the data collected are compared with those of a similar study in 2007. Samples are collected every month in five stations evenly distributed along the river. Total coliform bacteria, the number of heterotrophic bacteria in water, and benthic macroinvertebrates are used as biological parameters of water quality. The most probable number index is used for evaluation of total coliform bacteria in water, while the number of heterotrophic bacteria is determined by counting colonies on plates with Plate Count Agar, cultivated with 0.1 ml sample after series dilutions. Benthic macroinvertebrates are analyzed by the number of individuals per taxa, the value of biotic index, EPT Richness Index value and tolerance value. Environmental parameters like pH, temperature, and electrical conductivity are measured onsite. As expected, the bacterial load was higher near urban areas, and the pollution increased with the course of the river. The maximum concentration of fecal coliforms was 1100 MPN/100 ml in summer and near the most urbanized area of the river. The data collected during this study show that after about ten years, there is a change in water quality of Mat River. According to a similar study carried out in 2007, the water of Mat River was of ‘excellent’ quality. But, according to this study, the water was classified as of ‘excellent’ quality only in one sampling site, near river source, while in all other stations was of ‘good’ quality. This result is based on biological and environmental parameters measured. The human impact on the quality of water of Mat River is more than evident.Keywords: water quality, coliform bacteria, MPN index, benthic macroinvertebrates, biotic index
Procedia PDF Downloads 1187862 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients
Authors: Elena Carcano, James Ball
Abstract:
This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.Keywords: hierarchical process, strategic plan, water emergency conditions, water supply
Procedia PDF Downloads 1607861 Bench-scale Evaluation of Alternative-to-Chlorination Disinfection Technologies for the Treatment of the Maltese Tap-water
Authors: Georgios Psakis, Imren Rahbay, David Spiteri, Jeanice Mallia, Martin Polidano, Vasilis P. Valdramidis
Abstract:
Absence of surface water and progressive groundwater quality deterioration have exacerbated scarcity rapidly, making the Mediterranean island of Malta one of the most water-stressed countries in Europe. Water scarcity challenges have been addressed by reverse osmosis desalination of seawater, 60% of which is blended with groundwater to form the current potable tap-water supply. Chlorination has been the adopted method of water disinfection prior to distribution. However, with the Malteseconsumer chlorine sensory-threshold being as low as 0.34 ppm, presence of chorine residuals and chlorination by-products in the distributed tap-water impacts negatively on its organoleptic attributes, deterring the public from consuming it. As part of the PURILMA initiative, and with the aim of minimizing the impact of chlorine residual on the quality of the distributed water, UV-C, and hydrosonication, have been identified as cost- and energy-effective decontamination alternatives, paving the way for more sustainable water management. Bench-scale assessment of the decontamination efficiency of UV-C (254 nm), revealed 4.7-Log10 inactivation for both Escherichia coli and Enterococcus faecalis at 36 mJ/cm2. At >200 mJ/cm2fluence rates, there was a systematic 2-Log10 difference in the reductions exhibited by E. coli and E. faecalis to suggest that UV-C disinfection was more effective against E. coli. Hybrid treatment schemes involving hydrosonication(at 9.5 and 12.5 dm3/min flow rates with 1-5 MPa maximum pressure) and UV-C showed at least 1.1-fold greater bactericidal activity relative to the individualized UV-C treatments. The observed inactivation appeared to have stemmed from additive effects of the combined treatments, with hydrosonication-generated reactive oxygen species enhancing the biocidal activity of UV-C.Keywords: disinfection, groundwater, hydrosonication, UV-C
Procedia PDF Downloads 1727860 Dynamic Process of Single Water Droplet Impacting on a Hot Heptane Surface
Authors: Mingjun Xu, Shouxiang Lu
Abstract:
Understanding the interaction mechanism between the water droplet and pool fire has an important significance in engineering application of water sprinkle/spray/mist fire suppression. The micro impact process is unclear when the droplet impacts on the burning liquid surface at present. To deepen the understanding of the mechanisms of pool fire suppression with water spray/mist, dynamic processes of single water droplet impinging onto a hot heptane surface are visualized with the aid of a high-speed digital camera at 2000 fps. Each test is repeated 20 times. The water droplet diameter is around 1.98 mm, and the impact Weber number ranges from 30 to 695. The heptane is heated by a hot plate to mimic the burning condition, and the temperature varies from 30 to 90°C. The results show that three typical phenomena, including penetration, crater-jet and surface bubble, are observed, and the pool temperature has a significant influence on the critical condition for the appearance of each phenomenon. A global picture of different phenomena is built according to impact Weber number and pool temperature. In addition, the pool temperature and Weber number have important influences on the characteristic parameters including maximum crater depth, crown height and liquid column height. For a fixed Weber number, the liquid column height increases with pool temperature.Keywords: droplet impact, fire suppression, hot surface, water spray
Procedia PDF Downloads 2437859 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria
Authors: Desmond Okorie, Emmanuel Prince
Abstract:
Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.Keywords: local area network, Ph measurement, wireless sensor network, zigbee
Procedia PDF Downloads 1727858 Evaluation of Groundwater Quality in North-West Region of Punjab, India
Authors: Jeevan Jyoti Mohindroo, Umesh Kumar Garg
Abstract:
The district of Tarntaran is located25 km south of Amritsar city in Punjab State of Northwestern India. It is 5059 Sq. Km in area. It is surrounded by Amritsar in the North, Kapurthala in the East, and Ferozepur in the South and Pakistan in the West. Patti Town is a municipal council of the Tarntaran district of the Indian state of Punjab, located 45 km from Amritsar its geographical coordinates are 310 16' 51" north to 740 51' 25" East Longitude. The town spreads over an area of 50sq. Km. Moisture content is very less in the air, falling within the semiarid region and frequently facing water scarcity as well as water quality problems. The major sources of employment are agriculture, horticulture and animal husbandry engaging almost 80% of the workforce. Water samples are collected from 400 locations in 20 villages on the Patti –Khem Karan highway with 20 samples from each village, and were subjected to analysis of chemical characteristics. The type of water that predominates in the study area is Ca-Mg-HCO3 type, based on hydro-chemical analysis. Besides, suitability of water for irrigation is evaluated based on the sodium adsorption ratio (SAR), residual sodium carbonate, sodium percent and salinity hazard. Other Physico-chemical parameters such as pH, TDS, conductance, etc. were also determined using a water analysis kit. Analysis of water samples for heavy metal analysis was also carried out in the present study.Keywords: groundwater, chemical classification, SAR, RSC, USSL diagram
Procedia PDF Downloads 1977857 Triticum Aestivum Yield Enhanced with Irrigation Scheduling Strategy under Salinity
Authors: Taramani Yadav, Gajender Kumar, R. K. Yadav, H. S. Jat
Abstract:
Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.Keywords: Irrigation Scheduling, Saline Environment, Triticum aestivum, Yield
Procedia PDF Downloads 1447856 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon
Authors: A. Hamieh, Z. Olama, H. Holail
Abstract:
Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion
Procedia PDF Downloads 4347855 Inactivation of Root-Knot Nematode Eggs Meloidogyne enterolobii in Irrigation Water Treated with Ozone
Authors: I. A. Landa-Fernandez, I. Monje-Ramirez, M. T. Orta-Ledesma
Abstract:
Every year plant-parasitic nematodes diminish the yield of high-value crops worldwide causing important economic losses. Currently, Meloidogyne enterolobii has increased its importance due to its high aggressiveness, increasing geographical distribution and host range. Root-knot nematodes inhabit the rhizosphere soil around plant roots. However, they can come into contact with irrigation water. Thus, plant-parasitic nematodes can be transported by water, as eggs or juveniles. Due to their high resistance, common water disinfection methods are not effective for inactivating these parasites. Ozone is the most effective disinfectant for microbial inactivation. The objective of this study is to demonstrate that ozone treatment is an alternative method control in irrigation water of the root-knot nematode M. enterolobii. It has been shown that ozonation is an effective treatment for the inactivation of protozoan cysts and oocysts (Giardia and Cryptosporidium) and for other species of the genus Meloidogyne (M. incognita), but not for the enterolobii specie. In this study, the strain of M. enterolobii was isolated from tomatoes roots. For the tests, eggs were used and were inoculated in water with similar characteristics of irrigation water. Subsequently, the disinfection process was carried out in an ozonation unit. The performance of the treatments was evaluated through the egg's viability by assessing its structure by optical microscopy. As a result of exposure to ozone, the viability of the nematode eggs was reduced practically in its entirety; with dissolved ozone levels in water close to the standard concentration (equal to 0.4 mgO₃/L), but with high contact times (greater than 4 min): 0.2 mgO₃/L for 15 minutes or 0.55 mgO₃/L for 10 minutes. Additionally, the effect of temperature, alkalinity and organic matter of the water was evaluated. Ozonation is effective and a promising alternative for the inactivation of nematodes in irrigation water, which could contribute to diminish the agricultural losses caused by these organisms.Keywords: inactivation process, irrigation water treatment, ozonation, plant-parasite nematodes
Procedia PDF Downloads 1677854 Water Footprint for the Palm Oil Industry in Malaysia
Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz
Abstract:
Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method
Procedia PDF Downloads 1757853 Kinetics of Sugar Losses in Hot Water Blanching of Water Yam (Dioscorea alata)
Authors: Ayobami Solomon Popoola
Abstract:
Yam is majorly a carbohydrate food grown in most parts of the world. It could be boiled, fried or roasted for consumption in a variety of ways. Blanching is an established heat pre-treatment given to fruits and vegetables prior to further processing such as dehydration, canning, freezing etc. Losses of soluble solids during blanching has been a great problem because a reasonable quantity of the water-soluble nutrients are inevitably leached into the blanching water. Without blanching, the high residual levels of reducing sugars after extended storage produce a dark, bitter-tasting product because of the Maillard reactions of reducing sugars at frying temperature. Measurement and prediction of such losses are necessary for economic efficiency in production and to establish the level of effluent treatment of the blanching water. This paper aims at resolving this problem by investigating the effects of cube size and temperature on the rate of diffusional losses of reducing sugars and total sugars during hot water blanching of water-yam. The study was carried out using four temperature levels (65, 70, 80 and 90 °C) and two cubes sizes (0.02 m³ and 0.03 m³) at 4 times intervals (5, 10, 15 and 20 mins) respectively. Obtained data were fitted into Fick’s non-steady equation from which diffusion coefficients (Da) were obtained. The Da values were subsequently fitted into Arrhenius plot to obtain activation energies (Ea-values) for diffusional losses. The diffusion co-efficient were independent of cube size and time but highly temperature dependent. The diffusion coefficients were ≥ 1.0 ×10⁻⁹ m²s⁻¹ for reducing sugars and ≥ 5.0 × 10⁻⁹ m²s⁻¹ for total sugars. The Ea values ranged between 68.2 to 73.9 KJmol⁻¹ and 7.2 to 14.30 KJmol⁻¹ for reducing sugars and total sugars losses respectively. Predictive equations for estimating amount of reducing sugars and total sugars with blanching time of water-yam at various temperatures were also presented. The equation could be valuable in process design and optimization. However, amount of other soluble solids that might have leached into the water along with reducing and total sugars during blanching was not investigated in the study.Keywords: blanching, kinetics, sugar losses, water yam
Procedia PDF Downloads 1657852 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils
Authors: Alim Asamatdinov
Abstract:
Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.Keywords: hydrogel, chemical, polymer, sandy, colloid
Procedia PDF Downloads 1437851 Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future
Authors: Ludmilla Wikkeling-Scott, Amira Karim
Abstract:
Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment.Keywords: ecological foot print, emirati students, plastic bottle consumption, sustainable campus
Procedia PDF Downloads 1597850 Stand Alone Multiple Trough Solar Desalination with Heat Storage
Authors: Abderrahmane Diaf, Kamel Benabdellaziz
Abstract:
Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day.Keywords: multiple trough distillation, solar desalination, solar distillation with heat storage, water based heat storage system
Procedia PDF Downloads 4407849 Effects of Inadequate Domestic Water Supply on Human Health in Selected Neighbourhoods of Lokoja, Kogi State
Authors: Folorunsho J. O., Umar M. A.
Abstract:
Access to potable water supply in both the rural and urban regions of the world has been neglected, and this has severely affected man and the aesthetics of the natural environment of man. This has further worsened the issue of diseases prevalence. This study considered the effects of inadequate domestic water supply on human health in selected neighbourhoods of Lokoja. The study used descriptive statistics such as relative frequencies, percentages and inferential statistics to analyse the data obtained through the use of structured questionnaire. The results revealed that the females and male constituted 56% and 44% of the respondents respectively; 62% of the respondents married and 32% are unmarried; respondents between ages 31 and 40 years constitute majority of the study population, while respondents with tertiary education constituted 35%, and those with secondary education were 32% of the total respondents. Furthermore, civil servants constituted 40% and unemployed 16% of the total respondents. In terms of monthly income, 40% of the respondents was found to earn between ₦31,000 - 40,000 monthly. On the perception of households on the availability and adequacy of domestic water supply, the study revealed that 64.7% of the respondents have pipe-borne water as their main source of water supply, with only 28.5% out of the 64.7% have pipe-borne water supply daily. On the relationship between water supply characteristics and health status among households, the result shows that 76% of the respondents perceived a strong relationship between water supply and health status. Cumulatively, 67% of the respondents confirm that both the quality and quantity of water supplied play a critical role in determining health status of residents of the study area. The respondents also reported skin diseases (96%), diarrhoea (96%), malaria (91%), cholera (67%), dysentery (67%), and respiratory diseases (67%) as the most perceived and experienced in the area, the disease rate in the prevalence order of malaria (81%), diarrhoea (61%), skin diseases (58%), cholera (34%), dysentery (31%) and respiratory disease (14%) respectively. Finally, the results further showed how households cope with inadequate water supply with 52% of the respondents confirm that they regularly treat their water before it was deployed for domestic uses, while 35%, 26%, 25%, 10% and 4% of the 52% respectively, adopted boiling, addition of alums, filtering with fabrics, chlorination and bleaching as the preferred treatment methods. The study thus recommended policy options that will aggressively launch adequate potable water supply infrastructure in the study area.Keywords: Potable Water, Supply, Human Health, Perception, ChlorinationKeywords: potable water, human health, perception, chlorination
Procedia PDF Downloads 657848 Eco-Degradation and Phytodiversity of Pulicat Lagoon, Eastcoast of Southern India
Authors: Khasim Munir Bhasha Shaik
Abstract:
Pulicat Lake is the second largest brackish water lagoon after Chilika Lake of Orissa along the east coast of India. Estuaries and lagoons have brackish water which shows high biological productivity than fresh or sea water. Hence, it has a wide range of aquatic, terrestrial flora. The World Wide Fund for Nature declared it as a protected area. The present study aims to explore the flora of the lagoon along with the various threats for its eco-degradation which helps to plan necessary conservation methods.Keywords: phytodiversity, pulicat lake, threats, conservation
Procedia PDF Downloads 2877847 Assessment the Infiltration of the Wastewater Ponds and Its Impact on the Water Quality of Pleistocene Aquifer at El Sadat City Using 2-D Electrical Resistivity Tomography and Water Chemistry
Authors: Abeer A. Kenawy, Usama Massoud, El-Said A. Ragab, Heba M. El-Kosery
Abstract:
2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims to investigate the area around the wastewater ponds to determine the possibility of water percolation from the wastewater ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural, and industrial activities. In this concern, seven ERT profiles were measured around the wastewater ponds. Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations, anions, nutrients, and heavy elements. Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. In addition, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. In addition, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are not the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural, and anthropogenic processes.Keywords: El Sadat city, ERT, hydrochemistry, percolation, wastewater ponds
Procedia PDF Downloads 355