Search results for: solar cycle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3447

Search results for: solar cycle

2667 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China

Authors: Yuanyuan Liu, Yuanqing Wang, Di Li

Abstract:

Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.

Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment

Procedia PDF Downloads 262
2666 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS

Authors: M. Tabatabaee, R. Mohebat, M. Baranian

Abstract:

Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.

Keywords: zinc sulfide, nano articles, photodegradation, solar light

Procedia PDF Downloads 400
2665 Policy Recommendations for Reducing CO2 Emissions in Kenya's Electricity Generation, 2015-2030

Authors: Paul Kipchumba

Abstract:

Kenya is an East African Country lying at the Equator. It had a population of 46 million in 2015 with an annual growth rate of 2.7%, making a population of at least 65 million in 2030. Kenya’s GDP in 2015 was about 63 billion USD with per capita GDP of about 1400 USD. The rural population is 74%, whereas urban population is 26%. Kenya grapples with not only access to energy but also with energy security. There is direct correlation between economic growth, population growth, and energy consumption. Kenya’s energy composition is at least 74.5% from renewable energy with hydro power and geothermal forming the bulk of it; 68% from wood fuel; 22% from petroleum; 9% from electricity; and 1% from coal and other sources. Wood fuel is used by majority of rural and poor urban population. Electricity is mostly used for lighting. As of March 2015 Kenya had installed electricity capacity of 2295 MW, making a per capital electricity consumption of 0.0499 KW. The overall retail cost of electricity in 2015 was 0.009915 USD/ KWh (KES 19.85/ KWh), for installed capacity over 10MW. The actual demand for electricity in 2015 was 3400 MW and the projected demand in 2030 is 18000 MW. Kenya is working on vision 2030 that aims at making it a prosperous middle income economy and targets 23 GW of generated electricity. However, cost and non-cost factors affect generation and consumption of electricity in Kenya. Kenya does not care more about CO2 emissions than on economic growth. Carbon emissions are most likely to be paid by future costs of carbon emissions and penalties imposed on local generating companies by sheer disregard of international law on C02 emissions and climate change. The study methodology was a simulated application of carbon tax on all carbon emitting sources of electricity generation. It should cost only USD 30/tCO2 tax on all emitting sources of electricity generation to have solar as the only source of electricity generation in Kenya. The country has the best evenly distributed global horizontal irradiation. Solar potential after accounting for technology efficiencies such as 14-16% for solar PV and 15-22% for solar thermal is 143.94 GW. Therefore, the paper recommends adoption of solar power for generating all electricity in Kenya in order to attain zero carbon electricity generation in the country.

Keywords: co2 emissions, cost factors, electricity generation, non-cost factors

Procedia PDF Downloads 355
2664 Photovoltaic Cells Characteristics Measurement Systems

Authors: Rekioua T., Rekioua D., Aissou S., Ouhabi A.

Abstract:

Power provided by the photovoltaic array varies with solar radiation and temperature, since these parameters influence the electrical characteristic (Ipv-Vpv) of solar cells. In Scientific research, there are different methods to obtain these characteristics. In this paper, we present three methods. A simulation one using Matlab/Simulink. The second one is the standard experimental voltage method and the third one is by using LabVIEW software. This latter is based on an electronic circuit to test PV modules. All details of this electronic schemes are presented and obtained results of the three methods with a comparison and under different meteorological conditions are presented. The proposed method is simple and very efficiency for testing and measurements of electrical characteristic curves of photovoltaic panels.

Keywords: photovoltaic cells, measurement standards, temperature sensors, data acquisition

Procedia PDF Downloads 455
2663 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator

Procedia PDF Downloads 319
2662 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process

Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf

Abstract:

Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.

Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals

Procedia PDF Downloads 175
2661 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 339
2660 Methodologies, Systems Development Life Cycle and Modeling Languages in Agile Software Development

Authors: I. D. Arroyo

Abstract:

This article seeks to integrate different concepts from contemporary software engineering with an agile development approach. We seek to clarify some definitions and uses, we make a difference between the Systems Development Life Cycle (SDLC) and the methodologies, we differentiate the types of frameworks such as methodological, philosophical and behavioral, standards and documentation. We define relationships based on the documentation of the development process through formal and ad hoc models, and we define the usefulness of using DevOps and Agile Modeling as integrative methodologies of principles and best practices.

Keywords: methodologies, modeling languages, agile modeling, UML

Procedia PDF Downloads 177
2659 Social Perception of the Benefits of Using a Solar Dryer to Conserve Fruits and Vegetables in Rural Communities in Manica - Mozambique

Authors: Constâncio Augusto Machanguana, Luís Miguel Estevão Cristóvão

Abstract:

In Mozambique, over 80% of the rural population relies on agriculture, livestock, and silviculture for their livelihoods. Unfortunately, these communities face persistent food shortages, which are exacerbated by natural disasters and post-harvest losses due to inadequate storage facilities. Addressing post-harvest loss is critical not only for ensuring food security but also for preventing financial hardships faced by farmers. The study delves into the perceptions of beneficiary communities regarding the construction of three food dryer models made from metal, wood, and clay brick. These solar dryers are part of the project titled ‘Solar Dryer Integrated with Natural Rocks as Energy Storage for Drying Fruits and Vegetables in Mozambique.’ The overarching goal is to enhance food availability beyond the typical growing season, particularly for fruits and vegetables, while simultaneously combating hunger. Given the context of climate change impacts on agriculture, this project becomes even more relevant. Structured interviews conducted with 45 members of beneficiary associations in Manica Province—primarily female heads of households—revealed that rural communities are aware of various food drying alternatives. However, reliance on traditional methods often comes at a cost: compromised product quality and reduced shelf life. To address these challenges, the project implemented energy storage solutions like rock-based thermal energy storage for food drying. This result underscores the urgent need to foster innovation and extend these sustainable practices —such as solar dryers integrated with thermal energy-storage systems made of locally abundant and affordable materials— to more local communities, especially those with significant agricultural potential within the country. By taking these actions, we can improve food security and alleviate hunger.

Keywords: solar dryer, food security, rural community, small technology

Procedia PDF Downloads 13
2658 Comparative Life Cycle Assessment of an Extensive Green Roof with a Traditional Gravel-Asphalted Roof: An Application for the Lebanese Context

Authors: Makram El Bachawati, Rima Manneh, Thomas Dandres, Carla Nassab, Henri El Zakhem, Rafik Belarbi

Abstract:

A vegetative roof, also called a garden roof, is a "roofing system that endorses the growth of plants on a rooftop". Garden roofs serve several purposes for a building, such as embellishing the roofing system, enhancing the water management, and reducing the energy consumption and heat island effects. Lebanon is a Middle East country that lacks the use of a sustainable energy system. It imports 98% of its non-renewable energy from neighboring countries and suffers flooding during heavy rains. The objective of this paper is to determine if the implementation of vegetative roofs is effectively better than the traditional roofs for the Lebanese context. A Life Cycle Assessment (LCA) is performed in order to compare an existing extensive green roof to a traditional gravel-asphalted roof. The life cycle inventory (LCI) was established and modeled using the SimaPro 8.0 software, while the environmental impacts were classified using the IMPACT 2002+ methodology. Results indicated that, for the existing extensive green roof, the waterproofing membrane and the growing medium were the highest contributors to the potential environmental impacts. When comparing the vegetative to the traditional roof, results showed that, for all impact categories, the extensive green roof had the less environmental impacts.

Keywords: life cycle assessment, green roofs, vegatative roof, environmental impact

Procedia PDF Downloads 455
2657 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 152
2656 Settlement Network Supplying Energy

Authors: Balázs Kulcsár

Abstract:

Few people now doubt the future of the global energy transition. The only question is whether the pace of renewables' penetration will be sufficient to compete with the rate of warming. Dynamic changes are also taking place in the Hungarian electricity system. In addition to nuclear power, which provides the basic electricity supply, the most dynamic is solar power, which is largely small-scale and residential. The emergence of solar power is outlining the emergence of energy production and supply fabric of municipalities. This creates the potential for over-producing municipalities to supply the electricity needs of neighboring settlements with lower production beyond renewables. By taking advantage of this energy sharing, electricity supply based on pure renewables can be achieved more quickly.

Keywords: renewable energy, energy geography, self-sufficiency, energy transition

Procedia PDF Downloads 174
2655 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: corrosion, duty cycle, pulsed current, zinc

Procedia PDF Downloads 117
2654 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 554
2653 Conceptualizing IoT Based Framework for Enhancing Environmental Accounting By ERP Systems

Authors: Amin Ebrahimi Ghadi, Morteza Moalagh

Abstract:

This research is carried out to find how a perfect combination of IoT architecture (Internet of Things) and ERP system can strengthen environmental accounting to incorporate both economic and environmental information. IoT (e.g., sensors, software, and other technologies) can be used in the company’s value chain from raw material extraction through materials processing, manufacturing products, distribution, use, repair, maintenance, and disposal or recycling products (Cradle to Grave model). The desired ERP software then will have the capability to track both midpoint and endpoint environmental impacts on a green supply chain system for the whole life cycle of a product. All these enable environmental accounting to calculate, and real-time analyze the operation environmental impacts, control costs, prepare for environmental legislation and enhance the decision-making process. In this study, we have developed a model on how to use IoT devices in life cycle assessment (LCA) to gather emissions, energy consumption, hazards, and wastes information to be processed in different modules of ERP systems in an integrated way for using in environmental accounting to achieve sustainability.

Keywords: ERP, environmental accounting, green supply chain, IOT, life cycle assessment, sustainability

Procedia PDF Downloads 168
2652 Morphostructural Characterization of Zinc and Manganese Nano-Oxides

Authors: Adriana-Gabriela Plaiasu, Catalin Marian Ducu

Abstract:

The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM.

Keywords: characterization, morphological, nano-oxides, structural

Procedia PDF Downloads 273
2651 Analysing Maximum Power Point Tracking in a Stand Alone Photovoltaic System

Authors: Osamede Asowata

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident in its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector; these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with maximum power point tracking (MPPT) from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0°N, with a corresponding tilt angle of 36°, 26°, and 16°. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, solar chargers, tilt and orientation angles, maximum power point tracking, MPPT, Pulse Width Modulation (PWM).

Procedia PDF Downloads 169
2650 Environmental Performance of Olive Oil Production in Greece

Authors: P. Tsarouhas, Ch. Achillas, D. Aidonis, D. Folinas, V. Maslis, N. Moussiopoulos

Abstract:

Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed.

Keywords: LCA, olive oil production, environmental impact, case study, Greece

Procedia PDF Downloads 427
2649 Solar and Galactic Cosmic Ray Impacts on Ambient Dose Equivalent Considering a Flight Path Statistic Representative to World-Traffic

Authors: G. Hubert, S. Aubry

Abstract:

The earth is constantly bombarded by cosmic rays that can be of either galactic or solar origin. Thus, humans are exposed to high levels of galactic radiation due to altitude aircraft. The typical total ambient dose equivalent for a transatlantic flight is about 50 μSv during quiet solar activity. On the contrary, estimations differ by one order of magnitude for the contribution induced by certain solar particle events. Indeed, during Ground Level Enhancements (GLE) event, the Sun can emit particles of sufficient energy and intensity to raise radiation levels on Earth's surface. Analyses of GLE characteristics occurring since 1942 showed that for the worst of them, the dose level is of the order of 1 mSv and more. The largest of these events was observed on February 1956 for which the ambient dose equivalent rate is in the orders of 10 mSv/hr. The extra dose at aircraft altitudes for a flight during this event might have been about 20 mSv, i.e. comparable with the annual limit for aircrew. The most recent GLE, occurred on September 2017 resulting from an X-class solar flare, and it was measured on the surface of both the Earth and Mars using the Radiation Assessment Detector on the Mars Science Laboratory's Curiosity Rover. Recently, Hubert et al. proposed a GLE model included in a particle transport platform (named ATMORAD) describing the extensive air shower characteristics and allowing to assess the ambient dose equivalent. In this approach, the GCR is based on the Force-Field approximation model. The physical description of the Solar Cosmic Ray (i.e. SCR) considers the primary differential rigidity spectrum and the distribution of primary particles at the top of the atmosphere. ATMORAD allows to determine the spectral fluence rate of secondary particles induced by extensive showers, considering altitude range from ground to 45 km. Ambient dose equivalent can be determined using fluence-to-ambient dose equivalent conversion coefficients. The objective of this paper is to analyze the GCR and SCR impacts on ambient dose equivalent considering a high number statistic of world-flight paths. Flight trajectories are based on the Eurocontrol Demand Data Repository (DDR) and consider realistic flight plan with and without regulations or updated with Radar Data from CFMU (Central Flow Management Unit). The final paper will present exhaustive analyses implying solar impacts on ambient dose equivalent level and will propose detailed analyses considering route and airplane characteristics (departure, arrival, continent, airplane type etc.), and the phasing of the solar event. Preliminary results show an important impact of the flight path, particularly the latitude which drives the cutoff rigidity variations. Moreover, dose values vary drastically during GLE events, on the one hand with the route path (latitude, longitude altitude), on the other hand with the phasing of the solar event. Considering the GLE occurred on 23 February 1956, the average ambient dose equivalent evaluated for a flight Paris - New York is around 1.6 mSv, which is relevant to previous works This point highlights the importance of monitoring these solar events and of developing semi-empirical and particle transport method to obtain a reliable calculation of dose levels.

Keywords: cosmic ray, human dose, solar flare, aviation

Procedia PDF Downloads 203
2648 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light

Authors: W. Y. Zhu, X. L. Yan, Y. Zhou

Abstract:

Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.

Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide

Procedia PDF Downloads 352
2647 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving

Authors: Dimassi Wissem

Abstract:

In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.

Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation

Procedia PDF Downloads 387
2646 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film

Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa

Abstract:

This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.

Keywords: polyethylene, films, unformulated, FTIR, ageing

Procedia PDF Downloads 360
2645 Choosing the Green Energy Option: A Willingness to Pay Study of Metro Manila Residents for Solar Renewable Energy

Authors: Paolo Magnata

Abstract:

The energy market in the Philippines remains to have one of the highest electricity rates in the region averaging at US$0.16/kWh (PHP6.89/kWh), excluding VAT, as opposed to the overall energy market average of US$0.13/kWh. The movement towards renewable energy, specifically solar energy, will pose as an expensive one with the country’s energy sector providing Feed-in-Tariff rates as high as US$0.17/kWh (PHP8.69/kWh) for solar energy power plants. Increasing the share of renewables at the current state of the energy regulatory background would yield a three-fold increase in residential electricity bills. The issue lies in the uniform charge that consumers bear regardless of where the electricity is sourced resulting in rates that only consider costs and not the consumers. But if they are given the option to choose where their electricity comes from, a number of consumers may potentially choose economically costlier sources of electricity due to higher levels of utility coupled with the willingness to pay of consuming environmentally-friendly sourced electricity. A contingent valuation survey was conducted to determine their willingness-to-pay for solar energy on a sample that was representative of Metro Manila to elicit their willingness-to-pay and a Single Bounded Dichotomous Choice and Double Bounded Dichotomous Choice analysis was used to estimate the amount they were willing to pay. The results showed that Metro Manila residents are willing to pay a premium on top of their current electricity bill amounting to US$5.71 (PHP268.42) – US$9.26 (PHP435.37) per month which is approximately 0.97% - 1.29% of their monthly household income. It was also discovered that besides higher income of households, a higher level of self-perceived knowledge on environmental awareness significantly affected the likelihood of a consumer to pay the premium. Shifting towards renewable energy is an expensive move not only for the government because of high capital investment but also to consumers; however, the Green Energy Option (a policy mechanism which gives consumers the option to decide where their electricity comes from) can potentially balance the shift of the economic burden by transitioning from a uniformly charged electricity rate to equitably charging consumers based on their willingness to pay for renewably sourced energy.

Keywords: contingent valuation, dichotomous choice, Philippines, solar energy

Procedia PDF Downloads 332
2644 Life Cycle Datasets for the Ornamental Stone Sector

Authors: Isabella Bianco, Gian Andrea Blengini

Abstract:

The environmental impact related to ornamental stones (such as marbles and granites) is largely debated. Starting from the industrial revolution, continuous improvements of machineries led to a higher exploitation of this natural resource and to a more international interaction between markets. As a consequence, the environmental impact of the extraction and processing of stones has increased. Nevertheless, if compared with other building materials, ornamental stones are generally more durable, natural, and recyclable. From the scientific point of view, studies on stone life cycle sustainability have been carried out, but these are often partial or not very significant because of the high percentage of approximations and assumptions in calculations. This is due to the lack, in life cycle databases (e.g. Ecoinvent, Thinkstep, and ELCD), of datasets about the specific technologies employed in the stone production chain. For example, databases do not contain information about diamond wires, chains or explosives, materials commonly used in quarries and transformation plants. The project presented in this paper aims to populate the life cycle databases with specific data of specific stone processes. To this goal, the methodology follows the standardized approach of Life Cycle Assessment (LCA), according to the requirements of UNI 14040-14044 and to the International Reference Life Cycle Data System (ILCD) Handbook guidelines of the European Commission. The study analyses the processes of the entire production chain (from-cradle-to-gate system boundaries), including the extraction of benches, the cutting of blocks into slabs/tiles and the surface finishing. Primary data have been collected in Italian quarries and transformation plants which use technologies representative of the current state-of-the-art. Since the technologies vary according to the hardness of the stone, the case studies comprehend both soft stones (marbles) and hard stones (gneiss). In particular, data about energy, materials and emissions were collected in marble basins of Carrara and in Beola and Serizzo basins located in the province of Verbano Cusio Ossola. Data were then elaborated through an appropriate software to build a life cycle model. The model was realized setting free parameters that allow an easy adaptation to specific productions. Through this model, the study aims to boost the direct participation of stone companies and encourage the use of LCA tool to assess and improve the stone sector environmental sustainability. At the same time, the realization of accurate Life Cycle Inventory data aims at making available, to researchers and stone experts, ILCD compliant datasets of the most significant processes and technologies related to the ornamental stone sector.

Keywords: life cycle assessment, LCA datasets, ornamental stone, stone environmental impact

Procedia PDF Downloads 227
2643 Desalination via Electrodialysis: A Newly Designed Fixed Bed Reactor Powered by Renewable Energy Source

Authors: Hend Mesbah, Yehia Youssef, Ibrahim Hassan, Shaaban Nosier, Ahmed El-Shazly, Ahmed Helal

Abstract:

The problem of drinking water shortage is becoming more crucial nowadays as a result of the increased demand due to the population growth and the rise in the standard living. In recent years, desalination using electrodialysis powered by solar energy (PV-ED) is being widely used to help provide treated water and reduce the scarcity in water supply. In the present study, a water desalination laboratory scale ED cell with a fixed bed circulation system was designed, developed, and tested. The effect of three parameters (namely, cell voltage , flowrate, and salt concentration) on the removal percentage of salt ions was studied. The cell voltage was adjusted at 3 , 4 and 6 V. A flow rate of 5, 10, and 20 ml/s and an initial salt concentration of 2000, 5000, and 7000 ppm were investigated. The maximum salt percentage removal obtained was 52.5% at the lowest initial concentration (2000 ppm) and at the highest cell voltage (6 V). There was no significant effect of the flow rate on the removal percentage. A model of PV module has also been developed to calculate the dimensions of a solar cell based on the amount of energy consumed and it was calculated from the Overall ED cell voltage.

Keywords: desalination, electrodialysis, solar desalination, photovoltaic electrodialysis

Procedia PDF Downloads 141
2642 Evaluating the Effect of Modern Technologies and Technics to Supply Energy of Buildings Using New Energies

Authors: Ali Reza Ghaffari, Hassan Saghi

Abstract:

Given the limitation of fossil resources to supply energy to buildings, recent years have seen a revival of interest in new technologies that produce the energy using new forms of energy in many developed countries. In this research, first the potentials of new energies in Iran are discussed and then based on case studies undertaken in a building in Tehran, the effects of utilizing new solar energy technology for supplying the energy of buildings are investigated. Then, by analyzing the data recorded over a four-year period, the technical performance of this system is investigated. According to the experimental operation plan, this system requires an auxiliary heating circuit for continuous operation over a year. Also, in the economic analysis, real conditions are considered and the results are recorded based on long-term data. Considering the purchase and commissioning building, supplementary energy consumption, etc. a comparison is drawn between the costs of using a solar water heater in a residential unit with the energy costs of a similar unit equipped with a conventional gas water heater. Given the current price of energy, using a solar water heater in the country will not economical, but considering the global energy prices, this system will have a return on investment after 4.5 years. It also produces 81% less pollution and saves about $21.5 on environmental pollution cleanup.

Keywords: energy supply, new energies, new technologies, buildings

Procedia PDF Downloads 157
2641 Binder-Free Porous Photocathode Based on Cuprous Oxide for High-Performing P-Type Dye-Sensitized Solar Cells

Authors: Marinela Miclau, Melinda Vajda, Nicolae Miclau, Daniel Ursu

Abstract:

Characterized by a simple structure, easy and low cost fabrication, the dye-sensitized solar cell (DSSC) attracted the interest of the scientific community as an attractive alternative of conventional Si-based solar cells and thin-film solar cells. Over the past 20 years, the main efforts have attempted to enhance the efficiency of n-type DSSCs, the highest efficiency record of 14.30% was achieved using the co-sensitization of two metal-free organic dyes and Co (II/III) tris(phenanthroline)-based redox electrolyte. In the last years, the development of the efficient p-type DSSC has become a research focus owing to the fact that the concept of tandem solar cell was proposed as the solution to increase the power conversion efficiency. A promising alternative for the photocathodes of p-type DSSC, cuprous (Cu2O) and cupric (CuO) oxides have been investigated because of its nontoxic nature, low cost, high natural abundance, a good absorption coefficient for visible light and a higher dielectric constant than NiO. In case of p-type DSSC based on copper oxides with I3-/I- as redox mediator, the highest conversion efficiency of 0.42% (Cu2O) and 0.03% (CuO) has achieved. Towards the increase in the performance, we have fabricated and analyzed the performance of p-type DSSC prepared with the binder-free porous Cu2O photocathodes. Porous thin film could be an attractive alternative for DSSC because of their large surface areas which enable the efficient absorption of the dyes and light. We propose a simple and one-step hydrothermal method for the preparation of porous Cu2O thin film using copper substrate, cupric acetate and ethyl cellulose. The cubic structure of Cu2O has been determined by X-ray diffraction (XRD) and porous morphology of thin film was emphasized by Scanning Electron Microscope Inspect S (SEM). Optical and Mott-Schottky measurements attest of the high quality of the Cu2O thin film. The binder-free porous Cu2O photocathode has confirmed the excellent photovoltaic properties, the best value reported for p-type DSSC (1%) in similar conditions being reached.

Keywords: cuprous oxide, dye-sensitized solar cell, hydrothermal method, porous photocathode

Procedia PDF Downloads 163
2640 Life Cycle Assessment: Drinking Glass Systems

Authors: Devina Jain

Abstract:

The choice between single-use drinking glasses and reusable glasses is of major concern to our lifestyles, and hence, the environment. This study is aimed at comparing three systems - a disposable paper cup, a disposable cup and a reusable stainless steel cup or glass - with respect to their effect on the environment to find out which one is more advantageous for reducing the impact on the environment. Life Cycle Assessment was conducted using modeling software, Umberto NXT Universal (Version 7.1). For the purpose of this study, the cradle to grave approach was considered. Results showed that cleaning is of a very strong influence on the environmental burden by these drinking systems, with a contribution of up to 90 to 100%. Thus, the burden is determined by the way in which the utensils are washed, and how much water is consumed. It maybe seems like a small, insignificant daily practice. In the short term, it would seem that paper and plastic cups are a better idea, since they are easy to acquire and do not need to be stored, but in the long run, we can say that steel cups will have less of an environmental impact. However, if the frequency of use and the number of glasses employed per use are of significance to decide the appropriateness of the usage, it is better to use disposable cups and glasses.

Keywords: disposable glass, life cycle assessment, paper, plastic, reusable glass, stainless steel

Procedia PDF Downloads 334
2639 An Integrated CFD and Experimental Analysis on Double-Skin Window

Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen

Abstract:

Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there’s always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.

Keywords: solar energy, double-skin façades, thermal buoyancy, fluid machinery

Procedia PDF Downloads 489
2638 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture

Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani

Abstract:

The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated.  Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.

Keywords: carbon capture and storage, oxy-combustion, netpower cycle, oxy turbine cycles, zero emission, heat exchanger design, supercritical carbon dioxide, oxy-fuel power plant, pinch point analysis

Procedia PDF Downloads 200