Search results for: optical fiber communication
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6902

Search results for: optical fiber communication

6122 Keratin Fiber Fabrication from Biowaste for Biomedical Application

Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh

Abstract:

Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.

Keywords: biomaterial, biowaste, fiber, keratin

Procedia PDF Downloads 194
6121 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties

Procedia PDF Downloads 464
6120 Structural, Optical and Electrical Properties of MnxZnO1-X Nanocrystals Synthesized by Sol-Gel Method

Authors: K. C. Gayithri, S. K. Naveen Kumar

Abstract:

ZnO is one of the most important semiconductor materials, non toxic, biocompatible, antibacterial properties for research and it is used in many biomedical applications. MnxZn1-xO nano thin films were prepared by a spin coating sol-gel method on silicon substrate. The structural, optical, electrical properties of Mn Doped ZnO are studied by using X-rd, FESEM, UV-Visible spectrophotometer. The X-rd reveals that the sample shows hexagonal wurtzits structure. Surface morphology and thickness of the sample are characterized by field emission scanning electron microscopy. Absorption and transmission spectra are studied by UV-Visible spectrophotometer. The electrical properties are measured by TCR meter.

Keywords: transition metals, Mn doped ZnO, Sol-gel, x-ray diffraction

Procedia PDF Downloads 396
6119 Uncovering Underwater Communication for Multi-Robot Applications via CORSICA

Authors: Niels Grataloup, Micael S. Couceiro, Manousos Valyrakis, Javier Escudero, Patricia A. Vargas

Abstract:

This paper benchmarks the possible underwater communication technologies that can be integrated into a swarm of underwater robots by proposing an underwater robot simulator named CORSICA (Cross platfORm wireleSs communICation simulator). Underwater exploration relies increasingly on the use of mobile robots, called Autonomous Underwater Vehicles (AUVs). These robots are able to reach goals in harsh underwater environments without resorting to human divers. The introduction of swarm robotics in these scenarios would facilitate the accomplishment of complex tasks with lower costs. However, swarm robotics requires implementation of communication systems to be operational and have a non-deterministic behaviour. Inter-robot communication is one of the key challenges in swarm robotics, especially in underwater scenarios, as communication must cope with severe restrictions and perturbations. This paper starts by presenting a list of the underwater propagation models of acoustic and electromagnetic waves, it also reviews existing transmitters embedded in current robots and simulators. It then proposes CORSICA, which allows validating the choices in terms of protocol and communication strategies, whether they are robot-robot or human-robot interactions. This paper finishes with a presentation of possible integration according to the literature review, and the potential to get CORSICA at an industrial level.

Keywords: underwater simulator, robot-robot underwater communication, swarm robotics, transceiver and communication models

Procedia PDF Downloads 301
6118 Co-Registered Identification and Treatment of Skin Tumor with Optical Coherence Tomography-Guided Laser Therapy

Authors: Bo-Huei Huang, Chih-Hsun Yang, Meng-Tsan Tsai

Abstract:

Optical coherence tomography (OCT) enables to provide advantages of noninvasive imaging, high resolution, and high imaging speed. In this study, we integrated OCT and a CW laser for tumor diagnosis and treatment. The axial and transverse resolutions of the developed OCT system are 3 μm and 1 μm, respectively. The frame rate of OCT system is 30 frames/s. In this study, the tumor cells were implanted into the mice skin and scanned by OCT to observe the morphological and angiographic changes. With OCT imaging, 3D microstructures and skin angiography of mice skin can be simultaneously acquired, which can be utilized for identification of the tumor distribution. Then, the CW laser beam can be accurately controlled to expose on the center of the tumor, according to the OCT results. Moreover, OCT was used to monitor the induced photothermolysis and to evaluate the treatment outcome. The results showed that OCT-guided laser therapy could efficiently improve the treatment outcome and the extra damage induced by CW can be greatly reduced. Such OCT-guided laser therapy system could be a potential tool for dermatological applications.

Keywords: optical coherence tomography, laser therapy, skin tumor, position guide

Procedia PDF Downloads 280
6117 Critical Factors Influencing Effective Communication Among Stakeholders on Construction Project Delivery in Jigawa State, Nigeria

Authors: Shazali Abdulahi

Abstract:

Project planning is the first phase in project life cycle which relates to the use of schedules such as Gantt charts to plan and subsequently report the project progress within the project environment. Likewise, project execution is the third phase in project lifecycle, is the phase where the work of the project must get done correctly and it’s the longest phase in the project lifecycle therefore, they must be effectively communicated, now today Communication has become the crucial element of every organization. During construction project delivery, information needs to be accurately and timely communicating among project stakeholders in order to realize the project objective. Effective communication among stakeholders during construction project delivery is one of the major factors that impact construction project delivery. Therefore, the aim of the research work is to examine the critical factors influencing effective communication among stakeholders on construction project delivery from the perspective of construction professionals (Architects, Builders, Quantity surveyors, and Civil engineers). A quantitative approach was adopted. This entailed the used of structured questionnaire to one (108) construction professionals in public and private organization within dutse metropolis. Frequency, mean, ranking and multiple linear regression using SPSS vision 25 software were used to analyses the data. The results show that Leadership, Trust, Communication tools, Communication skills, Stakeholders involvement, Cultural differences, and Communication technology were the most critical factors influencing effective communication among stakeholders on construction project delivery. The hypothesis revealed that, effective communication among stakeholders has significant effects on construction project delivery. This research work will profit the construction stakeholders in construction industry, by providing adequate knowledge regarding the factors influencing effective communication among stakeholders, so that necessary steps to be taken to improve project performance. Also, it will provide knowledge about the appropriate strategies to employ in order to improve communication among stakeholders.

Keywords: effetive communication, ineffective communication, stakeholders, project delivery

Procedia PDF Downloads 53
6116 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme

Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi

Abstract:

In Commonly, it is primary problem that there is multiple user interference (MUI) noise resulting from the overlapping among the users in optical code-division multiple access (OCDMA) system. In this article, we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say, it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.

Keywords: optical code-division multiple access (OCDMA), successive interference cancellation (SIC), multiple user interference (MUI), spectral amplitude coding (SAC), partial modified prime code (PMP)

Procedia PDF Downloads 521
6115 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers

Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz

Abstract:

Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cells integration, electrospun fiber, PHBV, surface characterization

Procedia PDF Downloads 119
6114 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 97
6113 A Qualitative Assessment of the Internal Communication of the College of Comunication: Basis for a Strategic Communication Plan

Authors: Edna T. Bernabe, Joshua Bilolo, Sheila Mae Artillero, Catlicia Joy Caseda, Liezel Once, Donne Ynah Grace Quirante

Abstract:

Internal communication is significant for an organization to function to its full extent. A strategic communication plan builds an organization’s structure and makes it more systematic. Information is a vital part of communication inside the organization as this lays every possible outcome—be it positive or negative. It is, therefore, imperative to assess the communication structure of a particular organization to secure a better and harmonious communication environment in any organization. Thus, this research was intended to identify the internal communication channels used in Polytechnic University of the Philippines-College of Communication (PUP-COC) as an organization, to identify the flow of information specifically in downward, upward, and horizontal communication, to assess the accuracy, consistency, and timeliness of its internal communication channels; and to come up with a proposed strategic communication plan of information dissemination to improve the existing communication flow in the college. The researchers formulated a framework from Input-Throughout-Output-Feedback-Goal of General System Theory and gathered data to assess the PUP-COC’s internal communication. The communication model links the objectives of the study to know the internal organization of the college. The qualitative approach and case study as the tradition of inquiry were used to gather deeper understanding of the internal organizational communication in PUP-COC, using Interview, as the primary methods for the study. This was supported with a quantitative data which were gathered through survey from the students of the college. The researchers interviewed 17 participants: the College dean, the 4 chairpersons of the college departments, the 11 faculty members and staff, and the acting Student Council president. An interview guide and a standardized questionnaire were formulated as instruments to generate the data. After a thorough analysis of the study, it was found out that two-way communication flow exists in PUP-COC. The type of communication channel the internal stakeholders use varies as to whom a particular person is communicating with. The members of the PUP-COC community also use different types of communication channels depending on the flow of communication being used. Moreover, the most common types of internal communication are the letters and memoranda for downward communication, while letters, text messages, and interpersonal communication are often used in upward communication. Various forms of social media have been found out to be of use in horizontal communication. Accuracy, consistency, and timeliness play a significant role in information dissemination within the college. However, some problems have also been found out in the communication system. The most common problem are the delay in the dissemination of memoranda and letters and the uneven distribution of information and instruction to faculty, staff, and students. This has led the researchers to formulate a strategic communication plan which aims to propose strategies that will solve the communication problems that are being experienced by the internal stakeholders.

Keywords: communication plan, downward communication, internal communication, upward communication

Procedia PDF Downloads 519
6112 Sol-Gel Derived ZnO Nanostructures: Optical Properties

Authors: Sheo K. Mishra, Rajneesh K. Srivastava, R. K. Shukla

Abstract:

In the present work, we report on the optical properties including UV-vis absorption and photoluminescence (PL) of ZnO nanostructures synthesized by sol-gel method. Structural and morphological investigations have been performed by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The XRD result confirms the formation of hexagonal wurtzite phase of ZnO nanostructures. The presence of various diffraction peaks suggests polycrystalline nature. The XRD pattern exhibits no additional peak due to by-products such as Zn(OH)2. The average crystallite size of prepared ZnO sample corresponding to the maximum intensity peaks is to be ~38.22 nm. The SEM micrograph shows different nanostructures of pure ZnO. Photoluminescence (PL) spectrum shows several emission peaks around 353 nm, 382 nm, 419 nm, 441 nm, 483 nm and 522 nm. The obtained results suggest that the prepared phosphors are quite suitable for optoelectronic applications.

Keywords: ZnO, sol-gel, XRD, PL

Procedia PDF Downloads 402
6111 Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture

Procedia PDF Downloads 392
6110 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination

Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi

Abstract:

Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.

Keywords: delamination, forced vibration, finite element modelling, natural frequency

Procedia PDF Downloads 301
6109 Oil Palm Leaf and Corn Stalk, Mechanical Properties and Surface Characterization

Authors: Zawawi Daud

Abstract:

Agro waste can be defined as waste from agricultural plant. Oil palm leaf and corn stalk can be categorized as ago waste material. At first, the comparison between oil palm leaf and corn stalk by mechanical properties from soda pulping process. After that, focusing on surface characterization by Scanning Electron Microscopy (SEM). Both material have a potential due to mechanical properties (tensile, tear, burst and fold) and surface characterization but corn stalk shows more in strength and compactness due to fiber characterization compared to oil palm leaf. This study promoting the green technology in develop a friendly product and suitable to be used as an alternative pulp in paper making industry.

Keywords: fiber, oil palm leaf, corn stalk, green technology

Procedia PDF Downloads 490
6108 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.

Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties

Procedia PDF Downloads 101
6107 Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties

Authors: Abdelkader Nouri, M’hamed Bouslama, Faouzi Saidi, Hassan Maaref, Michel Gendry

Abstract:

Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape.

Keywords: AFM, InAs QDs, PL, SSMBE

Procedia PDF Downloads 688
6106 Fabrication of Electrospun Green Fluorescent Protein Nano-Fibers for Biomedical Applications

Authors: Yakup Ulusu, Faruk Ozel, Numan Eczacioglu, Abdurrahman Ozen, Sabriye Acikgoz

Abstract:

GFP discovered in the mid-1970s, has been used as a marker after replicated genetic study by scientists. In biotechnology, cell, molecular biology, the GFP gene is frequently used as a reporter of expression. In modified forms, it has been used to make biosensors. Many animals have been created that express GFP as an evidence that a gene can be expressed throughout a given organism. Proteins labeled with GFP identified locations are determined. And so, cell connections can be monitored, gene expression can be reported, protein-protein interactions can be observed and signals that create events can be detected. Additionally, monitoring GFP is noninvasive; it can be detected by under UV-light because of simply generating fluorescence. Moreover, GFP is a relatively small and inert molecule, that does not seem to treat any biological processes of interest. The synthesis of GFP has some steps like, to construct the plasmid system, transformation in E. coli, production and purification of protein. GFP carrying plasmid vector pBAD–GFPuv was digested using two different restriction endonuclease enzymes (NheI and Eco RI) and DNA fragment of GFP was gel purified before cloning. The GFP-encoding DNA fragment was ligated into pET28a plasmid using NheI and Eco RI restriction sites. The final plasmid was named pETGFP and DNA sequencing of this plasmid indicated that the hexa histidine-tagged GFP was correctly inserted. Histidine-tagged GFP was expressed in an Escherichia coli BL21 DE3 (pLysE) strain. The strain was transformed with pETGFP plasmid and grown on LuiraBertoni (LB) plates with kanamycin and chloramphenicol selection. E. coli cells were grown up to an optical density (OD 600) of 0.8 and induced by the addition of a final concentration of 1mM isopropyl-thiogalactopyranoside (IPTG) and then grown for additional 4 h. The amino-terminal hexa-histidine-tag facilitated purification of the GFP by using a His Bind affinity chromatography resin (Novagen). Purity of GFP protein was analyzed by a 12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of protein was determined by UV absorption at 280 nm (Varian Cary 50 Scan UV/VIS spectrophotometer). Synthesis of GFP-Polymer composite nanofibers was produced by using GFP solution (10mg/mL) and polymer precursor Polyvinylpyrrolidone, (PVP, Mw=1300000) as starting materials and template, respectively. For the fabrication of nanofibers with the different fiber diameter; a sol–gel solution comprising of 0.40, 0.60 and 0.80 g PVP (depending upon the desired fiber diameter) and 100 mg GFP in 10 mL water: ethanol (3:2) mixtures were prepared and then the solution was covered on collecting plate via electro spinning at 10 kV with a feed-rate of 0.25 mL h-1 using Spellman electro spinning system. Results show that GFP-based nano-fiber can be used plenty of biomedical applications such as bio-imaging, bio-mechanic, bio-material and tissue engineering.

Keywords: biomaterial, GFP, nano-fibers, protein expression

Procedia PDF Downloads 320
6105 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira

Abstract:

Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 213
6104 Feasibility Study of Wireless Communication for the Control and Monitoring of Rotating Electrical Machine

Authors: S. Ben Brahim, T. H. Vuong, J. David, R. Bouallegue, M. Pietrzak-David

Abstract:

Electrical machine monitoring is important to protect motor from unexpected problems. Today, using wireless communication for electrical machines is interesting for both real time monitoring and diagnostic purposes. In this paper, we propose a system based on wireless communication IEEE 802.11 to control electrical machine. IEEE 802.11 standard is recommended for this type of applications because it provides a faster connection, better range from the base station, and better security. Therefore, our contribution is to study a new technique to control and monitor the rotating electrical machines (motors, generators) using wireless communication. The reliability of radio channel inside rotating electrical machine is also discussed. Then, the communication protocol, software and hardware design used for the proposed system are presented in detail and the experimental results of our system are illustrated.

Keywords: control, DFIM machine, electromagnetic field, EMC, IEEE 802.11, monitoring, rotating electrical machines, wireless communication

Procedia PDF Downloads 696
6103 Development of Hybrid Materials Combining Biomass as Fique Fibers with Metal-Organic Frameworks, and Their Potential as Mercury Adsorbents

Authors: Karen G. Bastidas Gomez, Hugo R. Zea Ramirez, Manuel F. Ribeiro Pereira, Cesar A. Sierra Avila, Juan A. Clavijo Morales

Abstract:

The contamination of water sources with heavy metals such as mercury has been an environmental problem; it has generated a high impact on the environment and human health. In countries such as Colombia, mercury contamination due to mining has reached levels much higher than the world average. This work proposes the use of fique fibers as adsorbent in mercury removal. The evaluation of the material was carried out under five different conditions (raw, pretreated by organosolv, functionalized by TEMPO oxidation, fiber functionalized plus MOF-199 and fiber functionalized plus MOF-199-SH). All the materials were characterized using FTIR, SEM, EDX, XRD, and TGA. Regarding the mercury removal, it was done under room pressure and temperature, also pH = 7 for all materials presentations, followed by Atomic Absorption Spectroscopy. The high cellulose content in fique is the main particularity of this lignocellulosic biomass since the degree of oxidation depends on the number of hydroxyl groups on the surface capable of oxidizing into carboxylic acids, a functional group capable of increasing ion exchange with mercury in solution. It was also expected that the impregnation of the MOF would increase the mercury removal; however, it was found that the functionalized fique achieved a greater percentage of removal, resulting in 81.33% of removal, 44% for the fique with the MOF-199 and 72% for the MOF-199-SH with. The pretreated fiber and raw also showed 74% and 56%, respectively, which indicates that fique does not require considerable modifications in its structure to achieve good performances. Even so, the functionalized fiber increases the percentage of removal considerably compared to the pretreated fique, which suggests that the functionalization process is a feasible procedure to apply with the purpose of improving the removal percentage. In addition, this is a procedure that follows a green approach since the reagents involved have low environmental impact, and the contribution to the remediation of natural resources is high.

Keywords: biomass, nanotechnology, science materials, wastewater treatment

Procedia PDF Downloads 118
6102 A Comprehensive Theory of Communication with Biological and Non-Biological Intelligence for a 21st Century Curriculum

Authors: Thomas Schalow

Abstract:

It is commonly recognized that our present curriculum is not preparing students to function in the 21st century. This is particularly true in regard to communication needs across cultures - both human and non-human. In this paper, a comprehensive theory of communication-based on communication with non-human cultures and intelligences is presented to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with the argument that we need to become much more serious about communicating with the non-human, intelligent life forms that already exists around us here on Earth. We need to broaden our definition of communication and reach out to other sentient life forms in order to provide humanity with a better perspective of its place within our ecosystem. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it could prove useful even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised in accordance with the communication theory being proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences. Humanity has never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other cultures can provide us with a framework for this communication. The basic concepts behind intercultural communication can be applied to the three types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will yield substantial gains. A curriculum that is truly ready for the 21st century needs to be aligned with this new theory of communication.

Keywords: artificial intelligence, CETI, communication, language

Procedia PDF Downloads 365
6101 Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator

Authors: Jinsiang Shaw, Shih-Chieh Tseng

Abstract:

Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure.

Keywords: Fuzzy sliding mode controller, macro-fiber-composite actuator, skyhook controller, vibration suppression

Procedia PDF Downloads 405
6100 Mothers’ Perception of the Child Vaccine Communication Practice: The Case of Amhara Region of Ethiopia

Authors: Amlakie Nigussie Assefa, Jemal Mohammed Haile, Amanuel Gebru Woldearegay

Abstract:

Childhood vaccination communication is an important strategy to promote child immunization. This study was conducted with the objective of examining mothers’/caregivers’ perceptions of the child vaccine communication practice in the Amhara Region of Ethiopia. The researchers employed a quantitative research design to achieve the objective. A pretested questionnaire was used to collect the required data. The quantitative method was used to analyze the data. To this end, the result of the one-sample t-test revealed that mothers/caregivers perceive that child vaccine communication is irrelevant, indicated by the average mean of 13.11<15 of the expected mean. The finding also indicated that interpersonal health communication principles were not applied, which is indicated by the average mean of 16.82<18 of the ideal mean. The independent sample t-test underscored that knowledge about vaccines has an impact on the perceived relevance of child vaccine communication (Yes: M=16.55 SD=6.323; No: M=9.24, SD=4.087) (F=97.150 p=0.000, p<0.05), and the implementation of interpersonal health communication principals (M=18.65, SD=5.517; No: (M=9.81, SD=4.491) (F=11.015, p=0.000, p<0.05). The analysis of variance showed that mothers /caregivers’ education level has an impact on the perceived relevance of child vaccine communication (F=3.844 p=0.004, p<0.05) and to the implementation of interpersonal health communication principles (F=6.334 p=0.000, p<0.05). Besides, the post-hoc test showed that the respondents’ in the “Other” education level category have a positive perception to the relevance of child vaccine communication ((M=4.2 p= 0.006, p<0.05) and to the implementation of interpersonal health communication principles (M=3.5 p=0.000, p<0.05). The correlation analysis shows that education level has a positive correlation with the perceived relevance of child vaccine communication (r =0.198, p=0.00, P<0.01) and with the perceived implementation of interpersonal health communication principles (r = 0.250, p = 0.000 p< 0.01). Furthermore, one-to-one, one-to-group, and door-to-door communication were the most preferred strategies used to communicate about child vaccines. What is more, health workers were the most trusted sources of child vaccine information. In conclusion, the study highlighted that mothers/caregivers did not have a positive view of the child vaccine communication. Hence, efforts have to be made to improve mothers’/caregivers' knowledge about child vaccines. Besides, the education level of mothers/caregivers should be taken into consideration during the implementation of child vaccine communication interventions.

Keywords: mothers’/caregivers' perception, child vaccine communication, preferred communication strategies, trusted sources

Procedia PDF Downloads 14
6099 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras

Abstract:

Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.

Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions

Procedia PDF Downloads 409
6098 The Impact of Information and Communication Technology on the Re-Engineering Process of Small and Medium Enterprises

Authors: Hiba Mezaache

Abstract:

The current study aimed to know the impact of using information and communication technology on the process of re-engineering small and medium enterprises, as the world witnessed the speed development of the latter in its field of work and the diversity of its objectives and programs, that also made its process important for the growth and development of the institution and also gaining the flexibility to face the changes that may occur in the environment of work, so in order to know the impact of information and communication technology on the success of this process, we prepared an electronic questionnaire that included (70) items, and we also used the SPSS statistical calendar to analyze the data obtained. In the end of our study, our conclusion was that there was a positive correlation between the four dimensions of information and communication technology, i.e., hardware and equipment, software, communication networks, databases, and the re-engineering process, in addition to the fact that the studied institutions attach great importance to formal communication, for its positive advantages that it achieves in reducing time and effort and costs in performing the business. We could also say that communication technology contributes to the process of formulating objectives related to the re-engineering strategy. Finally, we recommend the necessity of empowering workers to use information technology and communication more in enterprises, and to integrate them more into the activity of the enterprise by involving them in the decision-making process, and also to keep pace with the development in the field of software, hardware, and technological equipment.

Keywords: information and communication technology, re-engineering, small and medium enterprises, the impact

Procedia PDF Downloads 180
6097 Evaluating of Turkish Earthquake Code (2007) for FRP Wrapped Circular Concrete Cylinders

Authors: Guler S., Guzel E., Gulen M.

Abstract:

Fiber Reinforced Polymer (FRP) materials are commonly used in construction sector to enhance the strength and ductility capacities of structural elements. The equations on confined compressive strength of FRP wrapped concrete cylinders is described in the 7th chapter of the Turkish Earthquake Code (TEC-07) that enter into force in 2007. This study aims to evaluate the applicability of TEC-07 on confined compressive strengths of circular FRP wrapped concrete cylinders. To this end, a large number of data on circular FRP wrapped concrete cylinders are collected from the literature. It is clearly seen that the predictions of TEC-07 on circular FRP wrapped the FRP wrapped columns is not same accuracy for different ranges of concrete strengths.

Keywords: Fiber Reinforced Polymer (FRP), concrete cylinders, Turkish Earthquake Code, earthquake

Procedia PDF Downloads 519
6096 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns

Procedia PDF Downloads 304
6095 Regenerated Cellulose Prepared by Using NaOH/Urea

Authors: Lee Chiau Yeng, Norhayani Othman

Abstract:

Regenerated cellulose fiber is fabricated in the NaOH/urea aqueous solution. In this work, cellulose is dissolved in 7 .wt% NaOH/12 .wt% urea in the temperature of -12 °C to prepare regenerated cellulose. Thermal and structure properties of cellulose and regenerated cellulose was compared and investigated by Field Emission Scanning Electron Microscopy (FeSEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry. Results of FeSEM revealed that the regenerated cellulose fibers showed a more circular shape with irregular size due to fiber agglomeration. FTIR showed the difference in between the structure of cellulose and the regenerated cellulose fibers. In this case, regenerated cellulose fibers have a cellulose II crystalline structure with lower degree of crystallinity. Regenerated cellulose exhibited better thermal stability than the cellulose.

Keywords: regenerated cellulose, cellulose, NaOH, urea

Procedia PDF Downloads 431
6094 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform

Authors: K. Chethana, A. S. Guru Prasad, H. N. Vikranth, H. Varun, S. N. Omkar, S. Asokan

Abstract:

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors on an unstable platform to assess human postural stability and balance. The FBG sensor based Stability Analyzing Device (FBGSAD) developed demonstrates the applicability of FBG sensors in the measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. Comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer along with FBGSAD validates the study. The results obtained depict qualitative similarities between the data recorded by both FBGSAD and accelerometer, illustrating the reliability and consistency of FBG sensors in biomechanical applications for both young and geriatric population. The developed FBGSAD simultaneously measures plantar strain distribution and postural stability and can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Keywords: biomechanics, fiber bragg gratings, plantar strain measurement, postural stability analysis

Procedia PDF Downloads 573
6093 Understanding the Communication Practices of Special Educators with Parents of High School Students with Emotional and Behavioral Disorders

Authors: Carolyn B. Mires, David L. Lee, David B. McNaughton

Abstract:

High school students’ with emotional and behavioral disorders (EBD) are one of the most underserved populations in today's schools. Using a multiple case study methodology, interviews were conducted to examine current practices and perceptions of the communication practices of teachers working with high school students with EBD. These interviews involved questions about general communication instances which occurred each week, communication strategies used each week, and how progress was being made on forming relationships with parents. Results confirm previous researchers’ hypotheses regarding methods, purposes, and regularity of positive communication incidences. Communication that met the positive goals of nurturing and maintaining relationships was open and frequent, reciprocal, and informal. Limitations are discussed as well as issues of trustworthiness. The case study concludes with a discussion and suggestions for high school special educators of students with EBD.

Keywords: emotional behavioral disorders, high school adolescence, home-school communication, relationships between parents and schools

Procedia PDF Downloads 279