Search results for: biological profils
1536 Synthesis and Photophysical Studies of BOPIDY Dyes Conjugated with 4-Benzyloxystyryl Substituents
Authors: Bokolombe Pitchou Ngoy, John Mack, Tebello Nyokong
Abstract:
Synthesis and photochemical studies of BODIPY dyes have been investigated in this work in order to have a broad benchmark of this functionalized photosensitizer for biological applications such as photodynamic therapy or antimicrobial activity. The common acid catalyzed synthetic method was used, and BODIPY dyes were obtained in quite a good yield (25 %) followed by bromination and Knoevenagel condensation to afford the BODIPY dyes conjugated with maximum absorbance in the near-infrared region of the electromagnetic spectrum. The fluorescence lifetimes, fluorescence quantum yield, and Singlet oxygen quantum yield of the conjugated BODIPY dyes were determined in different solvents by using Time Correlation Single Photon Counting (TCSPC), fluorimeter, and Laser Flash Photolysis respectively. It was clearly shown that the singlet oxygen quantum yield was higher in THF followed by DMSO compared to another solvent. The same trend was observed for the fluorescence lifetimes.Keywords: BODIPY, photodynamic therapy, photosensitizer, singlet oxygen
Procedia PDF Downloads 2991535 Fundamentals and Techniques of Organic Agriculture in Egypt
Authors: Moustafa Odah
Abstract:
Organic Agriculture is a new and sustainable agricultural system that depends on the use of organic materials from within the farm resulting from crop residues and animal husbandry and the cultivation of leguminous crops, away from the use of chemicals in fertilization or pest resistance, which leads to the production of safe, clean and healthy food products with nutritional value high and free of chemicals enhance food security; it is also an agricultural model preserve natural resources by improving the fertility and soil characteristics, and enhance biodiversity and biological cycles; additionally, they preserve the environment from pollution, which makes it play an important role in providing food needs of the present generations and the preservation of the rights of the coming generations to achieve sustainable development.Keywords: organic agriculture, food security and achieving sustainable development, fertilization or pest resistance, crop residues and animal husbandry and the cultivation of leguminous crops
Procedia PDF Downloads 821534 Preparation and Biological Evaluation of 186/188Re-Chitosan for Radiosynovectomy
Authors: N. Ahmadi, H. Yousefnia, A. Bahrami-Samani
Abstract:
Chitosan is a natural and biodegradable polysaccharide with special characteristic for application in intracavital therapy. 166Ho-chitosan has been reported for the treatment of hepatocellular carcinoma and RSV with promising results. The aim of this study was to prepare 186/188Re-chitosan for radiosynovectomy purposes and investigate the probability of its leakage from the knee joint. 186/188Re was produced by neutron irradiation of the natural rhenium in a research reactor. Chemical processing was performed to obtain (186/188Re)-NaReO4- according to the IAEA manual. A stock solution of chitosan was prepared by dissolving in 1 % acetic acid aqueous solution (10 mg/mL). 1.5 mL of this stock solution was added to the vial containing the activity and the mixture was stirred for 5 min in the room temperature. The radiochemical purity of the complex was checked by the ITLC method, showing the purity of higher than 98%. Distribution of the radiolabeled complex was determined after intra-articular injection into the knees of rats. Excellent retention was observed in the joint with approximately no activity in the other organs.Keywords: chitosan, leakage, radiosynovectomy, rhenium
Procedia PDF Downloads 3391533 Investigation on Properties and Applications of Graphene as Single Layer of Carbon Atoms
Authors: Ali Ashjaran
Abstract:
Graphene is undoubtedly emerging as one of the most promising materials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices. In addition, Graphene-based nanomaterials have many promising applications in energy-related areas. Graphene a single layer of carbon atoms, combines several exceptional properties, which makes it uniquely suited as a coating material: transparency, excellent mechanical stability, low chemical reactivity, Optical, impermeability to most gases, flexibility, and very high thermal and electrical conductivity. Graphene is a material that can be utilized in numerous disciplines including, but not limited to: bioengineering, composite materials, energy technology and nanotechnology, biological engineering, optical electronics, ultrafiltration, photovoltaic cells. This review aims to provide an overiew of graphene structure, properties and some applications.Keywords: graphene, carbon, anti corrosion, optical and electrical properties, sensors
Procedia PDF Downloads 2731532 Mesenchymal Stem Cells on Fibrin Assemblies with Growth Factors
Authors: Elena Filova, Ondrej Kaplan, Marie Markova, Helena Dragounova, Roman Matejka, Eduard Brynda, Lucie Bacakova
Abstract:
Decellularized vessels have been evaluated as small-diameter vascular prostheses. Reseeding autologous cells onto decellularized tissue prior implantation should prolong prostheses function and make them living tissues. Suitable cell types for reseeding are both endothelial cells and bone marrow-derived stem cells, with a capacity for differentiation into smooth muscle cells upon mechanical loading. Endothelial cells assure antithrombogenicity of the vessels and MSCs produce growth factors and, after their differentiation into smooth muscle cells, they are contractile and produce extracellular matrix proteins as well. Fibrin is a natural scaffold, which allows direct cell adhesion based on integrin receptors. It can be prepared autologous. Fibrin can be modified with bound growth factors, such as basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF). These modifications in turn make the scaffold more attractive for cells ingrowth into the biological scaffold. The aim of the study was to prepare thin surface-attached fibrin assemblies with bound FGF-2 and VEGF, and to evaluate growth and differentiation of bone marrow-derived mesenchymal stem cells on the fibrin (Fb) assemblies. Following thin surface-attached fibrin assemblies were prepared: Fb, Fb+VEGF, Fb+FGF2, Fb+heparin, Fb+heparin+VEGF, Fb+heparin+FGF2, Fb+heparin+FGF2+VEGF. Cell culture poly-styrene and glass coverslips were used as controls. Human MSCs (passage 3) were seeded at the density of 8800 cells/1.5 mL alpha-MEM medium with 2.5% FS and 200 U/mL aprotinin per well of a 24-well cell culture. The cells have been cultured on the samples for 6 days. Cell densities on day 1, 3, and 6 were analyzed after staining with LIVE/DEAD cytotoxicity/viability assay kit. The differentiation of MSCs is being analyzed using qPCR. On day 1, the highest density of MSCs was observed on Fb+VEGF and Fb+FGF2. On days 3 and 6, there were similar densities on all samples. On day 1, cell morphology was polygonal and spread on all sample. On day 3 and 6, MSCs growing on Fb assemblies with FGF2 became apparently elongated. The evaluation of expression of genes for von Willebrand factor and CD31 (endothelial cells), for alpha-actin (smooth muscle cells), and for alkaline phosphatase (osteoblasts) is in progress. We prepared fibrin assemblies with bound VEGF and FGF-2 that supported attachment and growth of mesenchymal stem cells. The layers are promising for improving the ingrowth of MSCs into the biological scaffold. Supported by the Technology Agency of the Czech Republic TA04011345, and Ministry of Health NT11270-4/2010, and BIOCEV – Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” project (CZ.1.05/1.1.00/02.0109), funded by the European Regional Development Fund for their financial supports.Keywords: fibrin assemblies, FGF-2, mesenchymal stem cells, VEGF
Procedia PDF Downloads 3241531 Melting and Making Zn-Based Alloys and Examine Their Biodegradable and Biocompatible Properties
Authors: Abdulrahman Sumayli
Abstract:
Natural Zinc has many significant biological functions, including developments and sustainable of bones and wound healing. Metallic zinc has recently been explored as potential biomaterials that have preferable biodegradable, biocompatible, and mechanical properties. Pure metal zinc has a preferable physical and mechanical properties for biodegradable and biocompatible applications such as density and modulus of elasticity. The aim of the research is to make different Zn-based metallic alloys and test them effectively to be used as biocompatible and biodegradable materials in the field biomedical application. Microstructure study of the as-cast alloys will be examined using SEM (scanning electron microscope) followed by X-ray diffraction investigated so as to evaluate phase constitution of the designed alloys. After that, immersion test and electrochemical test will be applied to the designed alloys so as to study bio corrosion behaviour of the proposed alloys. Finally, in vitro cytocompatibility well conducted to study biocompatibility of the made alloys.Keywords: Zn-based alloys, biodegradable and biocompatible materials, cytotoxicity test, neutron synchrotron imaging
Procedia PDF Downloads 1381530 Dual Ion-Crosslinking Human Keratin Based Bioink for 3D Bioprinting
Authors: Jae Seo Lee, Il Keun Kwon
Abstract:
In the last decades, keratin-based on natural extracts has considerably increased interest as a skin tissue regeneration. However, most parts of keratin had a limitation to 3D scaffolds due to low biological affinity and general low mechanical properties. To create a 3D structure, a facile bioink was designed with a photocurable crosslinking stage system using natural polymer-based human keratin. Keratin-based bioink enables the crosslinking more quickly through two types of photo and ion crosslinking for module engineering assembly. Rheological results showed that keratin-based bioink with high concentration possessed superior mechanical rigidity for 3D bioprinting. Different 3D geometrically constructs were successfully fabricated with optimal bioprinting parameters through the 3D printer with X-Y-Z controlled UV laser system. The presented study has offered a distinct advantage for 3D printing of keratin-based hydrogel into 3D complex-shaped biomimetic constructs. Thus, keratin-based bioink opens up new avenues in bioprinting to directly substitute tissue or organs.Keywords: human keratin, hydrogel, ion-crosslinking, 3D bioprinting
Procedia PDF Downloads 1221529 Arbutin-loaded Butylglyceryl Dextran Nanoparticles for Topical Delivery
Authors: Mohammad F. Bostanudin, Tan S. Fei, Azwan M. Lazim
Abstract:
Toward the development of colloidal systems that are able to enhance permeation across the skin, a material combining the non-toxic and non-immunogenic of dextran with alkylglycerols permeation enhancing property has been designed. To this purpose, a range of butylglyceryl dextrans (DEX-OX4) were synthesized via functionalization with n-butylglycidyl ether and the successful functionalization was confirmed by NMR and FT-IR spectroscopies, along with GPC with a degree of modification in the range 6.3–35.7 %. A reduced viscosity and an increased molecular weight of DEX-OX4 were also recorded when compared to that of the native dextran. DEX-OX4 was further formulated into nanocarriers and loaded with α-arbutin prior to be investigated for their particle size, morphology, stability, loading ability, and release profiles. The resulting nanoparticles were found to be close-to-spherical and relatively stable at pH 5 and 7, with size 180–220 nm (ζ-potential -22 to -25 mV), and a loading degree of 11.7 %. Lack of toxicity at application-relevant concentrations and increased permeation across skin biological membrane model were demonstrated by nanoparticles in-vitro results against immortalized skin human keratinocytes cells (HaCaT).Keywords: butylglycerols, dextran, nanoparticles, transdermal
Procedia PDF Downloads 1221528 Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha compressa (L.) Biomass
Authors: Asma Aid, Samira Amokrane, Djamel Nibou, Hadj Mekatel
Abstract:
The marine Enteromorpha Compressa (L.) (ECL) biomass was used as a low-cost biological adsorbent for the removal of Cr⁶⁺, Co²⁺ and Ni²⁺ ions from artificially contaminated aqueous solutions. The operating variables pH, the initial concentration C₀, the solid/liquid ratio R and the temperature T were studied. A full factorial experimental design technique enabled us to obtain a mathematical model describing the adsorption of Cr⁶⁺, Co²⁺ and Ni²⁺ ions and to study the main effects and interactions among operational parameters. The equilibrium isotherm has been analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich models; it has been found that the adsorption process follows the Langmuir model for the used ions. Kinetic studies showed that the pseudo-second-order model correlates our experimental data. Thermodynamic parameters showed the endothermic heat of adsorption and the spontaneity of the adsorption process for Cr⁶⁺ ions and exothermic heat of adsorption for Co²⁺ and Ni²⁺ ions.Keywords: enteromorpha Compressa, adsorption process, Cr⁶⁺, Co²⁺ and Ni²⁺, equilibrium isotherm
Procedia PDF Downloads 1931527 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography
Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias
Abstract:
In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA
Procedia PDF Downloads 3291526 Treatment of Simulated Textile Wastewater Containing Reactive Azo Dyes Using Laboratory Scale Trickling Filter
Authors: Ayesha Irum, Sadia Mumtaz, Abdul Rehman, Iffat Naz, Safia Ahmed
Abstract:
The present study was conducted to evaluate the potential applicability of biological trickling filter system for the treatment of simulated textile wastewater containing reactive azo dyes with bacterial consortium under non-sterile conditions. The percentage decolorization for the treatment of wastewater containing structurally different dyes was found to be higher than 95% in all trials. The stable bacterial count of the biofilm on stone media of the trickling filter during the treatment confirmed the presence, proliferation, dominance and involvement of the added microbial consortium in the treatment of textile wastewater. Results of physicochemical parameters revealed the reduction in chemical oxygen demand (58.5-75.1%), sulphates (18.9-36.5%), and phosphates (63.6-73.0%). UV-Visible and FTIR spectroscopy confirmed decolorization of dye containing wastewater was the ultimate consequence of biodegradation. Toxicological studies revealed the nontoxic nature of degradative metabolites.Keywords: biodegradation, textile dyes, waste water, trickling filters
Procedia PDF Downloads 4311525 Arisarum Vulgare: Bridging Tradition and Science through Phytochemical Characterization and Exploring Therapeutic Potential via in vitro and in vivo Biological Activities
Authors: Boudjelal Amel
Abstract:
Arisarum vulgare, a member of the Araceae family, is an herbaceous perennial widely distributed in the Mediterranean region. A. vulgare is recognized for its medicinal properties and holds significant traditional importance in Algeria for the treatment of various human ailments, including pain, infections, inflammation, digestive disorders, skin problems, eczema, cancer, wounds, burns and gynecological diseases. Despite its extensive traditional use, scientific exploration of A. vulgare remains limited. The study aims to investigate for the first time the therapeutic potential of A. vulgare ethanolic extract obtained by ultrasound-assisted extraction. The chemical composition of the extract was determined by LC-MS/MS analysis. For in vitro phytopharmacological evaluation, several assays, including DPPH, ABTS, FRAP and reducing power, were employed to evaluate the antioxidant activity. The antibacterial activity was assessed againt Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium by disk diffusion and microdilution methods. The possible inhibitory activity of ethanolic extract was analyzed against the cholinesterases enzymes (AChE and BChE). The DNA protection activity of A. vulgare ethanolic extract was estimated using the agarose gel electrophoresis method. The capacities of the extract to protect plasmid DNA (pBR322) from the oxidizing effects of H2O2 and UV treatment were evaluated by their DNA-breaking forms. The in vivo wound healing potential of a traditional ointment containing 5% of A. vulgare ethanolic extract was also investigated. The LC-MS/MS profiling of the extract revealed the presence of various bioactive compounds, including naringenin, chlorogenic, vanillic, cafeic, coumaric acids, trans-cinnamic and trans ferrulic acids. The plant extract presented considerable antioxidant potential, being the most active for Reducing power (0,07326±0.001 mg/ml) and DPPH (0.14±0.004 mg/ml). The extract showed the highest inhibition zone diameter against Enterococcus feacium (36±0.1 mm). The ethanolic extract of A. vulgare suppressed the growth of Staphylococus aureus, Escherichia coli and Salmonella typhimurium according to the MIC values. The extract of the plant significantly inhibited both AChE and BChE enzymes. DNA protection activity of the A. vulgare extract was determined as 90.41% for form I and 51.92% for form II. The in vivo experiments showed that 5% ethanolic extract ointment accelerated the wound healing process. The topical application of the traditional formulation enhanced wound closure (95,36±0,6 %) and improved histological parameters in the treated group compared to the control groups. The promising biological properties of Arisarum vulgare revealed that the plant could be appraised as a potential origin of bioactive molecules having multifunctional medicinal uses.Keywords: arisarum vulgare, LC-MS/MS, antioxidant activity, antimicrobial activity, cholinesterases enzymes inhibition, dna-damage activity, in vivo wound healing
Procedia PDF Downloads 661524 Study of Salinity Stress and Calcium Interaction on Morphological and Physiological Traits of Vicia villosa under Hydroponic Condition
Authors: Raheleh Khademian, Roghayeh Aminian
Abstract:
For the study of salinity stress on Vicia villosa and calcium effect for modulation of that, an experiment was conducted under hydroponic condition, and some important morphological and physiological characteristics were evaluated. This experiment was conducted as a factorial based on randomized complete design with three replications. The treatments include salinity stress in three levels (0, 50, and 100 mM NaCl) and calcium in two levels (content in Hoagland solution and double content). The results showed that all morphological and physiological traits include root and shoot length, root and shoot wet and dry weight, leaf area, leaf chlorophyll content, RWC, CMS, and biological yield was significantly different from the control and is affected by the salinity stress severely. But, calcium effect on them was not significant despite of decreasing salinity effect.Keywords: Vicia villossa, salinity stress, calcium, hydroponic
Procedia PDF Downloads 2611523 Antimicrobial Activity of Biosynthesized Silver Nanoparticles with Handroanthus Chrysanthus Flower Extract
Authors: Eduardo Padilla, Luis Daniel Rodriguez, Ivan Sanchez, Angelica Sofia Go
Abstract:
The synthesis and application of metallic nanoparticles have increased in recent years. Biological methods go beyond the chemical and physical synthesis that is expensive and not friendly to the environment. Therefore, in this study, silver nanoparticles were synthesized biologically in an environmentally friendly way by Handroanthus chrysanthus flower aqueous extract (AgNPs) that contains phytochemicals capable of reducing silver nitrate. AgNPs were characterized visually by UV-visible spectroscopy and TEM. The antimicrobial activity of the AgNPs was tested by determining the minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) in Escherichia coli and Staphylococcus aureus strains AgNPs showed potent antimicrobial activity against gram-negative and gram-positive bacteria. MIC and MBC values were as low as 41.6, and 83.2 ug/mL using AgNPs biosynthesized by H. chrysanthus flower extract. This nanoparticle could be the basis for the formulation of disinfectants for use in the food and pharmaceutical industry.Keywords: antimicrobial, silver nanoparticles, flower extract, Handroanthus
Procedia PDF Downloads 1071522 Induction of Apoptosis by Diosmin through Interleukins/STAT and Mitochondria Mediated Pathway in Hep-2 and KB Cells
Authors: M. Rajasekar, K. Suresh
Abstract:
Diosmin is a flavonoid, most abundantly found in many citrus fruits. As a flavonoid, it possesses a multitude of biological activities including anti-hyperglycemic, anti-lipid peroxidative, anti-inflammatory, antioxidant, and anti-mutagenic properties. At this point, we established the anti-proliferative and apoptosis-inducing activities of diosmin in Hep-2 and KB cells. Diosmin has cytotoxic effects through inhibiting cellular proliferation of Hep-2 and KB cells, which leads to the induction of apoptosis, as apparent by an increase in the fraction of cells in the sub-G1phase of the cell cycle. Results exposed that inhibition of cell proliferation is associated with regulation of the Interleukins/STAT pathway. In addition, Diosmin treatment with Hep-2 and KB cells actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. And also an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and shifting the balance in favor of apoptosis. These observations conclude that Diosmin induce apoptosis via Interleukins /STAT-mediated pathway.Keywords: diosmin, apoptosis, antioxidant, STAT pathway
Procedia PDF Downloads 3261521 Cloning and Expression of the ansZ Gene from Bacillus sp. CH11 Isolated from Chilca salterns in Peru
Authors: Stephy Saavedra, Annsy C. Arredondo, Gisele Monteiro, Adalberto Pessoa Jr, Carol N. Flores-Fernandez, Amparo I. Zavaleta
Abstract:
L-asparaginase from bacterial sources is used in leukemic treatment and food industry. This enzyme is classified based on its affinity towards L-asparagine and L-glutamine. Likewise, ansZ genes express L-asparaginase with higher affinity to L-asparagine. The aim of this work was to clone and express of ansZ gene from Bacillus sp. CH11 isolated from Chilca salterns in Peru. The gene encoding L-asparaginase was cloned into pET15b vector and transformed in Escherichia coli BL21 (DE3) pLysS. The expression was carried out in a batch culture using LB broth and 0.5 mM IPTG. The recombinant L-asparaginase showed a molecular weight of ~ 39 kDa by SDS PAGE and a specific activity of 3.19 IU/mg of protein. The cloning and expression of ansZ gene from this halotolerant Bacillus sp. CH11 allowed having a biological input to improve a future scaling-up.Keywords: ansZ gene, Bacillus sp, Chilca salterns, recombinant L-asparaginase
Procedia PDF Downloads 1771520 Proposing a Boundary Coverage Algorithm for Underwater Sensor Network
Authors: Seyed Mohsen Jameii
Abstract:
Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.Keywords: boundary coverage, clustering, divide and conquer, underwater sensor nodes
Procedia PDF Downloads 3411519 Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review
Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.Keywords: beta alloys, biomedical applications, titanium alloys, Young's modulus
Procedia PDF Downloads 3221518 Biological Evaluation and Molecular Modeling Study of Thiosemicarbazide Derivatives as Bacterial Type IIA Topoisomerases Inhibitors
Authors: Paweł Stączek, Tomasz Plech, Aleksandra Strzelczyk, Katarzyna Dzitko, Monika Wujec, Edyta Kuśmierz, Piotr Paneth, Agata Paneth
Abstract:
In this contribution, we will describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile, and molecular modeling evaluation. We have found that one of the tested compounds, 4-benzoyl-1-(2-methyl-furan-3-ylcarbonyl) thiosemicarbazide, remarkably inhibits the activity of S. aureus DNA gyrase with the IC50 below 5 μM. Besides, this compound displays antibacterial activity on Staphylococcus spp. and E. faecalis at non-cytotoxic concentrations in mammalian cells, with minimal inhibitory concentrations (MICs) values at 25 μg/mL. Based on the enzymatic and molecular modeling studies we propose two factors, i.e. geometry of molecule and hydrophobic/hydrophilic balance as important molecular properties for developing thiosemicarbazide derivatives as potent Staphylococcus aureus DNA gyrase inhibitors.Keywords: bioactivity, drug design, topoisomerase, molecular modeling
Procedia PDF Downloads 5661517 Finite Element Modelling and Analysis of Human Knee Joint
Authors: R. Ranjith Kumar
Abstract:
Computer modeling and simulation of human movement is playing an important role in sports and rehabilitation. Accurate modeling and analysis of human knee join is more complex because of complicated structure whose geometry is not easily to represent by a solid model. As part of this project, from the number of CT scan images of human knee join surface reconstruction is carried out using 3D slicer software, an open source software. From this surface reconstruction model, using mesh lab (another open source software) triangular meshes are created on reconstructed surface. This final triangular mesh model is imported to Solid Works, 3D mechanical CAD modeling software. Finally this CAD model is imported to ABAQUS, finite element analysis software for analyzing the knee joints. The results obtained are encouraging and provides an accurate way of modeling and analysis of biological parts without human intervention.Keywords: solid works, CATIA, Pro-e, CAD
Procedia PDF Downloads 1231516 Development and Evaluation of Whey-Based Drink: An Approach to Protect Environmental Pollution
Authors: Zarmina Gillani, Mulazim Hussain Bukhari, Nuzhat Huma, Aqsa Qayyum
Abstract:
Whey is a valuable by-product of dairy industry comprising of precious nutrients lactose, protein, vitamins and minerals for the human food but considered as a pollutant due to its biological activity. So, there is a need to develop nutritious whey products to overcome the problem of environmental pollution. This project was planned to develop a whey drink at different pasteurization temperatures and its quality was evaluated during storage. The result indicated that pH, acidity, total soluble solids and lactose content changed significantly (p < 0.01) due to lactic acid production during storage. Non-significant (p > 0.05) effects were detected on the protein and ash content of whey drink. Fat and viscosity changed significantly with respect to storage only. Sensory evaluation of whey drink revealed that both treatments remained acceptable while whey drink pasteurized at 75°C/30 minutes (WD2) gained more sensory score compared to whey drink pasteurized at 65°C/30minutes (WD1).Keywords: pasteurization, sensory evaluation, storage, whey
Procedia PDF Downloads 2681515 Toxic Activity of Biopesticide Metarhizium anisopliae var acridium ‘Green Muscle’ on the Cuticle of the Desert Locust Schistocerca gegaria (Forskål, 1775)
Authors: F. Haddadj, F. Acheuk, S. Hamdi, S. Zenia, A. Smai, H. Saadi, B. Doumandji-Mitiche
Abstract:
Locust is causing significant losses in agricultural production in the countries concerned by the invasion. Up to the present control strategy has consisted only of the spreaders chemicals; they have proven harmful to the environment and taking a conscience prompted researchers and institutions to lean towards the biological control based mostly by using microorganism. It is in that sense is we've made our contribution by the use of a biopesticide which is entomopathogenic fungus Metarhizium anisopliae var acridium ‘Green Muscle’ on part of the cuticle the larval of fifth instar locust Schistocerca gregaria. Preliminary test on the study of the pathogenicity of the bio-control agent, was conducted in the laboratory on L5 S. gregaria, on which we inoculated treatment by direct spraying of the cuticle, 5 days after treatment individuals are sacrificed. Microscopic observation revealed alterations in the architecture of the cuticle which leads to disorganization of cell layers.Keywords: biopesticide, cuticle, desert locust, effect
Procedia PDF Downloads 4141514 Ancelim: Health System Restoration Protocol for Cancer Patients
Authors: Mark Berry
Abstract:
A number of studies have identified several factors involved in the malignant progression of cancer cells. The Primary modulator in driving inflammation to these transformed cells has been identified as the transcription factor known as nuclear factor-κB. This essential regulator of inflammation and the development of cancer, combined with a microenvironment of inflammation and signaling molecules, plays a major role in the malignant progression of cancer, and this progression is the result of the mutagenic predisposition of persistent substances that combat infection at tumor sites and other areas of chronic inflammation. Inflammation-induced tumors, and their inflammatory cells and regulators may be the primary source of metastasis of tumor cells through angiogenesis. Previous research on cytokines and chemokines, including their downstream targets, has been the focus of the cancer/inflammation connection. The identification of the biological mechanisms of other proteins vital to the inflammation cascade and their interactions are crucial to novel and effective therapeutic protocols for the treatment of inflammation-induced cancers. The Ancelim HSRP Protocol is just such a therapeutic intervention.Keywords: ancelim, cancer, inflammation, tumor
Procedia PDF Downloads 5431513 Stability of Solutions of Semidiscrete Stochastic Systems
Authors: Ramazan Kadiev, Arkadi Ponossov
Abstract:
Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.Keywords: abrupt changes, exponential stability, regularization, stochastic noises
Procedia PDF Downloads 1851512 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 5401511 Mixed Monolayer and PEG Linker Approaches to Creating Multifunctional Gold Nanoparticles
Authors: D. Dixon, J. Nicol, J. A. Coulter, E. Harrison
Abstract:
The ease with which they can be functionalized, combined with their excellent biocompatibility, make gold nanoparticles (AuNPs) ideal candidates for various applications in nanomedicine. Indeed several promising treatments are currently undergoing human clinical trials (CYT-6091 and Auroshell). A successful nanoparticle treatment must first evade the immune system, then accumulate within the target tissue, before enter the diseased cells and delivering the payload. In order to create a clinically relevant drug delivery system, contrast agent or radiosensitizer, it is generally necessary to functionalize the AuNP surface with multiple groups; e.g. Polyethylene Glycol (PEG) for enhanced stability, targeting groups such as antibodies, peptides for enhanced internalization, and therapeutic agents. Creating and characterizing the biological response of such complex systems remains a challenge. The two commonly used methods to attach multiple groups to the surface of AuNPs are the creation of a mixed monolayer, or by binding groups to the AuNP surface using a bi-functional PEG linker. While some excellent in-vitro and animal results have been reported for both approaches further work is necessary to directly compare the two methods. In this study AuNPs capped with both PEG and a Receptor Mediated Endocytosis (RME) peptide were prepared using both mixed monolayer and PEG linker approaches. The PEG linker used was SH-PEG-SGA which has a thiol at one end for AuNP attachment, and an NHS ester at the other to bind to the peptide. The work builds upon previous studies carried out at the University of Ulster which have investigated AuNP synthesis, the influence of PEG on stability in a range of media and investigated intracellular payload release. 18-19nm citrate capped AuNPs were prepared using the Turkevich method via the sodium citrate reduction of boiling 0.01wt% Chloroauric acid. To produce PEG capped AuNPs, the required amount of PEG-SH (5000Mw) or SH-PEG-SGA (3000Mw Jenkem Technologies) was added, and the solution stirred overnight at room temperature. The RME (sequence: CKKKKKKSEDEYPYVPN, Biomatik) co-functionalised samples were prepared by adding the required amount of peptide to the PEG capped samples and stirring overnight. The appropriate amounts of PEG-SH and RME peptide were added to the AuNP to produce a mixed monolayer consisting of approximately 50% PEG and 50% RME. The PEG linker samples were first fully capped with bi-functional PEG before being capped with RME peptide. An increase in diameter from 18-19mm for the ‘as synthesized’ AuNPs to 40-42nm after PEG capping was observed via DLS. The presence of PEG and RME peptide on both the mixed monolayer and PEG linker co-functionalized samples was confirmed by both FTIR and TGA. Bi-functional PEG linkers allow the entire AuNP surface to be capped with PEG, enabling in-vitro stability to be achieved using a lower molecular weight PEG. The approach also allows the entire outer surface to be coated with peptide or other biologically active groups, whilst also offering the promise of enhanced biological availability. The effect of mixed monolayer versus PEG linker attachment on both stability and non-specific protein corona interactions was also studied.Keywords: nanomedicine, gold nanoparticles, PEG, biocompatibility
Procedia PDF Downloads 3371510 Effects of Epinephrine on Gene Expressions during the Metamorphosis of Pacific Oyster Crassostrea gigas
Authors: Fei Xu, Guofan Zhang, Xiao Liu
Abstract:
Many major marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic adults via settlement and metamorphosis, which has many advantages for organisms to adapt marine environment. Studying the biological process of metamorphosis is thus a key to understand the origin and evolution of indirect development. Although the mechanism of metamorphosis has been largely studied on their relationships with the marine environment, microorganisms, as well as the neurohormones, little is known on the gene regulation network (GRN) during metamorphosis. We treated competent oyster pediveligers with epinephrine, which was known to be able to effectively induce oyster metamorphosis, and analyzed the dynamics of gene and proteins with transcriptomics and proteomics methods. The result indicated significant upregulation of protein synthesis system, as well as some transcription factors including Homeobox, basic helix-loop-helix, and nuclear receptors. The result suggested the GRN complexity of the transition stage during oyster metamorphosis.Keywords: indirect development, gene regulation network, protein synthesis, transcription factors
Procedia PDF Downloads 1361509 A Study of Gender Differences in Expressing Pain
Authors: A. Estaji
Abstract:
The first part of the present paper studies the role of language in expressing pain. Pain is usually described as a personal and mental experience, so language has an important role in describing, expressing and measuring pain and sometimes it is believed that language is the only device for accessing this personal experience. The second part of this paper studies gender differences in expressing pain. Considering the biological, psychological and social differences between men and women, we raise this question whether men and women express their pain in the same way or differently. To answer this question, we asked 44 Farsi speaking participants to write about the most painful experience they had in the past. Qualitative analysis of the data shows that women, have expressed their pain more severely, have expressed their feelings about pain instead of describing the pain itself, have made their pain more personal and have given more details about the circumstances in which they experienced pain, while men have given a more neutral description of their pain and have given a description of their pain by distancing themselves from the painful event. Knowing these gender differences in expressing pain can help medical practitioners in assessing the pain level.Keywords: discourse analysis, expressing pain, measuring pain, gender
Procedia PDF Downloads 3941508 Biomaterials Solutions to Medical Problems: A Technical Review
Authors: Ashish Thakur
Abstract:
This technical paper was written in view of focusing the biomaterials and its various applications in modern industries. Author tires to elaborate not only the medical, infect plenty of application in other industries. The scope of the research area covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. Biomaterials are invariably in contact with living tissues. Thus, interactions between the surface of a synthetic material and biological environment must be well understood. This paper reviews the benefits and challenges associated with surface modification of the metals in biomedical applications. The paper also elaborates how the surface characteristics of metallic biomaterials, such as surface chemistry, topography, surface charge, and wettability, influence the protein adsorption and subsequent cell behavior in terms of adhesion, proliferation, and differentiation at the biomaterial–tissue interface. The chapter also highlights various techniques required for surface modification and coating of metallic biomaterials, including physicochemical and biochemical surface treatments and calcium phosphate and oxide coatings. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. In addition to this, chapter introduces nanomedicine and the use of both natural and synthetic polymeric biomaterials, focuses on specific current polymeric nanomedicine applications and research, and concludes with the challenges of nanomedicine research. Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. Polymeric nanomaterial-based therapeutics plays a key role in the field of medicine in treatment areas such as drug delivery, tissue engineering, cancer, diabetes, and neurodegenerative diseases. Advantages in the use of polymers over other materials for nanomedicine include increased functionality, design flexibility, improved processability, and, in some cases, biocompatibility.Keywords: nanomedicine, tissue, infections, biomaterials
Procedia PDF Downloads 2631507 Non-Adiabatic Silica Microfibre Sensor for BOD/COD Ratio Measurement
Authors: S. S. Chong, A. R. Abdul Aziz, S. W. Harun, H. Arof
Abstract:
A miniaturized non-adiabatic silica microfiber is proposed for biological oxygen demand (BOD) ratio chemical oxygen demand (COD) sensing for the first time. BOD and COD are two main parameters to justify quality of wastewater. A ratio, BOD:COD can usually be established between the two analytical methods once COD and BOD value has been gathered. This ratio plays a vital role to determine appropriate strategy in wastewater treatment. A non-adiabatic microfiber sensor was formed by tapering the SMF to generate evanescent field where sensitive to perturbation of sensing medium. Because difference ratio BOD and COD contain in solution, this may induced changes of effective refractive index between microfiber and sensing medium. Attenuation wavelength shift to right with 0.5 nm and 3.5 nm while BOD:COD equal to 0.09 and 0.18 respectively. Significance difference wavelength shift may relate with the biodegradability of analyte. This proposed sensor is compact, reliable and feasible to determine the BOD:COD. Further research and investigation should be proceeded to enhance sensitivity and precision of the sensor for several of wastewater online monitoring.Keywords: non-adiabatic fiber sensor, environmental sensing, biodegradability, evanescent field
Procedia PDF Downloads 659