Search results for: students with learning disabilities
2887 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 1462886 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 1742885 Teaching Children about Their Brains: Evaluating the Role of Neuroscience Undergraduates in Primary School Education
Authors: Clea Southall
Abstract:
Many children leave primary school having formed preconceptions about their relationship with science. Thus, primary school represents a critical window for stimulating scientific interest in younger children. Engagement relies on the provision of hands-on activities coupled with an ability to capture a child’s innate curiosity. This requires children to perceive science topics as interesting and relevant to their everyday life. Teachers and pupils alike have suggested the school curriculum be tailored to help stimulate scientific interest. Young children are naturally inquisitive about the human body; the brain is one topic which frequently engages pupils, although it is not currently included in the UK primary curriculum. Teaching children about the brain could have wider societal impacts such as increasing knowledge of neurological disorders. However, many primary school teachers do not receive formal neuroscience training and may feel apprehensive about delivering lessons on the nervous system. This is exacerbated by a lack of educational neuroscience resources. One solution is for undergraduates to form partnerships with schools - delivering engaging lessons and supplementing teacher knowledge. The aim of this project was to evaluate the success of a short lesson on the brain delivered by an undergraduate neuroscientist to primary school pupils. Prior to entering schools, semi-structured online interviews were conducted with teachers to gain pedagogical advice and relevant websites were searched for neuroscience resources. Subsequently, a single lesson plan was created comprising of four hands-on activities. The activities were devised in a top-down manner, beginning with learning about the brain as an entity, before focusing on individual neurons. Students were asked to label a ‘brain map’ to assess prior knowledge of brain structure and function. They viewed animal brains and created ‘pipe-cleaner neurons’ which were later used to depict electrical transmission. The same session was delivered by an undergraduate student to 570 key stage 2 (KS2) pupils across five schools in Leeds, UK. Post-session surveys, designed for teachers and pupils respectively, were used to evaluate the session. Children in all year groups had relatively poor knowledge of brain structure and function at the beginning of the session. When asked to label four brain regions with their respective functions, older pupils labeled a mean of 1.5 (± 1.0) brain regions compared to 0.8 (± 0.96) for younger pupils (p=0.002). However, by the end of the session, 95% of pupils felt their knowledge of the brain had increased. Hands-on activities were rated most popular by pupils and were considered the most successful aspect of the session by teachers. Although only half the teachers were aware of neuroscience educational resources, nearly all (95%) felt they would have more confidence in teaching a similar session in the future. All teachers felt the session was engaging and that the content could be linked to the current curriculum. Thus, a short fifty-minute session can successfully enhance pupils’ knowledge of a new topic: the brain. Partnerships with an undergraduate student can provide an alternative method for supplementing teacher knowledge, increasing their confidence in delivering future lessons on the nervous system.Keywords: education, neuroscience, primary school, undergraduate
Procedia PDF Downloads 2142884 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 1732883 Constructing a Two-Tier Test about Source Current to Diagnose Pre-Service Elementary School Teacher’ Misconceptions
Authors: Abdeljalil Metioui
Abstract:
The purpose of this article is to present the results of two-stage qualitative research. The first involved the identification of the alternative conceptions of 80 elementary pre-service teachers from Quebec in Canada about the operation of simple electrical circuits. To do this, they completed a two-choice questionnaire (true or false) with justification. Data analysis identifies many conceptual difficulties. For example, for their majority, whatever the electrical device that composes an electrical circuit, the current source (power supply), and the generated electrical power is constant. The second step was to develop a double multiple-choice questionnaire based on the identified designs. It allows teachers to quickly diagnose their students' conceptions and take them into account in their teaching.Keywords: development, electrical circuits, two-tier diagnostic test, secondary and high school
Procedia PDF Downloads 1182882 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 1342881 The Perceived Practice of Principals’ Instructional Leadership Role in Curriculum Execution: The Case of Primary Schools in Tarcha Town, Ethiopia
Authors: Godaye Gobena Gomiole
Abstract:
The purpose of this study is to determine how principals at Tarcha Town Primary Schools in Ethiopia perceive their instructional leadership responsibilities in curriculum execution. The research was guided by a phenomenological study design. The data was collected through semi-structured interviews. Purposive sampling was used to include twelve principals. The study's conclusions showed that principals fall short of their duties in overseeing instruction. Setting clear objectives for the school and coordinating the curriculum receive less attention from principals. Additionally, they focus less on keeping track of students' progress. It is, therefore, advised that principals take instructional leadership and management training.Keywords: curriculum execution, instructional leadership, practice, primary school
Procedia PDF Downloads 642880 Comparing Russian and American Students’ Metaphorical Competence
Authors: Svetlana L. Mishlanova, Evgeniia V. Ermakova, Mariia E. Timirkina
Abstract:
The paper is concerned with the study of metaphor production in essays written by Russian and English native speakers in the framework of cognitive metaphor theory. It considers metaphorical competence as individual’s ability to recognize, understand and use metaphors in speech. The work analyzes the influence of visual metaphor on production and density of conventional and novel verbal metaphors. The main methods of research include experiment connected with image interpretation, metaphor identification procedure (MIPVU) and visual conventional metaphors identification procedure proposed by VisMet group. The research findings will be used in the project aimed at comparing metaphorical competence of native and non-native English speakers.Keywords: metaphor, metaphorical competence, conventional, novel
Procedia PDF Downloads 2902879 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 3302878 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1732877 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1642876 Reflections of Narrative Architecture in Transformational Representations on the Architectural Design Studio
Authors: M. Mortas, H. Asar, P. Dursun Cebi
Abstract:
The visionary works of architectural representation in the 21st century's present situation, are practiced through the methodologies which try to expose the intellectual and theoretical essences of futurologist positions that are revealed with this era's interactions. Expansions of conceptual and contextual inputs related to one architectural design representation, depend on its deepness of critical attitudes, its interactions with the concepts such as experience, meaning, affection, psychology, perception and aura, as well as its communication with spatial, cultural and environmental factors. The purpose of this research study is to be able to offer methodological application areas for the design dimensions of experiential practices into architectural design studios, by focusing on the architectural representative narrations of 'transformation,' 'metamorphosis,' 'morphogenesis,' 'in-betweenness', 'superposition' and 'intertwine’ in which they affect and are affected by the today’s spatiotemporal hybridizations of architecture. The narrative representations and the visual theory paradigms of the designers are chosen under the main title of 'transformation' for the investigation of these visionary and critical representations' dismantlings and decodings. Case studies of this research area are chosen from Neil Spiller, Bryan Cantley, Perry Kulper and Dan Slavinsky’s transformative, morphogenetic representations. The theoretical dismantlings and decodings which are obtained from these artists’ contemporary architectural representations are tried to utilize and practice in the structural design studios as alternative methodologies when to approach architectural design processes, for enriching, differentiating, diversifying and 'transforming' the applications of so far used design process precedents. The research aims to indicate architectural students about how they can reproduce, rethink and reimagine their own representative lexicons and so languages of their architectural imaginations, regarding the newly perceived tectonics of prosthetic, biotechnology, synchronicity, nanotechnology or machinery into various experiential design workshops. The methodology of this work can be thought as revealing the technical and theoretical tools, lexicons and meanings of contemporary-visionary architectural representations of our decade, with the essential contents and components of hermeneutics, etymology, existentialism, post-humanism, phenomenology and avant-gardism disciplines to re-give meanings the architectural visual theorists’ transformative representations of our decade. The value of this study may be to emerge the superposed and overlapped atmospheres of futurologist architectural representations for the students who need to rethink on the transcultural, deterritorialized and post-humanist critical theories to create and use the representative visual lexicons of themselves for their architectural soft machines and beings by criticizing the now, to be imaginative for the future of architecture.Keywords: architectural design studio, visionary lexicon, narrative architecture, transformative representation
Procedia PDF Downloads 1462875 Assessing Autism Spectrum Disorders (ASD) Challenges in Young Children in Dubai: A Qualitative Study, 2016
Authors: Kadhim Alabady
Abstract:
Background: Autism poses a particularly large public health challenge and an inspiring lifelong challenge for many families; it is a lifelong challenge of a different kind. Purpose: Therefore, it is important to understand what the key challenges are and how to improve the lives of children who are affected with autism in Dubai. Method: In order to carry out this research we have used a qualitative methodology. We performed structured in–depth interviews and focus groups with mental health professionals working at: Al Jalila hospital (AJH), Dubai Autism Centre (DAC), Dubai Rehabilitation Centre for Disabilities, Latifa hospital, Private Sector Healthcare (PSH). In addition to that, we conducted quantitative approach to estimate ASD prevalence or incidence data due to lack of registry. ASD estimates are based on research from national and international documents. This approach was applied to increase the validity of the findings by using a variety of data collection techniques in order to explore issues that might not be highlighted through one method alone. Key findings: Autism is the most common of the Pervasive Developmental Disorders. Dubai Autism Center estimates it affects 1 in 146 births (0.68%). If we apply these estimates to the total number of births in Dubai for 2014, it is predicted there would be approximately 199 children (of which 58 were Nationals and 141 were Non–Nationals) suffering from autism at some stage. 16.4% of children (through their families) seek help for ASD assessment between the age group 6–18+. It is critical to understand and address factors for seeking late–stage diagnosis, as ASD can be diagnosed much earlier and how many of these later presenters are actually diagnosed with ASD. Autism spectrum disorder (ASD) is a public health concern in Dubai. Families do not consult GPs for early diagnosis for a variety of reasons including cultural reasons. Recommendations: Effective school health strategies is needed and implemented by nurses who are qualified and experienced in identifying children with ASD. There is a need for the DAC to identify and develop a closer link with neurologists specializing in Autism, to work alongside and for referrals. Autism can be attributed to many factors, some of those are neurological. Currently, when families need their child to see a neurologist they have to go independently and search through the many that are available in Dubai and who are not necessarily specialists in Autism. Training of GP’s to aid early diagnosis of Autism and increase awareness. Since not all GP’s are trained to make such assessments increasing awareness about where to send families for a complete assessment and the necessary support. There is an urgent need for an adult autism center for when the children leave the safe environment of the school at 18 years. These individuals require a day center or suitable job training/placements where appropriate. There is a need for further studies to cover the needs of people with an Autism Spectrum Disorder (ASD).Keywords: autism spectrum disorder, autism, pervasive developmental disorders, incidence
Procedia PDF Downloads 2232874 One Plus One is More than Two: Why Nurse Recruiters Need to Use Various Multivariate Techniques to Understand the Limitations of the Concept of Emotional Intelligence
Authors: Austyn Snowden
Abstract:
Aim: To examine the construct validity of the Trait Emotional Intelligence Questionnaire Short form. Background: Emotional intelligence involves the identification and regulation of our own emotions and the emotions of others. It is therefore a potentially useful construct in the investigation of recruitment and retention in nursing and many questionnaires have been constructed to measure it. Design: Secondary analysis of existing dataset of responses to TEIQue-SF using concurrent application of Rasch analysis and confirmatory factor analysis. Method: First year undergraduate nursing and computing students completed Trait Emotional Intelligence Questionnaire-Short Form. Responses were analysed by synthesising results of Rasch analysis and confirmatory factor analysis.Keywords: emotional intelligence, rasch analysis, factor analysis, nurse recruiters
Procedia PDF Downloads 4692873 The Positive Impact of Wheelchair Service Provision on the Health and Overall Satisfaction of Wheelchair Users with the Devices
Authors: Archil Undilashvili, Ketevan Stvilia, Dustin Gilbreath, Giorgi Dzneladze, Gordon Charchward
Abstract:
Introduction: In recent years, diverse types of wheelchairs, both local production and imported, have been made available on the Georgian market for wheelchair users. Some types of wheelchairs are sold together with a service package, while the others, including the State Program, Supported locally-produced ones, don’t provide adjustment and maintenance service packages to users. Within the USAID Physical Rehabilitation Project in Georgia, a study was conducted to assess the impact of the wheelchair service provision in line with the WHO guidelines on the health and overall satisfaction of wheelchair users in Georgia. Methodology: A cross-sectional survey was conducted in May 2021. A structured questionnaire was used for telephone interviews that, along with socio-demographic characteristics, included questions for assessment of accessibility, availability, timeliness, cost and quality of wheelchair services received. Out of 1060 individuals listed in the census of wheelchair users, 752 were available for interview, with an actual response rate of 73.4%. 552 wheelchair users (31%) or their caregivers (69%) agreed to participate in the survey. In addition to using descriptive statistics, the study used multivariate matching of wheelchair users who received wheelchair services and who did not (control group). In addition, to evaluate satisfaction with service provision, respondents were asked to assess services. Findings: The majority (67%) of wheelchair users included in the survey were male. The average age of participants was 43. The three most frequently named reasons for using a wheelchair were cerebral palsy (29%), followed by stroke (18%), and amputation (12%). Users have had their current chair for four years on average. Overall, 60% of respondents reported that they were assessed before providing a wheelchair, but only half of them reported that their preferences and needs were considered. Only 13% of respondents had services in line with WHO guidelines and only 22% of wheelchair users had training when they received their current chair. 16% of participants said they had follow-up services, and 41% received adjustment services after receiving the chair. A slight majority (56%) of participants were satisfied with the quality of service provision and the service provision overall. Similarly, 55% were satisfied with the accessibility of service provision. A slightly larger majority (61%) were satisfied with the timeliness of service provision. The matching analysis suggests that users that received services in line with WHO guidelines were more satisfied with their chairs (the difference 17 point/0-100 scale) and they were four percentage points less likely to have health problems attributed to the chair. The regression analysis provides a similar finding of a 21 point increase in satisfaction attributable to services. Conclusion: The provision of wheelchair services in line with WHO guidelines and with follow-up services is likely to have a positive impact on the daily lives of wheelchair users in Georgia. Wheelchair services should be institutionalized as a standard component of wheelchair provision in Georgia.Keywords: physical rehabilitation, wheelchair users, persons with disabilities, wheelchair production
Procedia PDF Downloads 1092872 Home Education in the Australian Context
Authors: Abeer Karaali
Abstract:
This paper will seek to clarify important key terms such as home schooling and home education as well as the legalities attached to such terms. It will reflect on the recent proposed changes to terminology in NSW, Australia. The various pedagogical approaches to home education will be explored including their prominence in the Australian context. There is a strong focus on literature from Australia. The historical background of home education in Australia will be explained as well as the difference between distance education and home education. The statistics related to home education in Australia will be explored in the scope and compared to the US. The future of home education in Australia will be discussed.Keywords: alternative education, e-learning, home education, home schooling, online resources, technology
Procedia PDF Downloads 4102871 #Push Mo Yan: A Study of the Influence of Facebook and Twitter to Adolescent Communication
Authors: Rebecca Cervantes, Elishah Maro Pangilinan
Abstract:
The current research used Uses and gratifications theory to further understand the motivations and satisfaction students get from Facebook and Twitter. The researchers relate the objectives in developing uses and gratifications theory 1) to explain how individuals use mass communication to gratify their needs, “what do people do with the media” many of these young adults use social media networks to communicate with family, friends, and even strangers. Social media sites have created new and non-personal ways for people to interact with others and young adults have taken advantage of this technological trend; 2) to discover underlying motives for individuals’ media use 3) to identify the positive and the negative consequences of individual media use. The researchers use survey questionnaires to gather information that is used in this study. A descriptive analysis was used to measure the answers to a 24-item questionnaire.Keywords: adolescent, communication, social media, #Hashtag
Procedia PDF Downloads 2982870 Kiira EV Project Transition from Student to Professional Team through Project-Based Skills Development
Authors: Doreen Orishaba, Paul Isaac Musasizi, Richard Madanda, Sandy Stevens Tickodri-Togboa
Abstract:
The world of academia tends to be a very insular place. Consequently, scholars who successfully completed their undergraduate and graduate studies are unpleasantly surprised at how challenging the transition to corporate life can get. This is a global trend even as the students who juggle work with attending some of the most demanding and best graduate programs may not easily adjust to and confirm to the professionalism required for corporate management of the industry. This paper explores the trends in the transition of Kiira EV Project from a predominantly student team to a professional team of a national pride program through mentorship and apprenticeship. The core disciplines within the Kiira EV Project include Electrical and Electronics Engineering, Mechanical Engineering, and Industrial Design.Keywords: mentorship, apprenticeship, professional, development
Procedia PDF Downloads 4232869 Predicting Mortality among Acute Burn Patients Using BOBI Score vs. FLAMES Score
Authors: S. Moustafa El Shanawany, I. Labib Salem, F. Mohamed Magdy Badr El Dine, H. Tag El Deen Abd Allah
Abstract:
Thermal injuries remain a global health problem and a common issue encountered in forensic pathology. They are a devastating cause of morbidity and mortality in children and adults especially in developing countries, causing permanent disfigurement, scarring and grievous hurt. Burns have always been a matter of legal concern in cases of suicidal burns, self-inflicted burns for false accusation and homicidal attempts. Assessment of burn injuries as well as rating permanent disabilities and disfigurement following thermal injuries for the benefit of compensation claims represents a challenging problem. This necessitates the development of reliable scoring systems to yield an expected likelihood of permanent disability or fatal outcome following burn injuries. The study was designed to identify the risk factors of mortality in acute burn patients and to evaluate the applicability of FLAMES (Fatality by Longevity, APACHE II score, Measured Extent of burn, and Sex) and BOBI (Belgian Outcome in Burn Injury) model scores in predicting the outcome. The study was conducted on 100 adult patients with acute burn injuries admitted to the Burn Unit of Alexandria Main University Hospital, Egypt from October 2014 to October 2015. Victims were examined after obtaining informed consent and the data were collected in specially designed sheets including demographic data, burn details and any associated inhalation injury. Each burn patient was assessed using both BOBI and FLAMES scoring systems. The results of the study show the mean age of patients was 35.54±12.32 years. Males outnumbered females (55% and 45%, respectively). Most patients were accidently burnt (95%), whereas suicidal burns accounted for the remaining 5%. Flame burn was recorded in 82% of cases. As well, 8% of patients sustained more than 60% of total burn surface area (TBSA) burns, 19% of patients needed mechanical ventilation, and 19% of burnt patients died either from wound sepsis, multi-organ failure or pulmonary embolism. The mean length of hospital stay was 24.91±25.08 days. The mean BOBI score was 1.07±1.27 and that of the FLAMES score was -4.76±2.92. The FLAMES score demonstrated an area under the receiver operating characteristic (ROC) curve of 0.95 which was significantly higher than that of the BOBI score (0.883). A statistically significant association was revealed between both predictive models and the outcome. The study concluded that both scoring systems were beneficial in predicting mortality in acutely burnt patients. However, the FLAMES score could be applied with a higher level of accuracy.Keywords: BOBI, burns, FLAMES, scoring systems, outcome
Procedia PDF Downloads 3392868 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 992867 The Legal Nature of Grading Decisions and the Implications for Handling of Academic Complaints in or out of Court: A Comparative Legal Analysis of Academic Litigation in Europe
Authors: Kurt Willems
Abstract:
This research examines complaints against grading in higher education institutions in four different European regions: England and Wales, Flanders, the Netherlands, and France. The aim of the research is to examine the correlation between the applicable type of complaint handling on the one hand, and selected qualities of the higher education landscape and of public law on the other hand. All selected regions report a rising number of complaints against grading decisions, not only as to internal complaint handling within the institution but also judicially if the dispute persists. Some regions deem their administrative court system appropriate to deal with grading disputes (France) or have even erected a specialty administrative court to facilitate access (Flanders, the Netherlands). However, at the same time, different types of (governmental) dispute resolution bodies have been established outside of the judicial court system (England and Wales, and to lesser extent France and the Netherlands). Those dispute procedures do not seem coincidental. Public law issues such as the underlying legal nature of the education institution and, eventually, the grading decision itself, have an impact on the way the academic complaint procedures are developed. Indeed, in most of the selected regions, contractual disputes enjoy different legal protection than administrative decisions, making the legal qualification of the relationship between student and higher education institution highly relevant. At the same time, the scope of competence of government over different types of higher education institutions; albeit direct or indirect (o.a. through financing and quality control) is relevant as well to comprehend why certain dispute handling procedures have been established for students. To answer the above questions, the doctrinal and comparative legal method is used. The normative framework is distilled from the relevant national legislative rules and their preparatory texts, the legal literature, the (published) case law of academic complaints and the available governmental reports. The research is mainly theoretical in nature, examining different topics of public law (mainly administrative law) and procedural law in the context of grading decisions. The internal appeal procedure within the education institution is largely left out of the scope of the research, as well as different types of non-governmental-imposed cooperation between education institutions, given the public law angle of the research questions. The research results in the categorization of different academic complaint systems, and an analysis of the possibility to introduce each of those systems in different countries, depending on their public law system and higher education system. By doing so, the research also adds to the debate on the public-private divide in higher education systems, and its effect on academic complaints handling.Keywords: higher education, legal qualification of education institution, legal qualification of grading decisions, legal protection of students, academic litigation
Procedia PDF Downloads 2362866 Ethnic Relations in Social Work Education: A Study of Teachers’ Strategies and Experiences in Sweden
Authors: Helene Jacobson Pettersson, Linda Lill
Abstract:
Research that combines educational science, social work and migration studies shows that ethnic relations tend to be represented from various angles and with different content. As studied here, it is found in steering documents, literature, and teaching that the construction of ethnic relations related to social work varies in education over time. The study has its actuality in changed preconditions to social work education caused by the demographic development and the on-going globalization in the Swedish society. In this presentation we will explore strategies and experiences of teaching ethnic relations at social work educations in Sweden. The purpose is to investigate the strategies that are used and what content is given to ethnic relations in the social work education. University teachers are interviewed concerning their interpretation of steering documents related to the content and how they transform this in their teaching. Even though there has been a tradition to include aspects as intercultural relations and ethnicity, the norms of the welfare state has continued to be the basis for how to conceptualize people’s way of living and social problems. Additionally, the contemporary migration situation with a large number of refugees coming to Sweden peaking in 2015, dramatically changes the conditions for social work as a practice field. Increasing economic and social tensions in Sweden, becomes a challenge for the universities to support the students to achieve theoretical and critical knowledge and skills needed to work for social change, human rights and equality in the ethnic diverse Swedish society. The study raises questions about how teachers interpret the goals of the social work programs in terms of ethnic relations. How do they transform this into teaching? How are ethnic relations in social work described and problematized in lectures, cases and examinations? The empirical material is based on interviews with teachers involved in the social work education at four Swedish universities. The interviewees were key persons in the sense that they could influence the course content, and they were drawn from different semesters of the program. In depth interviews are made on the themes; personal entrance, description and understanding of ethnic relations in social work, teachers’ conception of students understanding of ethnic relations, and the content, form and strategies for teaching used by the teachers. The analysis is thematic and inspired from narrative analysis. The results show that the subject is relatively invisible in steering documents. The interviewees have experienced changes in the teaching over time, with less focus on intercultural relations and specific cultural competence. Instead ethnic relations are treated more contextually and interacting with categories as gender, class and age. The need of theoretical and critical knowledge of migration and ethnic relations in a broad sense but also for specific professional use is emphasized.Keywords: ethnic relations, social work education, social change, human rights, equality, ethnic diversity in Sweden
Procedia PDF Downloads 2842865 Good Environmental Governance Realization among the Three King Mongkut's Institutes of Technology in Bangkok, Thailand
Authors: Pastraporn Thipayasothorn, Vipawan Tadapratheep, Jintana Nokyoo
Abstract:
A physical realization of good environmental governance about an environmental principle, educational psychology and architecture in the three King Mongkut's Institutes of Technology, is generated for researching physical environmental factors which related to the good environmental governance, communication between the good environmental governance and a physical environmental, and a physical environmental design policy. Moreover, we collected data by a survey, observation and questionnaire that participants are students of the three King Mongkut's Institutes of Technology, and analyzed a relationship between a building utilization and the good environmental governance awareness. We found that, from the data analysis, a balance and creativity participation which played as the project users and communities of the good governance environmental promotion in the institutes helps the good governance and environmental development in the future.Keywords: built environment, good governance, environmental governance, physical environmental
Procedia PDF Downloads 4422864 Professional Reciprocal Altruism in Education: Aligning Core Values and the Community of Practice for Today’s Educational Practitioners
Authors: Jessica Bogunovich, Kimberly Greene
Abstract:
As a grounded theory, Professional Reciprocal Altruism in Education (PRAE) offers an empowering means of understanding how the predominant motivator of those entering the teaching profession, altruism, serves as a shared value to inspire the individual’s personal practice beyond a siloed experience and into one of authentic engagement within the Community of Practice (CoP) of professional educators. The process of aligning one’s personal values, attitudes, and preconceived cultural constructs with those of the CoP, affords the alignment of the authentic and professional self; thus, continuously fostering one’s intrinsic motivation to remain engaged in their individual continuous process of growth and development for their students, community, profession, and themselves.Keywords: altruism, Community of Practice. cultural constructs, teacher attrition, reciprocal altruism, value congruence
Procedia PDF Downloads 2152863 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food
Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez
Abstract:
The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion
Procedia PDF Downloads 2552862 Method of Nursing Education: History Review
Authors: Cristina Maria Mendoza Sanchez, Maria Angeles Navarro Perán
Abstract:
Introduction: Nursing as a profession, from its initial formation and after its development in practice, has been built and identified mainly from its technical competence and professionalization within the positivist approach of the XIX century that provides a conception of the disease built on the basis of to the biomedical paradigm, where the care provided is more focused on the physiological processes and the disease than on the suffering person understood as a whole. The main issue that is in need of study here is a review of the nursing profession's history to get to know how the nursing profession was before the XIX century. It is unclear if there were organizations or people with knowledge about looking after others or if many people survived by chance. The holistic care, in which the appearance of the disease directly affects all its dimensions: physical, emotional, cognitive, social and spiritual. It is not a concept from the 21st century. It is common practice, most probably since established life in this world, with the final purpose of covering all these perspectives through quality care. Objective: In this paper, we describe and analyze the history of education in nursing learning in terms of reviewing and analysing theoretical foundations of clinical teaching and learning in nursing, with the final purpose of determining and describing the development of the nursing profession along the history. Method: We have done a descriptive systematic review study, doing a systematically searched of manuscripts and articles in the following health science databases: Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL. The selection of articles has been made according to PRISMA criteria, doing a critical reading of the full text using the CASPe method. A compliment to this, we have read a range of historical and contemporary sources to support the review, such as manuals of Florence Nightingale and John of God as primary manuscripts to establish the origin of modern nursing and her professionalization. We have considered and applied ethical considerations of data processing. Results: After applying inclusion and exclusion criteria in our search, in Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL, we have obtained 51 research articles. We have analyzed them in such a way that we have distinguished them by year of publication and the type of study. With the articles obtained, we can see the importance of our background as a profession before modern times in public health and as a review of our past to face challenges in the near future. Discussion: The important influence of key figures other than Nightingale has been overlooked and it emerges that nursing management and development of the professional body has a longer and more complex history than is generally accepted. Conclusions: There is a paucity of studies on the subject of the review to be able to extract very precise evidence and recommendations about nursing before modern times. But even so, as more representative data, an increase in research about nursing history has been observed. In light of the aspects analyzed, the need for new research in the history of nursing emerges from this perspective; in order to germinate studies of the historical construction of care before the XIX century and theories created then. We can assure that pieces of knowledge and ways of care were taught before the XIX century, but they were not called theories, as these concepts were created in modern times.Keywords: nursing history, nursing theory, Saint John of God, Florence Nightingale, learning, nursing education
Procedia PDF Downloads 1202861 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation
Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy
Abstract:
A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.Keywords: cognitive activity, EEG, machine learning, personalized recovery
Procedia PDF Downloads 2232860 Cost-Effective Mechatronic Gaming Device for Post-Stroke Hand Rehabilitation
Authors: A. Raj Kumar, S. Bilaloglu
Abstract:
Stroke is a leading cause of adult disability worldwide. We depend on our hands for our activities of daily living(ADL). Although many patients regain the ability to walk, they continue to experience long-term hand motor impairments. As the number of individuals with young stroke is increasing, there is a critical need for effective approaches for rehabilitation of hand function post-stroke. Motor relearning for dexterity requires task-specific kinesthetic, tactile and visual feedback. However, when a stroke results in both sensory and motor impairment, it becomes difficult to ascertain when and what type of sensory substitutions can facilitate motor relearning. In an ideal situation, real-time task-specific data on the ability to learn and data-driven feedback to assist such learning will greatly assist rehabilitation for dexterity. We have found that kinesthetic and tactile information from the unaffected hand can assist patients re-learn the use of optimal fingertip forces during a grasp and lift task. Measurement of fingertip grip force (GF), load forces (LF), their corresponding rates (GFR and LFR), and other metrics can be used to gauge the impairment level and progress during learning. Currently ATI mini force-torque sensors are used in research settings to measure and compute the LF, GF, and their rates while grasping objects of different weights and textures. Use of the ATI sensor is cost prohibitive for deployment in clinical or at-home rehabilitation. A cost effective mechatronic device is developed to quantify GF, LF, and their rates for stroke rehabilitation purposes using off-the-shelf components such as load cells, flexi-force sensors, and an Arduino UNO microcontroller. A salient feature of the device is its integration with an interactive gaming environment to render a highly engaging user experience. This paper elaborates the integration of kinesthetic and tactile sensing through computation of LF, GF and their corresponding rates in real time, information processing, and interactive interfacing through augmented reality for visual feedback.Keywords: feedback, gaming, kinesthetic, rehabilitation, tactile
Procedia PDF Downloads 2422859 Locket Application
Authors: Farah Al-Fityani, Aljohara Alsowail, Shatha Bindawood, Heba Balrbeah
Abstract:
Locket is a popular app that lets users share spontaneous photos with a close circle of friends. The app offers a unique way to stay connected with loved ones by allowing users to see glimpses of their day through photos displayed on a widget on their home screen. This summary outlines the process of developing an app like Locket, highlighting the importance of user privacy and security. It also details the findings of a study on user engagement with the Locket app, revealing positive sentiment towards its features and concept but also identifying areas for improvement. Overall, the summary portrays Locket as a successful app that is changing the way people connect on social media.Keywords: locket, app, machine learning, connect
Procedia PDF Downloads 532858 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 82