Search results for: physicochemical properties
1425 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia
Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.
Abstract:
Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy
Procedia PDF Downloads 1351424 Validation of the Arabic Version of the InterSePT Scale for Suicidal Thinking (ISST) among the Arab Population in Qatar
Authors: S. Hammoudeh, S. Ghuloum, A. Abdelhakam, A. AlMujalli, M. Opler, Y. Hani, A. Yehya, S. Mari, R. Elsherbiny, Z. Mahfoud, H. Al-Amin
Abstract:
Introduction: Suicidal ideation and attempts are very common in patients with schizophrenia and still contributes to the high mortality in this population. The InterSePT Scale for Suicidal Thinking (ISST) is a validated tool used to assess suicidal ideation in patients with schizophrenia. This research aims to validate the Arabic version of the ISST among the Arabs residing in Qatar. Methods: Patients diagnosed with schizophrenia were recruited from the department of Psychiatry, Rumailah Hospital, Doha, Qatar. Healthy controls were recruited from the primary health care centers in Doha, Qatar. The validation procedures including professional and expert translation, pilot survey and back translation of the ISST were implemented. Diagnosis of schizophrenia was confirmed using the validated Arabic version of Mini International Neuropsychiatric Interview (MINI 6, module K) for schizophrenia. The gold standard was the module B on suicidality from MINI 6 also. This module was administered by a rater who was blinded to the results of ISST. Results: Our sample (n=199) was composed of 98 patients diagnosed with schizophrenia (age 36.03 ± 9.88 years; M/F is 2/1) and 101 healthy participants (age 35.01 ± 8.23 years; M/F is 1/2). Among patients with schizophrenia: 26.5% were married, 17.3% had a college degree, 28.6% were employed, 9% had committed suicide once, and 4.4% had more than 4 suicide attempts. Among the control group: 77.2% were married, 57.4% had a college degree, and 99% were employed. The mean score on the ISST was 2.36 ± 3.97 vs. 0.47 ± 1.44 for the schizophrenia and control groups, respectively. The overall Cronbach’s alpha was 0.91. Conclusions: This is the first study in the Arab world to validate the ISST in an Arabic-based population. The psychometric properties indicate that the Arabic version of the ISST is a valid tool to assess the severity of suicidal ideation in Arabic speaking patients diagnosed with schizophrenia.Keywords: mental health, Qatar, schizophrenia, suicide
Procedia PDF Downloads 5641423 Study of Radiation Response in Lactobacillus Species
Authors: Kanika Arora, Madhu Bala
Abstract:
The small intestine epithelium is highly sensitive and major targets of ionizing radiation. Radiation causes gastrointestinal toxicity either by direct deposition of energy or indirectly (inflammation or bystander effects) generating free radicals and reactive oxygen species. Oxidative stress generated as a result of radiation causes active inflammation within the intestinal mucosa leading to structural and functional impairment of gut epithelial barrier. As a result, there is a loss of tolerance to normal dietary antigens and commensal flora together with exaggerated response to pathogens. Dysbiosis may therefore thought to play a role in radiation enteropathy and can contribute towards radiation induced bowel toxicity. Lactobacilli residing in the gut shares a long conjoined evolutionary history with their hosts and by doing so these organisms have developed an intimate and complex symbiotic relationships. The objective behind this study was to look for the strains with varying resistance to ionizing radiation and to see whether the niche of the bacteria is playing any role in radiation resistance property of bacteria. In this study, we have isolated the Lactobacillus spp. from probiotic preparation and murine gastrointestinal tract, both of which were supposed to be the important source for its isolation. Biochemical characterization did not show a significant difference in the properties, while a significant preference was observed in carbohydrate utilization capacity by the isolates. Effect of ionizing radiations induced by Co60 gamma radiation (10 Gy) on lactobacilli cells was investigated. A cellular survival curve versus absorbed doses was determined. Radiation resistance studies showed that the response of isolates towards cobalt-60 gamma radiation differs from each other and significant decrease in survival was observed in a dose-dependent manner. Thus the present study revealed that the property of radioresistance in Lactobacillus depends upon the source from where they have been isolated.Keywords: dysbiosis, lactobacillus, mitigation, radiation
Procedia PDF Downloads 1391422 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades
Authors: Abdullah Alnutayfat, Alexander Sutin
Abstract:
One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation
Procedia PDF Downloads 851421 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings
Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier
Abstract:
Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests
Procedia PDF Downloads 2051420 Effect of Annealing Temperature on the Photoelectric Work Function of Silver-Zinc Oxide Contact Materials
Authors: Bouchou Aïssa, Mohamed Akbi
Abstract:
Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermo dynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver-metal oxide (Ag-MeO) electrical contacts (Ag-ZnO (92/8), before and after surface heat treatments at 296 K 813 K, under UHV conditions (residual gas pressure of 1.4 x 10-7 mbar). The electron work function (EWF) of silver zinc oxide materials was measured photoelectrically, using both Fowler’s method of isothermal curves and linearized Fowler plots. In this paper, we present the development of a method for measuring photoelectric work function of contact materials. Also reported in this manuscript are the results of experimental work whose purpose has been the buildup of a reliable photoelectric system and associated monochromatic ultra-violet radiations source, and the photoelectric measurement of the electron work functions (EWF) of contact materials. In order to study the influence of annealing temperature on the EWF, a vacuum furnace was used for heating the metallic samples up to 800 K. The EWF of the silver – zinc oxide materials were investigated to study the influence of annealing temperature on the EWF. In the present study, the photoelectric measurements about Ag-ZnO(92/8) contacts have shown a linear decrease of the EWF with increasing temperature, i.e. the temperature coefficient is constant and negative: for the first annealing # 1, in the temperature range [299 K 823 K]. On the contrary, a linear increase was observed with increasing temperature (i.e. , being constant and positive), for the next annealing # 2, in the temperature range [296 K 813 K]. The EWFs obtained for silver-zinc oxide Ag-ZnO(92/8) show an obvious dependence on the annealing temperature which is strongly associated with the evolution of the arrangement on ZnO nano particles on the Ag-ZnO contact surface as well as surface charge distribution.Keywords: Photoemission, Electron work function, Fowler methods, Ag-ZnO contact materials, Vacuum heat treatment
Procedia PDF Downloads 4161419 Cold Formed Steel Sections: Analysis, Design and Applications
Authors: A. Saha Chaudhuri, D. Sarkar
Abstract:
In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined.Keywords: cold form steel sections, applications, present research review, blast resistant design
Procedia PDF Downloads 1501418 Advancement in Scour Protection with Flexible Solutions: Interpretation of Hydraulic Tests Data for Reno Mattresses in Open Channel Flow
Authors: Paolo Di Pietro, Matteo Lelli, Kinjal Parmar
Abstract:
Water hazards are consistently identified as among the highest global risks in terms of impact. Riverbank protection plays a key role in flood risk management. For erosion control and scour protection, flexible solutions like gabions & mattresses are being used since quite some time now. The efficacy of erosion control systems depends both on the ability to prevent soil loss underneath, as well as to maintain their integrity under the effects of the water flow. The paper presents the results of a research carried out at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control system. Mattresses were subjected to various flow conditions on a 10m long flume where they were placed on a 0.30 m thick soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties and under variable hydraulic flow regimes. While confirming the stability obtained using a conventional design approach (commonly referred to tractive force theories), the results of the research allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control system as a function of the size of the filling stones, their uniformity, their unit weight, the thickness of the mattress, and the presence of vertical connecting elements between the mattress lid and bottom.Keywords: Reno Mattress, riverbank protection, hydraulics, full scale tests
Procedia PDF Downloads 271417 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires
Authors: Musaab Salman Sultan
Abstract:
The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties
Procedia PDF Downloads 2511416 Antibiotic Resistance and Susceptibility of Bacteria Strains Isolated from Sheep Milk
Authors: Fatima Bouazza, Rachida Hassikou, Lamiae Amallah, Jihane Ennadir, Khadija Khedid
Abstract:
This study evaluated the in vitro resistance and susceptibility of Enterobacteriaceae (Escherichia coli and Klebsiella oxytoca strains) and Staphylococci strains, isolated from sheep’s milk, against antibiotics and essential oils from Thymus satureioides and Mentha pulegium. Antibiotic resistance tests were done using disc diffusion while essential oils were extracted by steam distillation, and yields were calculated relative to plant dry matter. Gas chromatography-mass Spectrometry (GC-MS) was used to analyze each oil's chemical composition. The AMC, CTX, FOX, NA, CN, CIP, and OFX were very effective against the E. coli strains tested. Half of the strains were resistant to AMC, 60% to TIC, and 80% to TE. The K. oxytoca was resistant against AMC, FOX, and TIC (100%). Antibiotic-resistant testing on Staphylococci strains indicated Staphylococcus capitis and Staphylococcus chromogenes as the most sensitive. Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus cohnii ureal exhibited less resistance to OX, TE, PT, E, and P. The M. pulegium resulted in a higher yield of essential oil of 3.2% oil compared to T. satureioides with only 1.85% yield. Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus cohnii ureal had lower OX, TE, PT, E, and P resistance. M. pulegium yielded 3.2% essential oil compared to 1.85% for T. satureioides. The monoterpene oxygenated derivatives, monoterpene hydrocarbons, and phenols are found in essential oil extracts. T. satureioides essential oil had high antibacterial activity even at low concentrations (0.2; 0.55 g/mL). The Minimal Bactericidal Concentration (MBC) values indicate that the essential oils from the plants analyzed had bactericidal effects on all strains tested and are similar to the Minimal Inhibitory Concentration (MIC) values. The high antibacterial properties of these medicinal plants, against bacteria isolated from sheep’s milk, provide an opportunity to use these medicinal plants in the breeding sector as additives and preservatives in the dairy industry.Keywords: antibiotic resistance, medicinal plants, essential oils, enterobacteriaceae, staphylococci, sheep milk
Procedia PDF Downloads 1621415 Conflicts and Epidemiology of HIV/AIDS: Gender Dimension in Rain Forest Zone of Nigeria
Authors: K. K. Bolarinwa, A. F. O. Ayinde, B. B. Abiona, O. Oyekunle
Abstract:
Conflict and HIV/AIDS infection have had a profound impact on the Sub-Saharan African societies, individually and collectively. Nigeria has been experiencing several violent conflicts in many communities across the geographical spread of the country. These conflicts which often lead to loss of lives, properties and loss of livelihoods are mainly felt by women in terms of increased responsibility towards affected family members with attendant decrease in livelihood options. Despite these, conflict issues have not really received enough focal attention by Nigerian academics. It is against this backdrop that this study was undertaken to describe the respondents, the most prevalent conflict repercussions and most prevalent STDs, in conflict areas. Data were collected using interview schedule to elicit a response from 122 respondents in Southwest Nigeria, through a multi-stage sampling technique involving stratification of respondents into violent conflict areas (VCA) and non-violent conflict areas (NVCA). The data collected were analysed using descriptive statistics and correlation analysis. Results revealed that majority (86.5% and 70.5 %) of the respondents were in the age bracket of 10-39 years in both the VCA and NVCA respectively; 35.5% and 40.2% of the respondents were literate in VCA and NVCA, respectively while 76.5% and 55.8% of the respondents were in the lower income groups in VCA and NVCA, respectively. HIV/AIDS and gonorrhoea were the more predominant (75.2% and 55.6% respectively) STDs in the VCA as against 33.2% and 38.3% respectively in the NVCA. Further, significant (p<0.05) correlation existed between conflict incidence and spread of HIV/AIDS, rape and torture, maltreatment of women as well as sexual harassment; in both VCA and NVCA among others. The study concluded that conflict situations in the study area aggravated incidence of HIV/AIDS and made the women more vulnerable to inhuman treatments such as rape, torture and harassment with attendant reduction in sources of livelihoods. The study recommended among others that sensitisation on control and preventive measures of HIV/AID and other sexually transmitted diseases should be included in programme designed to mitigate against conflicts in the study areas.Keywords: conflict, gender dimension, HIV/AIDS epidemiology, Nigeria
Procedia PDF Downloads 2591414 Thermodynamic Properties of Calcium-Containing DPPA and DPPC Liposomes
Authors: Tamaz Mdzinarashvili, Mariam Khvedelidze, Eka Shekiladze, Salome Chinchaladze, Mariam Mdzinarashvili
Abstract:
The work is about the preparation of calcium-containing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) and their calorimetric study. In order to prepare these complex liposomes, for the first stage it is necessary for ligands and lipids to directly interact, followed by the addition of pH-buffered water or solvent at temperatures slightly above the liposome phase transition temperature. The resulting mixture is briefly but vigorously shaken and then transformed into liposomes of the desired size using an extruder. Particle sizing and calorimetry were used to evaluate liposome formation. We determined the possible structure of calcium-containing liposomes made by our new technology and determined their thermostability. The paper provides calculations showing how many phospholipid molecules are required to make a 200 nm diameter liposome. Calculations showed that 33x10³ lipid molecules are needed to prepare one DPPA and DPPC liposome. Based on the calorimetric experiments, we determined that the structure of uncomplexed DPPA liposomes is unilaminar (one double layer), while DPPC liposome is a nanoparticle with a multilaminar (multilayer) structure. This was determined by the cooperativity of the heat absorption peak. Calorimetric studies of calcium liposomes made by our technology showed that calcium ions are placed in the multilaminar structure of the DPPC liposome. Calcium ions also formed a complex in the DPPA liposome structure, moreover, calcium made the DPPA liposome multilaminar, since the cooperative narrow heat absorption peak was transformed into a three-peak heat absorption peak. Since both types of liposomes in complex with calcium ions present a multilaminar structure, where the number of lipid heads in one particle is large, the number of calcium ions in one particle will also be increased. That makes it possible to use these nanoparticles as transporters of a large amount of calcium ions in a living organism.Keywords: calcium, liposomes, thermodynamic parameters, calorimetry
Procedia PDF Downloads 461413 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach
Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip
Abstract:
The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method
Procedia PDF Downloads 1301412 Application of Pyridine-based Water-soluble Corrosion Inhibitor in Offshore Sweet Oil Pipeline
Authors: M. S. Yalfani, J. Kohzadi, P. Ghadimi, S. Sobhani, M. Ghadimi
Abstract:
The use of oil and water-soluble corrosion inhibitors has been established in Iranian oil and gas production systems for a long time. Imidazoline and its derivatives are being extensively used which are known as conventional corrosion inhibitors. This type of product has shown significant performance and low side effects, so that could monopolize the market of inhibitors in this region. However, the price growth of imidazolines, as well as the development of new lower-cost components with similar or even higher performance than imidazoline, have influenced the exclusive market of imidazoline-based products. During the latest years, pyridine and its derivatives have challenged imidazoline due to their remarkable anticorrosive properties and lower prices as well. Recently, we presented a formulated water-soluble inhibitor based on pyridine - an alkyl pyridine quaternary salt (APQS) - which could successfully pass all lab tests and eventually succeeded in being applied in an offshore sweet oil pipeline. The product was able to achieve high corrosion protection (> 90 %) with the LPR technique at low dosages of 15-25 ppm under severe corrosion conditions. Moreover, the lab test results showed that the APQS molecule is able to form a strong and persistent bond with the metal surface. The product was later nominated to be evaluated through a field trial in an offshore sweet oil pipeline where PH2S < 0.05 psi and CO2 is 6.4 mol%. The three-month trial - extended to six months- resulted in remarkable internal protection obtained by continuous injection of 10 ppm inhibitor, which was as low as 1 mpy measured by both weight loss corrosion coupons and online ER probes. In addition, no side effects, such as tight emulsion and stable foaming, were observed. The residual of the corrosion inhibitor was measured at the end of the pipeline to ensure the full coverage of the inhibitor throughout the pipeline. Eventually, these promising results were able to convince the end user to consider pyridine-based inhibitors as a reliable alternative to imidazoline.Keywords: corrosion inhibitor, pyridine, sweet oil, pipeline, offshore
Procedia PDF Downloads 141411 Vibration Analysis of FGM Sandwich Panel with Cut-Outs Using Refined Higher-Order Shear Deformation Theory (HSDT) Based on Isogeometric Analysis
Authors: Lokanath Barik, Abinash Kumar Swain
Abstract:
This paper presents vibration analysis of FGM sandwich structure with a complex profile governed by refined higher-order shear deformation theory (RHSDT) using isogeometric analysis (IGA). Functionally graded sandwich plates provide a wide range of applications in aerospace, defence, and aircraft industries due to their ability to distribute material functions to influence the thermo-mechanical properties as desired. In practical applications, these structures generally have intrinsic profiles, and their response to loads is significantly affected due to cut-outs. IGA is primarily a NURBS-based technique that is effective in solving higher-order differential equations due to its inherent C1 continuity imposition in solution space for a single patch. Complex structures generally require multiple patches to accurately represent the geometry, and hence, there is a loss of continuity at adjoining patch junctions. Therefore, patch coupling is desired to maintain continuity requirements throughout the domain. In this work, a novel strong coupling approach is provided that generates a well-defined NURBS-based model while achieving continuity. The methodology is validated by free vibration analysis of sandwich plates with present literature. The results are in good agreement with the analytical solution for different plate configurations and power law indexes. Numerical examples of rectangular and annular plates are discussed with variable boundary conditions. Additionally, parametric studies are provided by varying the aspect ratio, porosity ratio and their influence on the natural frequency of the plate.Keywords: vibration analysis, FGM sandwich structure, multipatch geometry, patch coupling, IGA
Procedia PDF Downloads 831410 Tackling Food Waste Challenge with Nanotechnology: Controllable Ripening via Metal Organic Framework
Authors: Boce Zhang, Yaguang Luo
Abstract:
Ripening of climacteric fruits, such as bananas and avocados, are usually initiated days prior to the retail marketing. However, upon the onset of irreversible ripening, they undergo rapid spoilage if not consumed within a narrow climacteric time window. Controlled ripening of climacteric fruits is a critical step to provide consumers with high-quality products while reducing postharvest losses and food waste. There is a high demand for technologies that can retard the ripening process or enable accelerated ripening immediately before consumption. In this work, metal−organic framework (MOF) was developed as a solid porous matrix to encapsulate gaseous hormone, including ethylene, for subsequent application. The feasibility of the on-demand stimulated ripening of bananas and avocados is also evaluated. MOF was synthesized and loaded with ethylene gas. The MOF−ethylene was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The fruits were treated for 24-48 hours, and evaluated for ripening progress. Results indicate that MOF−ethylene treatment significantly accelerated the ripening-related changes of color and textural properties in treated bananas and avocados. The average ripening period for both avocados and bananas were reduced in half by using this method. No significant differences of quality characteristics at respective ripening stages were observed between produce ripened via MOF-ethylene versus exogenously supplied ethylene gas or endogenously produced ethylene. Solid MOF matrices could have multiple advantages compared to existing systems, including easy to transport and safe to use by minimally trained produce handlers and consumers. We envision that this technology can help tackle food waste challenges at the critical retail and consumer stages in the food supply chain.Keywords: climacteric produce, controllable ripening, food waste challenge, metal organic framework
Procedia PDF Downloads 2481409 Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating
Authors: Artemova Anastasiia, Shen Zexiang, Savilov Serguei
Abstract:
The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation.Keywords: corrosion, coating, carbon nanotubes, degradation
Procedia PDF Downloads 1611408 Potentialities of Onopordum Tauricum (Willd.) as Milk Clotting Agent
Authors: Massimo Mozzon, Nadia Raffaelli
Abstract:
Proteases from herbs, woody plants, and trees are exploited for cheesemaking in several countries, especially in South Europe and West Africa. Particularly, “thistles” belonging to several genera within the Asteraceae family (Cynara, Silybum, Centaurea, Carlina, Cirsium, Onopordum) are traditionally used in Mediterranean countries for clotting raw ewe’s and goat’s milk. For the first time, the clotting performance of an aqueous extract from flowers of Onopordum tauricum Willd. (Taurian thistle, bull cottonthistle) were tested in milk of different origin (cow, goat, ewe). The vegetable material was collected in the Central Apennines range, between the Marche and Umbria regions. A response surface methodology (RSM) approach was used to study the effect of the curdling variables (temperature, pH, amount of enzymatic extract) on the technological performance of the thistle extract. A three-step procedure for the purification of the enzyme (ammonium sulphate precipitation, gel filtration and ion-exchange chromatography) was also carried out. The milk clotting activity (MCA) of O. tauricum crude extracts was strongly affected by temperature, pH and by the interaction between these two variables, according to a second-order response surface model, while the milk/coagulant ratio did not affect in a significant way the clotting properties. Experimental data showed that the addition of 10 mM CaCl2 reduced the clotting time of ewe’s, goat’s, and cow’s milk by about 3-fold, 8-fold, and 14-fold, respectively, at 35°C and pH 6.7-6.8. After purification, an enzymatic preparation very close to homogeneity was obtained, which showed a major band at about 30 kDa when analyzed by SDS-PAGE. The identity of the enzyme as an aspartic protease was confirmed by inhibition studies. Cheese-making trials were carried out to check the scale-up (1 to 5 L of milk; 37 °C; 10 mM CaCl2 fortification) and set the recipe: 35-45% of curd yields were recorded, according to curd cutting and pressing.Keywords: milk clotting activity, Onopordum tauricum, plant proteases, vegetable rennet
Procedia PDF Downloads 1591407 Enhancing Environmental Impact Assessment for Natural Gas Pipeline Systems: Lessons in Water and Wastewater Management
Authors: Kittipon Chittanukul, Chayut Bureethan, Chutimon Piromyaporn
Abstract:
In Thailand, the natural gas pipeline system requires the preparation of an Environmental Impact Assessment (EIA) report for approval by the relevant agency, the Office of Natural Resources and Environmental Policy and Planning (ONEP), in the pre-construction stage. As of December 2022, PTT has a lot of gas pipeline system spanning around the country. Our experience has shown that the EIA is a significant part of the project plan. In 2011, There was a catastrophic flood in multiple areas of Thailand. It destroyed lives and properties. This event is still in Thai people’s mind. Furthermore, rainfall has been increasing for three consecutive years (2020-2022). Moreover, municipalities are situated in low land river basin and tropical rainfall zone. So many areas still suffer from flooding. Especially in 2022, there will be a 60% increase in water demand compared to the previous year. Therefore, all activities will take into account the quality of the receiving water. The above information emphasizes water and wastewater management are significant in EIA report. PTT has accumulated a large number of lessons learned in water and wastewater management. Our pipeline system execution is composed of EIA stage, construction stage, and operation and maintenance phase. We provide practical Information on water and wastewater management to enhance the EIA process for the pipeline system. The examples of lessons learned in water and wastewater management include techniques to address water and wastewater impact throughout the overall pipelines systems, mitigation measures and monitoring results of these measures. This practical information will alleviate the anxiety of the ONEP committee when approving the EIA report and will build trust among stakeholders in the vicinity of the gas pipeline system area.Keywords: environmental impact assessment, gas pipeline system, low land basin, high risk flooding area, mitigation measure
Procedia PDF Downloads 661406 Experimental and Theoretical Studies: Biochemical Properties of Honey on Type 2 Diabetes
Authors: Said Ghalem
Abstract:
Honey is primarily composed of sugars: glucose and fructose. Depending honey, it's either fructose or glucose predominates. More the fructose concentration and the less the glycemic index (GI) is high. Thus, changes in the insulin response shows a decrease of the amount of insulin secreted at an increased fructose honey. Honey is also a compound that can reduce the lipid in the blood. Several studies on animals, but which remain to be checked in humans, have shown that the honey can have interesting effects when combined with other molecules: associated with Metformin (a medicine taken by diabetics), it shows the benefits and effects of diabetes preserves the tissue; associated ginger, it increases the antioxidant activity and thus avoids neurologic complications, neuropathic. Molecular modeling techniques are widely used in chemistry, biology, and the pharmaceutical industry. Most of the currently existing drugs target enzymes. Inhibition of DPP-4 is an important approach in the treatment of type 2 diabetes. We have chosen for the inhibition of DPP-4 the following molecules: Linagliptin (BI1356), Sitagliptin (Januvia), Vildagliptin, Saxagliptin, Alogliptin, and Metformin (Glucophage), that are involved in the disease management of type 2 diabetes and added to honey. For this, we used software Molecular Operating Environment. A Wistar rat study was initiated in our laboratory with a well-studied protocol; after sacrifice, according to international standards and respect for the animal This theoretical approach predicts the mode of interaction of a ligand with its target. The honey can have interesting effects when combined with other molecules, it shows the benefits and effects of honey preserves the tissue, it increases the antioxidant activity, and thus avoids neurologic complications, neuropathic or macrovascular. The organs, especially the kidneys of Wistar, shows that the parameters to renal function let us conclude that damages caused by diabetes are slightly perceptible than those observed without the addition of a high concentration of fructose honey.Keywords: honey, molecular modeling, DPP4 enzyme, metformin
Procedia PDF Downloads 981405 Hepatoprotective Assessment of L-Ascorbate 1-(2-Hydroxyethyl)-4,6-Dimethyl-1, 2-Dihydropyrimidine-2-on in Toxic Liver Damage Test
Authors: Vladimir Zobov, Nail Nazarov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Reznik
Abstract:
The aim of this study was to investigate hepatoprotective properties of the Xymedon derivative L-ascorbate 1- (2-hydroxyethyl)-4,6-dimethyl-1,2-dihydropyrimidine-2-one (XD), which exhibits high efficiency as actoprotector. The study was carried out on 68 male albino rats weighing 250-400 g using preventive exposure to the test preparation. Effectiveness of XD win comparison with effectiveness of Xymedon (original substance) after administration of the compounds in identical doses. Maximum dose was 20 mg/kg. The animals orally received Xymedon or its derivative in doses of 10 and 20 mg/kg over 4 days. In 1-1.5 h after drug administration, CCl4 in vegetable oil (1:1) in a dose of 2 ml/kg. Controls received CCl4 but without hepatoprotectors. Intact control group consisted of rats, not receiving CCl4 or other compounds. The next day after the last administration of CCl4 and compounds under study animals were dehematized under ether anesthesia, blood and liver samples were taken for biochemical and histological analysis. Xymedon and XD administered according to the preventice scheme, exerted hepatoprotective effects: Xymedon — in the dose of 20 mg/kg, XD — in doses of 10 and 20 mg/kg. The drugs under study had different effects on liver condition, affected by induction with CCl4. Xymedon had a more pronounced effect both on the ALT level, which can be elevated not only due to destructive changes in hepatocytes, but also as a cholestasis manifestation, and on the serum total protein level, which reflects protein synthesis in liver. XD had a more pronounced effect on AST level, which is one of the markers of hepatocyte damage. Lower effective dose of XD — 10 mg/kg, compared to Xymedon effective according to, and its pronounced effect on AST, the hepatocyte cytolysis marker, is indicative of its higher preventive effectiveness, compared to Xymedon. This work was performed with the financial support of Russian Science Foundation (grant No: 14-50-00014).Keywords: hepatoprotectors, pyrimidine derivatives, toxic liver damage, xymedon
Procedia PDF Downloads 3031404 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition
Procedia PDF Downloads 1581403 Nitrous Oxide Wastage: Putting Strategies “In the Pipeline” to Reduce Carbon Emissions from Nitrous Oxide
Authors: F. Gallop, C. Ward, M. Zaky, M. Vaghela, R. Sabaratnam
Abstract:
Nitrous oxide (N₂O) has been used in anaesthesia for over 150 years owing to advantageous physical and pharmacological properties. However, with a global warming potential of 310, we have an urgent responsibility to reduce its usage and emission. Anecdotal evidence in our hospital trust suggests minimal N₂O usage, yet our theatres receive a staggering supply. This warranted further investigation. We used a data collection tool to prospectively capture quantitative and qualitative data regarding N₂O cases during one week: this recorded demographics, N₂O indications, clinical management, and total N₂O consumption in litres. In addition, N₂O usage in dental sedation suites and paediatric theatres was separately quantified. Pipeline supply data was acquired from British Oxygen Company accounts. We captured 490 cases. 4% (n=19) used N₂O, 63% (n=12) of these in dental theatres. Common N₂0 indications were induction speed (37%) and rapidly increasing anaesthesia depth (32%). In adult cases, N₂O was always used intraoperatively rather than solely at induction. 74% (n=14) of anaesthetists reported environmental concern over using N₂O. The week’s total N₂O usage was 8109 litres, amounting to 421,668 litres annually. However, the annual N₂O pipeline supply is 2,997,000 litres; an enormous 1.8 million Kg of CO₂. Our results supportively demonstrate that the N₂O pipeline supply greatly exceeds its clinical use. Acknowledging clinical areas not audited, the discrepancy between supply and usage suggests approximately 2.5 million litres of yearly wastage. We consequently recommend terminating the N₂O pipeline supply in minimally used areas, eliminating 1.5 million Kg of CO₂ emissions. High usage clinical areas could consider portable N₂O cylinders as an alternative. In Sweden, N₂O destruction technology is routinely used to minimise CO₂ emissions. Our results support National Health System investment in similar infrastructure.Keywords: anaesthesia, environment, medical gases, nitrous oxide, sustainability
Procedia PDF Downloads 1401402 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste
Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova
Abstract:
Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples
Procedia PDF Downloads 1191401 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix
Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin
Abstract:
Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization
Procedia PDF Downloads 1931400 Characterization, Classification and Fertility Capability Classification of Three Rice Zones of Ebonyi State, Southeastern Nigeria
Authors: Sunday Nathaniel Obasi, Chiamak Chinasa Obasi
Abstract:
Soil characterization and classification provide the basic information necessary to create a functional evaluation and soil classification schemes. Fertility capability classification (FCC) on the other hand is a technical system that groups the soils according to kinds of problems they present for management of soil physical and chemical properties. This research was carried out in Ebonyi state, southeastern Nigeria, which is an agrarian state and a leading rice producing part of southeastern Nigeria. In order to maximize the soil and enhance the productivity of rice in Ebonyi soils, soil classification, and fertility classification information need to be supplied. The state was grouped into three locations according to their agricultural zones namely; Ebonyi north, Ebonyi central and Ebonyi south representing Abakaliki, Ikwo and Ivo locations respectively. Major rice growing areas of the soils were located and two profile pits were sunk in each of the studied zones from which soils were characterized, classified and fertility capability classification (FCC) developed. Soil classification was done using United State Department of Agriculture (USDA) Soil Taxonomy and correlated with World Reference Base for soil resources. Results obtained classified Abakaliki 1 and Abakaliki 2 as Typic Fluvaquents (Ochric Fluvisols). Ikwo 1 was classified as Vertic Eutrudepts (Eutric Vertisols) while Ikwo 2 was classified as Typic Eutrudepts (Eutric Cambisols). Ivo 1 and Ivo 2 were both classified as Aquic Eutrudepts (Gleyic Leptosols). Fertility capability classification (FCC) revealed that all studied soils had mostly loamy topsoils and subsoils except Ikwo 1 with clayey topsoil. Limitations encountered in the studied soils include; dryness (d), low ECEC (e), low nutrient capital reserve (k) and water logging/ anaerobic condition (gley). Thus, FCC classifications were Ldek for Abakaliki 1 and 2, Ckv for Ikwo 1, LCk for Ikwo 2 while Ivo 1 and 2 were Legk and Lgk respectively.Keywords: soil classification, soil fertility, limitations, modifiers, Southeastern Nigeria
Procedia PDF Downloads 1301399 In Vivo Response of Scaffolds of Bioactive Glass-Ceramic
Authors: Ana Claudia Muniz Rennó, Karina Nogueira
Abstract:
This study aimed to investigate the in vivo tissue response of the introduction of the bioactive mesh (BM) scaffolds using a model of tibial bone defect implants in rats. Although a previous in vivo study demonstrated a highly positive response of particulate bioactive materials in the morphological and biomechanical properties of the bone callus, the effects of material with superior bioactivity, present in form of meshes have not been studied yet. Eighty male Wistar rats with 3 mm tibial defects were used. Animals were divided into four groups: intact group (IG) – tibia without any injury; bone defect day zero (0dD) – bone defects, sacrificed immediately after injury; bone defect control group (CG) – bone defects without any filler and bone defect filled with BM scaffold. The animals of BM and CG groups were sacrificed 15, 30 and 45 days post-injury to compare the temporal-special effects of the scaffolds on bone healing. The histological analysis revealed an organized newly formed bone at 30 and 45 days post-surgery in the BM. Also, this group presented an increased COX-2 expression on days 15 and 30 post-surgery. Furthermore, the immunohistochemistry analysis revealed that, BM presented a positive immunoexpression of RUNX-2 during all periods evaluated. The biomechanical analysis revealed that at 15 day after surgery, no significant statistically difference was observed between BM and CG and both groups had significantly higher values of maximal load compared to 0dG and significantly lower values than IG. On days 30 and 45 post-surgery, BM presented statistically lower values of maximal load compared to the CG. Nevertheless, at the same periods, BM did not show statistically significant difference compared to the IG maximal load values (p > 0, 05). Our results revealed that the implantation of the BM scaffolds was effective in stimulating newly bone formation.Keywords: bone, biomaterials, scaffolds, cartilage
Procedia PDF Downloads 3401398 Adaptive Response of Plants to Environmental Stress: Natural Oil Seepage; The Living Laboratory in Tramutola, Basilicata Region
Authors: Maria Francesca Scannone, Martina Bochicchio
Abstract:
One of the major environmental problems today is hydrocarbon contamination. The promising sustainable technologies for the treatment of these contaminated sites involves the use of biological organisms. In Agri Valley (Basilicata Region) there is a living laboratory (natural oil seeps) where the selective pressure has enriched the environmental matrices with microorganisms, fungi and plant species able to use the hydrocarbons as a source of metabolic energy, to degrade or tolerate hydrocarbons. Observers visiting this area are fascinated by its unspoiled nature, and the condition of the ecosystem does not appear to has been damaged. The amazing resiliency observed in Tramutola site is of key importance to try to bring green remediation technologies, but no research has been done to identify high-performing native species. The aim of this research was to study how natural processes affect the fate of released oil or how individual species or communities of plants and animals are capable of dealing with the burden of otherwise toxic chemicals. The survey of vegetation was carried out, more than 60 species have been identified and divided into tree, shrub and herb layer. Plant data sheets have been completed only for the species that showed the most appropriate properties for phytoremediation. In general, members of the Salicales, Cyperales, Poales, Fagales, Cornales, Equisetales orders were the most commonly identified orders. They are pioneer plants with high adaptive capacity and vegetative propagation. The literature review has highlighted the existence of rhizosphere effect and a green liver model on selected plants. The study provides significant information on the environmental stress adaptation processes of many indigenous plants that are living and growing on a natural leak of crude oil and gas that migrates up through subsurface.Keywords: green liver, hydrocarbon degradation, oil seeps, phytoremediation
Procedia PDF Downloads 1751397 Utilization of Pozzolonic Material for the Enhancement of the Concrete Strength: A Comprehensive Review Paper
Authors: M. Parvez Alam, M. Bilal Khan
Abstract:
Concrete is the material of choice where strength, performance, durability, impermeability, fire resistance, and abrasion resistance are required. The hunger for the higher strength leads to other materials to achieve the desired results and thus, emerged the contribution of cementitious material for the strength of concrete In present day constructions, concrete is chosen as one of the best choices by civil engineers in construction materials. The concept of sustainability is touching new heights and many pozzolonic materials are tried and tested as partial replacement for the cement. In this paper, comprehensive review of available literatures are studied to evaluate the performance of pozzolonic materials such as ceramic waste powder, copper slag, silica fume on the strength of concrete by the partial replacement of ordinary materials such as cement, fine aggregate and coarse aggregate at different percentage of composition. From the study, we conclude that ceramic wastes are suitable to be used in the construction industry, and more significantly on the making of concrete. Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates and partial substitution in cement production. They were found to be performing better than normal concrete, in properties such as density, durability, permeability, and compressive strength. Copper slag is the waste material of matte smelting and refining of copper such that each ton of copper generates approximately 2.5 tons of copper slag. Copper slag is one of the materials that is considered as a waste which could have a promising future in construction Industry as partial or full substitute of aggregates. Silica fume, also known as micro silica or condensed silica fume, is a relatively new material compared to fly ash, It is another material that is used as an artificial pozzolonic admixture. High strength concrete made with silica fume provides high abrasion/corrosion resistance.Keywords: concrete, pozzolonic materials, ceramic waste powder, copper slag
Procedia PDF Downloads 3171396 Sustainable Milling Process for Tensile Specimens
Authors: Shilpa Kumari, Ramakumar Jayachandran
Abstract:
Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.Keywords: dry milling, tensile testing, wet milling, 6xxx alloy
Procedia PDF Downloads 200