Search results for: untrusted rate
3441 Examination of the Reasons for the Formation of Red Oil in Spent Caustic from Olefin Plant
Authors: Mehdi Seifollahi, Ashkan Forootan, Sajjad Bahrami Reyhan
Abstract:
Due to the complexity of olefinic plants, various environmental pollutants exist such as NOx, CO2, Tar Water, and most importantly Spent Caustic. In this paper, instead of investigating ways of treating this pollutant, we evaluated the production in relation to plant’s variable items. We primarily discussed the factors affecting the quality of the output spent caustic such as impurities in the feed of olefin plant, the amount of injected dimethyl disulfide (DMDS) in furnaces, variation in feed composition, differences among gas temperatures and the concentration of caustic solution at the bottom of the tower. The results of the laboratory proved that in the formation of Red Oil, 1,3butadiene and acetaldehyde followed free radical and aldol condensation mechanism respectively. By increasing the injection rate of DMDS, Mercaptide amount increases in the effluent. In addition, pyrolysis gasoline accumulation is directly related to caustic concentration in the tower. Increasing naphtenes in the liquid feed augments the amount of 1,3butadiene, as one of the sources of Red Oil formation. By increasing the oxygenated compound in the feed, the rate of acetaldehyde formation, as the main source of Red Oil formation, increases.Keywords: olefin, spent caustic, red oil, caustic wash tower
Procedia PDF Downloads 4473440 Macroeconomic Impact of Economic Growth on Unemployment: A Case of South Africa
Authors: Ashika Govender
Abstract:
This study seeks to determine whether Okun’s Law is valid for the South African economy, using time series data for the period 2004 to 2014. The data were accessed from the South African Reserve Bank and Stats SA. The stationarity of the variables was analysed by applying unit root tests via the Augmented Dickey-Fuller test (ADF), the Phillips-Perron (PP) test, and the Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) test. The study used an ordinary least square (OLS) model in analysing the dynamic version of Okun’s law. The Error Correction Model (ECM) was used to analyse the short-run impact of GDP growth on unemployment, as well as the speed of adjustment. The results indicate a short run and long run relationship between unemployment rate and GDP growth rate in period 2004q1-2014q4, suggesting that Okun’s law is valid for the South African economy. With a 1 percent increase in GDP, unemployment can decrease by 0.13 percent, ceteris paribus. The research culminates in important policy recommendations, highlighting the relationship between unemployment and economic growth in the spirit of the National Development Plan.Keywords: unemployment, economic growth, Okun's law, South Africa
Procedia PDF Downloads 2723439 Child Labor and Injury Occurrence in Nicaragua: A Gender Perspective Analysis
Authors: Cristina Domínguez, Steven N. Cuadra
Abstract:
Aims: The aims of this study are: 1) to describe the occurrence and estimate the risk of suffering injuries of any kind, especially work-related injuries, in rural children working in agricultural activities and in urban children working on the street 2) to explore factors that might be associated with the occurrence of work-related injuries among child workers such as gender, school attendance, and performance of household chore. Method: We performed a crossectional study among working children in agricultural activities (120) and on the street (108) and in non-working referents (140) in 2019. We investigated self-reported injuries during the last 12 months, with focus on work-related injuries. Incidence rate, rate ratios, and 95% CI were calculated by Poisson regression. Results: Agricultural workers have a higher incidence of work-related injuries (2.1 per 1000 person-days) than children working on the street (1.8 per 1000 person-days). However, when considering girl’s unpaid work at home, girls had higher occurrence. Girls had a 30% increase on the risk of suffering work related injuries compared to boys. Performing household chore and attending school were the major predictors of injury occurrence. Discussion: Our data suggest If such partial and full-time girl’s housework is taken into account, there would be little or no variation between the sexes with regard to injuries occurrence, and the incidence rate of work related injuries among girls could even exceed that of boys A greater understanding of the interaction of factors related to how child workers spend their time, and its impact on children’s health, is needed in order to identify feasible and appropriate strategies to reduce the negative effect of work on children when elimination of child labor is not reachable in the short term. Clearly, gender aspects on child labor may allow for more effective targeting of prevention efforts.Keywords: injuries, child labor, agricultural work, gender
Procedia PDF Downloads 1233438 Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron
Authors: Pawan Kumar Sharma, Sudhakar Dwivedi, R. K. Arora
Abstract:
Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06.Keywords: saffron, internal rate of return, cost efficiency, stochastic frontier model
Procedia PDF Downloads 1533437 Field-Programmable Gate Array-Based Baseband Signals Generator of X-Band Transmitter for Micro Satellite/CubeSat
Authors: Shih-Ming Wang, Chun-Kai Yeh, Ming-Hwang Shie, Tai-Wei Lin, Chieh-Fu Chang
Abstract:
This paper introduces a FPGA-based baseband signals generator (BSG) of X-band transmitter developed by National Space Organization (NSPO), Taiwan, for earth observation. In order to gain more flexibility for various applications, a number of modulation schemes, QPSK, DeQPSK and 8PSK 4D-TCM are included. For micro satellite scenario, the maximum symbol rate is up to 150Mbsps, and the EVM is as low as 1.9%. For CubeSat scenario, the maximum symbol rate is up to 60Mbsps, and the EVM is less than 1.7%. The maximum data rates are 412.5Mbps and 165Mbps, respectively. Besides, triple modular redundancy (TMR) scheme is implemented in order to reduce single event effect (SEE) induced by radiation. Finally, the theoretical error performance is provided based on comprehensive analysis, especially when BER is lower and much lower than 10⁻⁶ due to low error bit requirement of modern high-resolution earth remote-sensing instruments.Keywords: X-band transmitter, FPGA (Field-Programmable Gate Array), CubeSat, micro satellite
Procedia PDF Downloads 2953436 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System
Authors: Lixin Tian, Wei Xue
Abstract:
Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.Keywords: cyclic shift, multiple detection, parallel combined spread spectrum, PN code
Procedia PDF Downloads 1373435 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel
Authors: Sanjeev Kumar, S. K. Nath
Abstract:
Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.Keywords: HAZ simulation, mechanical properties, peak temperature, ship hull steel, weldability
Procedia PDF Downloads 5613434 The Dynamics of a Droplet Spreading on a Steel Surface
Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov
Abstract:
Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading
Procedia PDF Downloads 3303433 SIF Computation of Cracked Plate by FEM
Authors: Sari Elkahina, Zergoug Mourad, Benachenhou Kamel
Abstract:
The main purpose of this paper is to perform a computations comparison of stress intensity factor 'SIF' evaluation in case of cracked thin plate with Aluminum alloy 7075-T6 and 2024-T3 used in aeronautics structure under uniaxial loading. This evaluation is based on finite element method with a virtual power principle through two techniques: the extrapolation and G−θ. The first one consists to extrapolate the nodal displacements near the cracked tip using a refined triangular mesh with T3 and T6 special elements, while the second, consists of determining the energy release rate G through G−θ method by potential energy derivation which corresponds numerically to the elastic solution post-processing of a cracked solid by a contour integration computation via Gauss points. The SIF obtained results from extrapolation and G−θ methods will be compared to an analytical solution in a particular case. To illustrate the influence of the meshing kind and the size of integration contour position simulations are presented and analyzed.Keywords: crack tip, SIF, finite element method, concentration technique, displacement extrapolation, aluminum alloy 7075-T6 and 2024-T3, energy release rate G, G-θ method, Gauss point numerical integration
Procedia PDF Downloads 3373432 Flame Spread along Fuel Cylinders in High Pressures
Authors: Yanli Zhao, Jian Chen, Shouxiang Lu
Abstract:
Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.Keywords: cylinder fuel, flame spread, heat transfer, high pressure
Procedia PDF Downloads 3783431 Rural Sanitation in India: Special Context in the State of Odisa
Authors: Monalisha Ghosh, Asit Mohanty
Abstract:
The lack of sanitation increases living costs, decreases spend on education and nutrition, lowers income earning potential, and threatens safety and welfare. This is especially true for rural India. Only 32% of rural households have their own toilets and that less than half of Indian households have a toilet at home. Of the estimated billion people in the world who defecate in the open, more than half reside in rural India. It is empirically established that poor sanitation leads to high infant mortality rate and low income generation in rural India. In India, 1,600 children die every day before reaching their fifth birthday and 24% of girls drop out of school as the lack of basic sanitation. Above all, lack of sanitation is not a symptom of poverty but a major contributing factor. According to census 2011, 67.3% of the rural households in the country still did not have access to sanitation facilities. India’s sanitation deficit leads to losses worth roughly 6% of its gross domestic product (GDP) according to World Bank estimates by raising the disease burden in the country. The dropout rate for girl child is thirty percent in schools in rural areas because of lack of sanitation facilities for girl students. The productivity loss per skilled labors during a year is calculated at Rs.44, 160 in Odisha. The performance of the state of Odisha has not been satisfactory in improving sanitation facilities. The biggest challenge is triggering behavior change in vast section of rural population regarding need to use toilets. Another major challenge is funding and implementation for improvement of sanitation facility. In an environment of constrained economic resources, Public Private Partnership in form of performance based management or maintenance contract will be all the more relevant to improve the sanitation status in rural sector.Keywords: rural sanitation, infant mortality rate, income, granger causality, pooled OLS method test public private partnership
Procedia PDF Downloads 4203430 The Effect of Calcium Phosphate Composite Scaffolds on the Osteogenic Differentiation of Rabbit Dental Pulp Stem Cells
Authors: Ling-Ling E, Lin Feng, Hong-Chen Liu, Dong-Sheng Wang, Zhanping Shi, Juncheng Wang, Wei Luo, Yan Lv
Abstract:
The objective of this study was to compare the effects of the two calcium phosphate composite scaffolds on the attachment, proliferation and osteogenic differentiation of rabbit dental pulp stem cells (DPSCs). One nano-hydroxyapatite/collagen/poly (L-lactide) (nHAC/PLA), imitating the composition and the micro-structure characteristics of the natural bone, was made by Beijing Allgens Medical Science & Technology Co., Ltd. (China). The other beta-tricalcium phosphate (β-TCP), being fully interoperability globular pore structure, was provided by Shanghai Bio-lu Biomaterials Co, Ltd. (China). We compared the absorption water rate and the protein adsorption rate of two scaffolds and the characterization of DPSCs cultured on the culture plate and both scaffolds under osteogenic differentiation media (ODM) treatment. The constructs were then implanted subcutaneously into the back of severe combined immunodeficient (SCID) mice for 8 and 12 weeks to compare their bone formation capacity. The results showed that the ODM-treated DPSCs expressed osteocalcin (OCN), bone sialoprotein (BSP), type I collagen (COLI) and osteopontin (OPN) by immunofluorescence staining. Positive alkaline phosphatase (ALP) staining, calcium deposition and calcium nodules were also observed on the ODM-treated DPSCs. The nHAC/PLA had significantly higher absorption water rate and protein adsorption rate than ß-TCP. The initial attachment of DPSCs seeded onto nHAC/PLA was significantly higher than that onto ß-TCP; and the proliferation rate of the cells was significantly higher than that of ß-TCP on 1, 3 and 7 days of cell culture. DPSCs+ß-TCP had significantly higher ALP activity, calcium/phosphorus content and mineral formation than DPSCs+nHAC/PLA. When implanted into the back of SCID mice, nHAC/PLA alone had no new bone formation, newly formed mature bone and osteoid were only observed in β-TCP alone, DPSCs+nHAC/PLA and DPSCs+β-TCP, and this three groups displayed increased bone formation over the 12-week period. The percentage of total bone formation area had no difference between DPSCs+β-TCP and DPSCs+nHAC/PLA at each time point,but the percentage of mature bone formation area of DPSCs+β-TCP was significantly higher than that of DPSCs+nHAC/PLA. Our results demonstrated that the DPSCs on nHAC/PLA had a better proliferation and that the DPSCs on β-TCP had a more mineralization in vitro, much more newly formed mature bones in vivo were presented in DPSCs+β-TCP group. These findings have provided a further knowledge that scaffold architecture has a different influence on the attachment, proliferation and differentiation of cells. This study may provide insight into the clinical periodontal bone tissue repair with DPSCs+β-TCP construct.Keywords: dental pulp stem cells, nano-hydroxyapatite/collagen/poly(L-lactide), beta-tricalcium phosphate, periodontal tissue engineering, bone regeneration
Procedia PDF Downloads 3333429 The Optimal Production of Long-Beans in the Swamp Land by Application of Rhizobium and Rice Husk Ash
Authors: Hasan Basri Jumin
Abstract:
The swamp land contains high iron, aluminum, and low pH. Calcium and magnesium in the rice husk ash can reduce plant poisoning so that plant growth increases in fertility. The first factor was the doze of rice husk, and the second factor was 0.0 g rhizobium inoculant /kg seed, 4.0 g rhizobium inoculant/kg seed, 8 g rhizobium inoculant /kg seed, and 12 g l rhizobium inoculant /kg seed. The plants were maintained under light conditions with a + 11.45 – 12.15 hour photoperiod. The combination between rhizobium inoculant and rice husk ash has been an interacting effect on the production of long bean pod fresh weight. The mean relative growth rate, net assimilation rate, and pod fresh weight are increased by a combination of husk rice ash and rhizobium inoculant. Rice husk ash affected increases the availability of nitrogen in the land, albeit in poor condition of nutrition. Rhizobium is active in creating a fixation of nitrogen in the atmosphere because rhizobium increases the abilities of intercellular and symbiotic nitrogen in the long beans. The combination of rice husk ash and rhizobium could be effected to create a thriving in the land.Keywords: aluminium, calcium, fixation, iron, nitrogen
Procedia PDF Downloads 1143428 The Success Rate of Anterior Crowding Orthodontic Treatment Using Removable Appliances
Authors: Belly Yordan
Abstract:
Orthodontic treatment can be done by using the fix and removable orthodontic appliance. The success of treatment depends on the patient’s age, the type of malocclusion, treatment of space discrepancy, patient’s oral hygiene, operator skills, and patient cooperation. This case report was aimed to show the success of orthodontic treatment in patients with skeletal class I relationship, class I angle dental malocclusion with anterior crowding and rotation by using a removable appliance with modification. The removable appliance used is standard with removable plate components such as passive clasp (Adam’s hook clasp) accompanied with some active clasps (labial bow, some springs, etc.). A button is used as an additional tool or combined with other tools to correct tooth in rotated position. The results obtained by the success of treatments which is shown in pre and post-treatment photos, the overjet was reduced, the arch form became normal, the tooth malposition became normal, and rotation was corrected. Facial profile appearance of the patient is getting better, and the dental coordination also became better. This case report is to prove that treatment with the removable appliance is quite successful with the robust wearing of appropriate retainers.Keywords: success rate, anterior crowding, orthodontic treatment, removable appliances
Procedia PDF Downloads 1673427 Open Forging of Cylindrical Blanks Subjected to Lateral Instability
Authors: A. H. Elkholy, D. M. Almutairi
Abstract:
The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen
Procedia PDF Downloads 2933426 Concrete Sewer Pipe Corrosion Induced by Sulphuric Acid Environment
Authors: Anna Romanova, Mojtaba Mahmoodian, Upul Chandrasekara, Morteza A. Alani
Abstract:
Corrosion of concrete sewer pipes induced by sulphuric acid attack is a recognised problem worldwide, which is not only an attribute of countries with hot climate conditions as thought before. The significance of this problem is by far only realised when the pipe collapses causing surface flooding and other severe consequences. To change the existing post-reactive attitude of managing companies, easy to use and robust models are required to be developed which currently lack reliable data to be correctly calibrated. This paper focuses on laboratory experiments of establishing concrete pipe corrosion rate by submerging samples in to 0.5 pH sulphuric acid solution for 56 days under 10ºC, 20ºC and 30ºC temperature regimes. The result showed that at very early stage of the corrosion process the samples gained overall mass, at 30ºC the corrosion progressed quicker than for other temperature regimes, however with time the corrosion level for 10ºC and 20ºC regimes tended towards those at 30ºC. Overall, at these conditions the corrosion rates of 10 mm/year, 13,5 mm/year, and 17 mm/year were observed.Keywords: sewer pipes, concrete corrosion, sulphuric acid, concrete coupons, corrosion rate
Procedia PDF Downloads 3313425 Validation Pulmonary Embolus Severity Index Score Early Mortality Rate at 1, 3, 7 Days in Patients with a Diagnosis of Pulmonary Embolism
Authors: Nicholas Marinus Batt, Angus Radford, Khaled Saraya
Abstract:
Pulmonary Embolus Severity Index (PESI) score is a well-validated decision-making score grading mortality rates (MR) in patients with a suspected or confirmed diagnosis of pulmonary embolism (PE) into 5 classes. Thirty and 90 days MR in class I and II are lower allowing the treatment of these patients as outpatients. In a London District General Hospital (DGH) with mixed ethnicity and high disease burden, we looked at MR at 1, 3, and 7 days of all PESI score classes. Our pilot study of 112 patients showed MR of 0% in class I, II, and III. The current study includes positive Computed Tomographic Scans (CT scans) for PE over the following three years (total of 555). MR was calculated for all PESI score classes at 1, 3 & 7 days. Thirty days MR was additionally calculated to validate the study. Our initial results so far are in line with our pilot studies. Further subgroup analysis accounting for the local co-morbidities and disease burden and its impact on the MR will be undertaken.Keywords: Pulmonary Embolism (PE), Pulmonary Embolism Severity Index (PESI) score, mortality rate (MR), CT pulmonary artery
Procedia PDF Downloads 2643424 Thermochemical Conversion: Jatropha Curcus in Fixed Bed Reactor Using Slow Pyrolysis
Authors: Vipan Kumar Sohpal, Rajesh Kumar Sharma
Abstract:
Thermo-chemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.Keywords: Jatropha curcus, thermo-chemical, pyrolysis, product composition, yield
Procedia PDF Downloads 4333423 Changing Trends of Population in Nashik District, Maharashtra, India
Authors: Pager Mansaram Pandit
Abstract:
The present paper aims to changing trends of population in Nashik district. The spatial variation of changing trends of population from 1901 to 2011. Nasik, lying between 19° 33’ and 20° 53’ north latitude and 73° 16’ and 75° 16’, with an area of 15530 Sq. K.M.North South length is 120 km. East West length is 200 km. Nashik has a population of 6,109,052 of which 3,164,261 are males and 2,944,791 and females. Average literacy rate of Nashik district in 2011 was 82.91 compared to 80.96 in 2001. In 1901 the density was 52 and in 2011 the density was 393 per sq. km. The progressive growth rate from 1901 to 2012 was 11.25 to 642.22 percent, respectively. The population trend is calculated with the help of time series. In 1901 population was 45.44% more and less in 1941 i.e. -13.86. From 1921 to 1981 the population was below the population trend but after 1991 population it gradually increased. The average rainfall it receives is 1034 mm. In the present times, because of advances in good climate, industrialization, development of road, University level educational facilities, religious importance, cargo services, good quality of grapes, pomegranates and onions, more and more people are being attracted towards Nashik districts. Another cause for the increase in the population is the main attraction of Ramkund, Muktidham Temple, Kalaram Temple, Coin Museum, and Trimbakeshwar.Keywords: density, growth, population, population trend
Procedia PDF Downloads 4443422 Creep Analysis and Rupture Evaluation of High Temperature Materials
Authors: Yuexi Xiong, Jingwu He
Abstract:
The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines
Procedia PDF Downloads 2903421 Response of Caldeira De Tróia Saltmarsh to Sea Level Rise, Sado Estuary, Portugal
Authors: A. G. Cunha, M. Inácio, M. C. Freitas, C. Antunes, T. Silva, C. Andrade, V. Lopes
Abstract:
Saltmarshes are essential ecosystems both from an ecological and biological point of view. Furthermore, they constitute an important social niche, providing valuable economic and protection functions. Thus, understanding their rates and patterns of sedimentation is critical for functional management and rehabilitation, especially in an SLR scenario. The Sado estuary is located 40 km south of Lisbon. It is a bar built estuary, separated from the sea by a large sand spit: the Tróia barrier. Caldeira de Tróia is located on the free edge of this barrier, and encompasses a salt marsh with ca. 21,000 m². Sediment cores were collected in the high and low marshes and in the mudflat area of the North bank of Caldeira de Tróia. From the low marsh core, fifteen samples were chosen for ²¹⁰Pb and ¹³⁷Cs determination at University of Geneva. The cores from the high marsh and the mudflat are still being analyzed. A sedimentation rate of 2.96 mm/year was derived from ²¹⁰Pb using the Constant Flux Constant Sedimentation model. The ¹³⁷Cs profile shows a peak in activity (1963) between 15.50 and 18.50 cm, giving a 3.1 mm/year sedimentation rate for the past 53 years. The adopted sea level rise scenario was based on a model built with the initial rate of SLR of 2.1 mm/year in 2000 and an acceleration of 0.08 mm/year². Based on the harmonic analysis of Setubal-Tróia tide gauge of 2005 data, the tide model was estimated and used to build the tidal tables to the period 2000-2016. With these tables, the average mean water levels were determined for the same time span. A digital terrain model was created from LIDAR scanning with 2m horizontal resolution (APA-DGT, 2011) and validated with altimetric data obtained with a DGPS-RTK. The response model calculates a new elevation for each pixel of the DTM for 2050 and 2100 based on the sedimentation rates specific of each environment. At this stage, theoretical values were chosen for the high marsh and the mudflat (respectively, equal and double the low marsh rate – 2.92 mm/year). These values will be rectified once sedimentation rates are determined for the other environments. For both projections, the total surface of the marsh decreases: 2% in 2050 and 61% in 2100. Additionally, the high marsh coverage diminishes significantly, indicating a regression in terms of maturity.Keywords: ¹³⁷Cs, ²¹⁰Pb, saltmarsh, sea level rise, response model
Procedia PDF Downloads 2503420 Simplified Measurement of Occupational Energy Expenditure
Authors: J. Wicks
Abstract:
Aim: To develop a simple methodology to allow collected heart rate (HR) data from inexpensive wearable devices to be expressed in a suitable format (METs) to quantitate occupational (and recreational) activity. Introduction: Assessment of occupational activity is commonly done by utilizing questionnaires in combination with prescribed MET levels of a vast range of previously measured activities. However for any individual the intensity of performing a specific activity can vary significantly. Ideally objective measurement of individual activity is preferred. Though there are a wide range of HR recording devices there is a distinct lack methodology to allow processing of collected data to quantitate energy expenditure (EE). The HR index equation expresses METs in relation to relative HR i.e. the ratio of activity HR to resting HR. The use of this equation provides a simple utility for objective measurement of EE. Methods: During a typical occupational work period of approximately 8 hours HR data was recorded using a Polar RS 400 wrist monitor. Recorded data was downloaded to a Windows PC and non HR data was stripped from the ASCII file using ‘Notepad’. The HR data was exported to a spread sheet program and sorted by HR range into a histogram format. Three HRs were determined, namely a resting HR (the HR delimiting the lowest 30 minutes of recorded data), a mean HR and a peak HR (the HR delimiting the highest 30 minutes of recorded data). HR indices were calculated (mean index equals mean HR/rest HR and peak index equals peak HR/rest HR) with mean and peak indices being converted to METs using the HR index equation. Conclusion: Inexpensive HR recording devices can be utilized to make reasonable estimates of occupational (or recreational) EE suitable for large scale demographic screening by utilizing the HR index equation. The intrinsic value of the HR index equation is that it is independent of factors that influence absolute HR, namely fitness, smoking and beta-blockade.Keywords: energy expenditure, heart rate histograms, heart rate index, occupational activity
Procedia PDF Downloads 2963419 Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage
Authors: Mario Alejandro Grisales, M. Daniela Chimá, Gilberto Bejarano Gaitán
Abstract:
High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear.Keywords: medium entropy coatings, hard coatings, magnetron sputtering, tribology, wear resistance
Procedia PDF Downloads 723418 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal
Authors: Han Xue, Zhang Lanyue
Abstract:
In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network
Procedia PDF Downloads 5303417 Assessment of Environmental Implications of Rapid Population Growth on Land Use Dynamics: A Case Study of Eleme Local Government Area, Rivers State, Nigeria
Authors: Moses Obenade, Henry U. Okeke, Francis I. Okpiliya, Eugene J. Aniah
Abstract:
Population growth in Eleme has been rapid over the past 75 years with its attendant pressure on the natural resources of the area. Between 1937 and 2006 the population of Eleme grew from 2,528 to 190,194 and is projected to be above 265,707 in 2016 based on an annual growth rate of 3.4%. Using the combined technologies of Geographic Information Systems (GIS), remote sensing (RS) and Demography techniques as its methodology, this paper examines the environmental implications of rapid population growth on land use dynamics in Eleme between 1986 and 2015. The study reveals that between 1986 and 2006, Built-up area and Farmland increased by 72.67 and 12.77% respectively, while light and thick vegetation recorded a decrease of -6.92 and -61.64% respectively. Water body remains fairly constant with minimal changes. Also, between 2006 and 2015 covering a period of 9 years, Built-up area further increased by 53% with an annual growth rate of 2.32 km2 gaining more land area on the detriment of other land uses. Built-up area has an annual growth rate of 2.32km2 and is expected to increase from 18.67km2 in 2006 to 41.87km2 in 2016.The observed Land used/Land cover dynamics is derived by the demographic characteristics of the Study area. Eleme has a total area of 138km2 out of which the Federal Government of Nigeria compulsorily acquired an estimated area of 59.34km2 for industrial purposes excluding acquisitions by the Rivers State Government. It is evident from the findings of this study that the carrying capacity of Eleme ecosystem is under threat due to the current population growth and land consumption rates. Therefore, measures such as use of appropriate technologies in farming techniques, waste management; investment in family planning and female empowerment, maternal health and education, afforestation programs; and amendment of Land Use Act of 1978 are recommended.Keywords: population growth, Eleme, land use, GIS and remote sensing
Procedia PDF Downloads 3803416 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images
Authors: Eiman Kattan, Hong Wei
Abstract:
In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.Keywords: CNNs, hyperparamters, remote sensing, land cover, land use
Procedia PDF Downloads 1693415 Wear Behavior of Grey Cast Iron Coated with Al2O3-13TiO2 and Ni20Cr Using Detonation Spray Process
Authors: Harjot Singh Gill, Neelkanth Grover, Jwala Parshad Singla
Abstract:
The main aim of this research work is to present the effect of coating on two different grades of grey cast iron using detonation spray method. Ni20Cr and Al2O3-13TiO2 powders were sprayed using detonation gun onto GI250 and GIHC substrates and the results as well as coating surface morphology of the coating is studied by XRD and SEM/EDAX analysis. The wear resistance of Ni20Cr and Al2O3-13TiO2 has been investigated on pin-on-disc tribometer using ASTM G99 standards. Cumulative wear rate and coefficient of friction (µ) were calculated under three normal load of 30N, 40N, 50N at constant sliding velocity of 1m/s. Worn out surfaces were analyzed by SEM/EDAX. The results show significant resistance to wear with Al2O3-13TiO2 coating as compared to Ni20Cr and bare substrates. SEM/EDAX analysis and cumulative wear loss bar charts clearly explain the wear behavior of coated as well as bare sample of GI250 and GIHC.Keywords: detonation spray, grey cast iron, wear rate, coefficient of friction
Procedia PDF Downloads 3673414 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter
Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar
Abstract:
Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).Keywords: filter media, hydraulic loading rate, residence time distribution, tracer
Procedia PDF Downloads 2773413 Optimization of Monascus Orange Pigments Production Using pH-Controlled Fed-Batch Fermentation
Authors: Young Min Kim, Deokyeong Choe, Chul Soo Shin
Abstract:
Monascus pigments, commonly used as a natural colorant in Asia, have many biological activities, such as cholesterol level control, anti-obesity, anti-cancer, and anti-oxidant, that have recently been elucidated. Especially, amino acid derivatives of Monascus pigments are receiving much attention because they have higher biological activities than original Monascus pigments. Previously, there have been two ways to produce amino acid derivatives: one-step production and two-step production. However, the one-step production has low purity, and the two-step production—precursor(orange pigments) fermentation and derivatives synthesis—has low productivity and growth rate during its precursor fermentation step. In this study, it was verified that pH is a key factor that affects the stability of orange pigments and the growth rate of Monascus. With an optimal pH profile obtained by pH-stat fermentation, we designed a process of precursor(orange pigments) fermentation that is a pH-controlled fed-batch fermentation. The final concentration of orange pigments in this process increased to 5.5g/L which is about 30% higher than the concentration produced from the previously used precursor fermentation step.Keywords: cultivation process, fed-batch fermentation, monascus pigments, pH stability
Procedia PDF Downloads 2983412 Optimization of Mechanical Cacao Shelling Parameters Using Unroasted Cocoa Beans
Authors: Jeffrey A. Lavarias, Jessie C. Elauria, Arnold R. Elepano, Engelbert K. Peralta, Delfin C. Suministrado
Abstract:
Shelling process is one of the primary processes and critical steps in the processing of chocolate or any product that is derived from cocoa beans. It affects the quality of the cocoa nibs in terms of flavor and purity. In the Philippines, small-scale food processor cannot really compete with large scale confectionery manufacturers because of lack of available postharvest facilities that are appropriate to their level of operation. The impact of this study is to provide the needed intervention that will pave the way for cacao farmers of engaging on the advantage of value-adding as way to maximize the economic potential of cacao. Thus, provision and availability of needed postharvest machines like mechanical cacao sheller will revolutionize the current state of cacao industry in the Philippines. A mechanical cacao sheller was developed, fabricated, and evaluated to establish optimum shelling conditions such as moisture content of cocoa beans, clearance where of cocoa beans passes through the breaker section and speed of the breaking mechanism on shelling recovery, shelling efficiency, shelling rate, energy utilization and large nib recovery; To establish the optimum level of shelling parameters of the mechanical sheller. These factors were statistically analyzed using design of experiment by Box and Behnken and Response Surface Methodology (RSM). By maximizing shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization, the optimum shelling conditions were established at moisture content, clearance and breaker speed of 6.5%, 3 millimeters and 1300 rpm, respectively. The optimum values for shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization were recorded at 86.51%, 99.19%, 21.85kg/hr, 89.75%, and 542.84W, respectively. Experimental values obtained using the optimum conditions were compared with predicted values using predictive models and were found in good agreement.Keywords: cocoa beans, optimization, RSM, shelling parameters
Procedia PDF Downloads 358