Search results for: system reliability optimization
20300 Optimal Analysis of Structures by Large Wing Panel Using FEM
Authors: Byeong-Sam Kim, Kyeongwoo Park
Abstract:
In this study, induced structural optimization is performed to compare the trade-off between wing weight and induced drag for wing panel extensions, construction of wing panel and winglets. The aerostructural optimization problem consists of parameters with strength condition, and two maneuver conditions using residual stresses in panel production. The results of kinematic motion analysis presented a homogenization based theory for 3D beams and 3D shells for wing panel. This theory uses a kinematic description of the beam based on normalized displacement moments. The displacement of the wing is a significant design consideration as large deflections lead to large stresses and increased fatigue of components cause residual stresses. The stresses in the wing panel are small compared to the yield stress of aluminum alloy. This study describes the implementation of a large wing panel, aerostructural analysis and structural parameters optimization framework that couples a three-dimensional panel method.Keywords: wing panel, aerostructural optimization, FEM, structural analysis
Procedia PDF Downloads 59120299 Design and Analysis of Active Rocket Control Systems
Authors: Piotr Jerzy Rugor, Julia Wajoras
Abstract:
The presented work regards a single-stage aerodynamically controlled solid propulsion rocket. Steering a rocket to fly along a predetermined trajectory can be beneficial for minimizing aerodynamic losses and achieved by implementing an active control system on board. In this particular case, a canard configuration has been chosen, although other methods of control have been considered and preemptively analyzed, including non-aerodynamic ones. The objective of this work is to create a system capable of guiding the rocket, focusing on roll stabilization. The paper describes initial analysis of the problem, covers the main challenges of missile guidance and presents data acquired during the experimental study.Keywords: active canard control system, rocket design, numerical simulations, flight optimization
Procedia PDF Downloads 19520298 Preliminary Roadway Alignment Design: A Spatial-Data Optimization Approach
Authors: Yassir Abdelrazig, Ren Moses
Abstract:
Roadway planning and design is a very complex process involving five key phases before a project is completed; planning, project development, final design, right-of-way, and construction. The planning phase for a new roadway transportation project is a very critical phase as it greatly affects all latter phases of the project. A location study is usually performed during the preliminary planning phase in a new roadway project. The objective of the location study is to develop alignment alternatives that are cost efficient considering land acquisition and construction costs. This paper describes a methodology to develop optimal preliminary roadway alignments utilizing spatial-data. Four optimization criteria are taken into consideration; roadway length, land cost, land slope, and environmental impacts. The basic concept of the methodology is to convert the proposed project area into a grid, which represents the search space for an optimal alignment. The aforementioned optimization criteria are represented in each of the grid’s cells. A spatial-data optimization technique is utilized to find the optimal alignment in the search space based on the four optimization criteria. Two case studies for new roadway projects in Duval County in the State of Florida are presented to illustrate the methodology. The optimization output alignments are compared to the proposed Florida Department of Transportation (FDOT) alignments. The comparison is based on right-of-way costs for the alignments. For both case studies, the right-of-way costs for the developed optimal alignments were found to be significantly lower than the FDOT alignments.Keywords: gemoetric design, optimization, planning, roadway planning, roadway design
Procedia PDF Downloads 33820297 Stigma and Discrimination toward Mental Illness: Translation and Validation of the Attribution Questionnaire-27 (AQ-27)
Authors: Gokcen Akyurek, Hulya Kayihan, Deniz Yuce, Selen Yilmaz
Abstract:
The stigma towards mental illness is still very rooted in our society, despite the number of studies, campaigns, and anti-stigma programs developed in recent years. Stigma represents a serious obstacle to recovery and social integration for people who experience a mental illness, affecting directly their well-being and quality of life. It implies that these persons have to deal with many other barriers apart from the disease symptoms (1-5). Convergent, recent literature suggests that less positive attitudes by mental health professionals interfere with the self-determination and recovery process (4-10).The aim of this study was to translate the Attribution Questionnaire-27 (AQ-27) to the Turkish language (AQ-27-T), and to examine the reliability and validity of this new Turkish version. Cultural adaptation was implemented according to the internationally suggested method. To determine the understandability and appropriateness of this measure for the Turkish culture, a pretest was administered and the final form was generated. Then, 424 randomly chosen people took part in the study. Participant’s mean age was 36.9±12.7 years and %52 of them female. Cronbach's alpha and intra-class coefficients were used to estimate instrument reliability. The AQ-27-T was assessed again 14 days later for test retest reliability. The AQ-27-T demonstrated acceptable internal consistency, with a Cronbach's alpha of 0.88 for the total scale and ranging between 0.86 and 0.89 for the items. The test-retest reliability was good, with Pearson correlation coefficients of 0.79 for the total scale and ranging between 0.35 and 0.77 for the items (p<0.05). Correlation between subscales was moderate-good, with Pearson correlation coefficients of 0.18-0.88 (p<0.05). Fit indices of the model supported the factor structure and paths. The AQ-27-T is a reliable measure to assess stigmatizing attitudes in Turkish.Keywords: attribution questionnaire, validity, reliability, stigma
Procedia PDF Downloads 44220296 Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System
Authors: Edafe Lucky Okotie, Emmanuel Osawaru Omosigho
Abstract:
This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration.Keywords: distributed energy generation (DEG), genetic algorithm (GA), power quality, total load demand, voltage profile
Procedia PDF Downloads 8420295 Interactive Winding Geometry Design of Power Transformers
Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald
Abstract:
Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design
Procedia PDF Downloads 38020294 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 3520293 A New Approach for Solving Fractional Coupled Pdes
Authors: Prashant Pandey
Abstract:
In the present article, an effective Laguerre collocation method is used to obtain the approximate solution of a system of coupled fractional-order non-linear reaction-advection-diffusion equation with prescribed initial and boundary conditions. In the proposed scheme, Laguerre polynomials are used together with an operational matrix and collocation method to obtain approximate solutions of the coupled system, so that our proposed model is converted into a system of algebraic equations which can be solved employing the Newton method. The solution profiles of the coupled system are presented graphically for different particular cases. The salient feature of the present article is finding the stability analysis of the proposed method and also the demonstration of the lower variation of solute concentrations with respect to the column length in the fractional-order system compared to the integer-order system. To show the higher efficiency, reliability, and accuracy of the proposed scheme, a comparison between the numerical results of Burger’s coupled system and its existing analytical result is reported. There are high compatibility and consistency between the approximate solution and its exact solution to a higher order of accuracy. The exhibition of error analysis for each case through tables and graphs confirms the super-linearly convergence rate of the proposed method.Keywords: fractional coupled PDE, stability and convergence analysis, diffusion equation, Laguerre polynomials, spectral method
Procedia PDF Downloads 14520292 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary
Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu
Abstract:
This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm
Procedia PDF Downloads 12320291 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle
Authors: Ryan Messina, Mehedi Hasan
Abstract:
This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking
Procedia PDF Downloads 20420290 A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity and Parameter Uncertainties: A Linear Matrix Inequality Approach
Authors: Sofiane Bououden, Ilyes Boulkaibet
Abstract:
In this paper, a robust model predictive controller (RMPC) for uncertain nonlinear system under actuator saturation is designed to control a DC-DC buck converter in PV pumping application, where this system is subject to actuator saturation and parameter uncertainties. The considered nonlinear system contains a linear constant part perturbed by an additive state-dependent nonlinear term. Based on the saturating actuator property, an appropriate linear feedback control law is constructed and used to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The proposed approach has successfully provided a solution to the optimization problem that can stabilize the nonlinear plants. Furthermore, sufficient conditions for the existence of the proposed controller guarantee the robust stability of the system in the presence of polytypic uncertainties. In addition, the simulation results have demonstrated the efficiency of the proposed control scheme.Keywords: PV pumping system, DC-DC buck converter, robust model predictive controller, nonlinear system, actuator saturation, linear matrix inequality
Procedia PDF Downloads 18120289 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level
Authors: Ahmad Rouhani
Abstract:
Iran has several potentials for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following, the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include the photovoltaic system, wind turbine, diesel generator, and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.Keywords: feasibility, hybrid energy system, Iran, renewable energy
Procedia PDF Downloads 48520288 Roullete Wheel Selection Mechanism for Solving Travelling Salesman Problem in Ant Colony Optimization
Authors: Sourabh Joshi, Geetinder Kaur, Sarabjit Kaur, Gulwatanpreet Singh, Geetika Mannan
Abstract:
In this paper, we have use an algorithm that able to obtain an optimal solution to travelling salesman problem from a huge search space, quickly. This algorithm is based upon the ant colony optimization technique and employees roulette wheel selection mechanism. To illustrate it more clearly, a program has been implemented which is based upon this algorithm, that presents the changing process of route iteration in a more intuitive way. In the event, we had find the optimal path between hundred cities and also calculate the distance between two cities.Keywords: ant colony, optimization, travelling salesman problem, roulette wheel selection
Procedia PDF Downloads 44120287 Investigating the Impact of Enterprise Resource Planning System and Supply Chain Operations on Competitive Advantage and Corporate Performance (Case Study: Mamot Company)
Authors: Mohammad Mahdi Mozaffari, Mehdi Ajalli, Delaram Jafargholi
Abstract:
The main purpose of this study is to investigate the impact of the system of ERP (Enterprise Resource Planning) and SCM (Supply Chain Management) on the competitive advantage and performance of Mamot Company. The methods for collecting information in this study are library studies and field research. A questionnaire was used to collect the data needed to determine the relationship between the variables of the research. This questionnaire contains 38 questions. The direction of the current research is applied. The statistical population of this study consists of managers and experts who are familiar with the SCM system and ERP. Number of statistical society is 210. The sampling method is simple in this research. The sample size is 136 people. Also, among the distributed questionnaires, Reliability of the Cronbach's Alpha Cronbach's Questionnaire is evaluated and its value is more than 70%. Therefore, it confirms reliability. And formal validity has been used to determine the validity of the questionnaire, and the validity of the questionnaire is confirmed by the fact that the score of the impact is greater than 1.5. In the present study, one variable analysis was used for central indicators, dispersion and deviation from symmetry, and a general picture of the society was obtained. Also, two variables were analyzed to test the hypotheses; measure the correlation coefficient between variables using structural equations, SPSS software was used. Finally, multivariate analysis was used with statistical techniques related to the SPLS structural equations to determine the effects of independent variables on the dependent variables of the research to determine the structural relationships between the variables. The results of the test of research hypotheses indicate that: 1. Supply chain management practices have a positive impact on the competitive advantage of the Mammoth industrial complex. 2. Supply chain management practices have a positive impact on the performance of the Mammoth industrial complex. 3. Planning system Organizational resources have a positive impact on the performance of the Mammoth industrial complex. 4. The system of enterprise resource planning has a positive impact on Mamot's competitive advantage. 5.The competitive advantage has a positive impact on the performance of the Mammoth industrial complex 6.The system of enterprise resource planning Mamot Industrial Complex Supply Chain Management has a positive impact. The above results indicate that the system of enterprise resource planning and supply chain management has an impact on the competitive advantage and corporate performance of Mamot Company.Keywords: enterprise resource planning, supply chain management, competitive advantage, Mamot company performance
Procedia PDF Downloads 9820286 Approximation of a Wanted Flow via Topological Sensitivity Analysis
Authors: Mohamed Abdelwahed
Abstract:
We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations
Procedia PDF Downloads 53720285 Optimization of a Cone Loudspeaker Parameter of Design Parameters by Analysis of a Narrow Acoustic Sound Pathway
Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara
Abstract:
This study tried optimization of design parameter of a cone loudspeaker unit as an example of the high flexibility of the products design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to each design the parameter of the loudspeaker. To overcome the limitation of the design problem in practice, this paper proposes a new an acoustic analysis algorithm to optimize design the parameter of the loudspeaker. The material character of cone paper and the loudspeaker edge was the design parameter, and the vibration displacement of the cone paper was the objective function. The results of the analysis were compared with the predicted value. They had high accuracy to the predicted value. These results suggest that, though the parameter design is difficult by experience and intuition, it can be performed comparatively easily using the optimization design by the developed acoustic analysis software.Keywords: air viscosity, loudspeaker, cone paper, edge, optimization
Procedia PDF Downloads 40120284 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply
Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele
Abstract:
In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant
Procedia PDF Downloads 17820283 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform
Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu
Abstract:
Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS
Procedia PDF Downloads 54720282 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames
Procedia PDF Downloads 37520281 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing
Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger
Abstract:
This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles
Procedia PDF Downloads 4020280 Measures of Reliability and Transportation Quality on an Urban Rail Transit Network in Case of Links’ Capacities Loss
Authors: Jie Liu, Jinqu Cheng, Qiyuan Peng, Yong Yin
Abstract:
Urban rail transit (URT) plays a significant role in dealing with traffic congestion and environmental problems in cities. However, equipment failure and obstruction of links often lead to URT links’ capacities loss in daily operation. It affects the reliability and transport service quality of URT network seriously. In order to measure the influence of links’ capacities loss on reliability and transport service quality of URT network, passengers are divided into three categories in case of links’ capacities loss. Passengers in category 1 are less affected by the loss of links’ capacities. Their travel is reliable since their travel quality is not significantly reduced. Passengers in category 2 are affected by the loss of links’ capacities heavily. Their travel is not reliable since their travel quality is reduced seriously. However, passengers in category 2 still can travel on URT. Passengers in category 3 can not travel on URT because their travel paths’ passenger flow exceeds capacities. Their travel is not reliable. Thus, the proportion of passengers in category 1 whose travel is reliable is defined as reliability indicator of URT network. The transport service quality of URT network is related to passengers’ travel time, passengers’ transfer times and whether seats are available to passengers. The generalized travel cost is a comprehensive reflection of travel time, transfer times and travel comfort. Therefore, passengers’ average generalized travel cost is used as transport service quality indicator of URT network. The impact of links’ capacities loss on transport service quality of URT network is measured with passengers’ relative average generalized travel cost with and without links’ capacities loss. The proportion of the passengers affected by links and betweenness of links are used to determine the important links in URT network. The stochastic user equilibrium distribution model based on the improved logit model is used to determine passengers’ categories and calculate passengers’ generalized travel cost in case of links’ capacities loss, which is solved with method of successive weighted averages algorithm. The reliability and transport service quality indicators of URT network are calculated with the solution result. Taking Wuhan Metro as a case, the reliability and transport service quality of Wuhan metro network is measured with indicators and method proposed in this paper. The result shows that using the proportion of the passengers affected by links can identify important links effectively which have great influence on reliability and transport service quality of URT network; The important links are mostly connected to transfer stations and the passenger flow of important links is high; With the increase of number of failure links and the proportion of capacity loss, the reliability of the network keeps decreasing, the proportion of passengers in category 3 keeps increasing and the proportion of passengers in category 2 increases at first and then decreases; When the number of failure links and the proportion of capacity loss increased to a certain level, the decline of transport service quality is weakened.Keywords: urban rail transit network, reliability, transport service quality, links’ capacities loss, important links
Procedia PDF Downloads 12820279 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach
Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou
Abstract:
Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization
Procedia PDF Downloads 15420278 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper introduces an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.Keywords: artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization
Procedia PDF Downloads 5920277 Development, Optimization and Characterization of Gastroretentive Multiparticulate Drug Delivery System
Authors: Swapnila V. Vanshiv, Hemant P. Joshi, Atul B. Aware
Abstract:
Current study illustrates the formulation of floating microspheres for purpose of gastroretention of Dipyridamole which shows pH dependent solubility, with the highest solubility in acidic pH. The formulation involved hollow microsphere preparation by using solvent evaporation technique. Concentrations of rate controlling polymer, hydrophilic polymer, internal phase ratio, stirring speed were optimized to get desired responses, namely release of Dipyridamole, buoyancy of microspheres, entrapment efficiency of microspheres. In the formulation, the floating microspheres were prepared by using ethyl cellulose as release retardant and HPMC as a low density hydrophilic swellable polymer. Formulated microspheres were evaluated for their physical properties such as particle size and surface morphology by optical microscopy and SEM. Entrapment efficiency, floating behavior and drug release study as well the formulation was evaluated for in vivo gastroretention in rabbits using gamma scintigraphy. Formulation showed 75% drug release up to 10 hr with entrapment efficiency of 91% and 88% buoyancy till 10 hr. Gamma scintigraphic studies revealed that the optimized system was retained in the gastric region (stomach) for a prolonged period i.e. more than 5 hr.Keywords: Dipyridamole microspheres, gastroretention, HPMC, optimization method
Procedia PDF Downloads 38520276 Estimating View-Through Ad Attribution from User Surveys Using Convex Optimization
Authors: Yuhan Lin, Rohan Kekatpure, Cassidy Yeung
Abstract:
In Digital Marketing, robust quantification of View-through attribution (VTA) is necessary for evaluating channel effectiveness. VTA occurs when a product purchase is aided by an Ad but without an explicit click (e.g. a TV ad). A lack of a tracking mechanism makes VTA estimation challenging. Most prevalent VTA estimation techniques rely on post-purchase in-product user surveys. User surveys enable the calculation of channel multipliers, which are the ratio of the view-attributed to the click-attributed purchases of each marketing channel. Channel multipliers thus provide a way to estimate the unknown VTA for a channel from its known click attribution. In this work, we use Convex Optimization to compute channel multipliers in a way that enables a mathematical encoding of the expected channel behavior. Large fluctuations in channel attributions often result from overfitting the calculations to user surveys. Casting channel attribution as a Convex Optimization problem allows an introduction of constraints that limit such fluctuations. The result of our study is a distribution of channel multipliers across the entire marketing funnel, with important implications for marketing spend optimization. Our technique can be broadly applied to estimate Ad effectiveness in a privacy-centric world that increasingly limits user tracking.Keywords: digital marketing, survey analysis, operational research, convex optimization, channel attribution
Procedia PDF Downloads 19920275 Synthetic Optimizing Control of Wind-Wave Hybrid Energy Conversion System
Authors: Lei Xue, Liye Zhao, Jundong Wang, Yu Xue
Abstract:
A hybrid energy conversion system composed of a floating offshore wind turbine (FOWT) and wave energy converters (WECs) may possibly reduce the levelized cost of energy, improving the platform dynamics and increasing the capacity to harvest energy. This paper investigates the aerodynamic performance and dynamic responses of the combined semi-submersible FOWT and point-absorber WECs in frequency and time domains using synthetic optimizing control under turbulent wind and irregular wave conditions. Individual pitch control is applied to the FOWT part, while spring–damping control is used on the WECs part, as well as the synergistic control effect of both are studied. The effect of the above control optimization is analyzed under several typical working conditions, such as below-rated wind speed, rated wind speed, and above-rated wind speed by OpenFAST and WEC-Sim software. Particularly, the wind-wave misalignment is also comparatively investigated, which has demonstrated the importance of applying proper integrated optimal control in this hybrid energy system. More specifically, the combination of individual pitch control and spring–damping control is able to mitigate the platform pitch motion and improve output power. However, the increase in blade root load needs to be considered which needs further investigations in the future.Keywords: floating offshore wind turbine, wave energy converters, control optimization, individual pitch control, dynamic response
Procedia PDF Downloads 5320274 On Multiobjective Optimization to Improve the Scalability of Fog Application Deployments Using Fogtorch
Authors: Suleiman Aliyu
Abstract:
Integrating IoT applications with Fog systems presents challenges in optimization due to diverse environments and conflicting objectives. This study explores achieving Pareto optimal deployments for Fog-based IoT systems to address growing QoS demands. We introduce Pareto optimality to balance competing performance metrics. Using the FogTorch optimization framework, we propose a hybrid approach (Backtracking search with branch and bound) for scalable IoT deployments. Our research highlights the advantages of Pareto optimality over single-objective methods and emphasizes the role of FogTorch in this context. Initial results show improvements in IoT deployment cost in Fog systems, promoting resource-efficient strategies.Keywords: pareto optimality, fog application deployment, resource allocation, internet of things
Procedia PDF Downloads 8820273 Reliability of Social Support Measurement Modification of the BC-SSAS among Women with Breast Cancer Who Undergone Chemotherapy in Selected Hospital, Central Java, Indonesia
Authors: R. R. Dewi Rahmawaty Aktyani Putri, Earmporn Thongkrajai, Dedy Purwito
Abstract:
There were many instruments have been developed to assess social support which has the different dimension in breast cancer patients. The Issue of measurement is a challenge to determining the component of dimensional concept, defining the unit of measurement, and establishing the validity and reliability of the measurement. However, the instruments where need to know how much support which obtained and perceived among women with breast cancer who undergone chemotherapy which it can help nurses to prevent of non-adherence in chemotherapy. This study aimed to measure the reliability of BC-SSAS instrument among 30 Indonesian women with breast cancer aged 18 years and above who undergone chemotherapy for six cycles in the oncological unit of Outpatient Department (OPD), Margono Soekardjo Hospital, Central Java, Indonesia. Data were collected during October to December 2015 by using modified the Breast Cancer Social Support Assessment (BC-SSAS). The Cronbach’s alpha analysis was carried out to measure internal consistency for reliability test of BC-SSAS instrument. This study used five experts for content validity index. The results showed that for content validity, I-CVI was 0.98 and S-CVI was 0.98; Cronbach’s alpha value was 0.971 and the Cronbach’s alpha coefficients for the subscales were high, with 0.903 for emotional support, 0.865 for informational support, 0.901 for tangible support, 0.897 for appraisal support and 0.884 for positive interaction support. The results confirmed that the BC-SSAS instrument has high reliability. BC-SSAS instruments were reliable and can be used in health care services to measure the social support received and perceived among women with breast cancer who undergone chemotherapy so that preventive interventions can be developed and the quality of health services can be improved.Keywords: BC-SSAS, women with breast cancer, chemotherapy, Indonesia
Procedia PDF Downloads 36220272 MPC of Single Phase Inverter for PV System
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink
Procedia PDF Downloads 53220271 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data
Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora
Abstract:
Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.Keywords: drilling optimization, geological formations, machine learning, rate of penetration
Procedia PDF Downloads 131