Search results for: indoor air pollutants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1215

Search results for: indoor air pollutants

465 Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air

Authors: Hanjie Xie, Raphael Semiat, Ziyi Zhong

Abstract:

It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts.

Keywords: oxygen vacancy, catalytic oxidation, binary transition oxide, formaldehyde

Procedia PDF Downloads 126
464 Improving Carbon Dioxide Mass Transfer in Open Pond Raceway Systems for Improved Algal Productivity

Authors: William Middleton, Nodumo Zulu, Sue Harrison

Abstract:

Open raceway ponds are currently the most used system for the commercial cultivation of algal biomass, as it is a cost-effective means of production. However, raceway ponds suffer from lower algal productivity when compared to closed photobioreactors. This is due to poor gas exchange between the fluid and the atmosphere. Carbon dioxide (CO₂) mass transfer is a large concern in the production of algae in raceway pond systems. The utilization of atmospheric CO₂ does not support maximal growth; however, CO₂ supplementation in the form of flue gas or concentrated CO₂ is not cost-effective. The introduction of slopes into the raceway system presents a possible improvement to the mass transfer from the air, as seen in previous work conducted at CeBER. Slopes improve turbulence (decreasing the concentration gradient of dissolved CO₂) and can cause air entrainment (allowing for greater surface area and contact time between the air and water). This project tests the findings of previous studies conducted in an indoor lab-scale raceway on a larger scale under outdoor conditions. The addition of slopes resulted in slightly increased CO₂ mass transfer as well as algal growth rate and productivity. However, there were reductions in energy consumption and average fluid velocity in the system. These results indicate a potential to improve the economic feasibility of algal biomass production, but further economic assessment would need to be carried out.

Keywords: algae, raceway ponds, mass transfer, algal culture, biotechnology, reactor design

Procedia PDF Downloads 91
463 Selective and Highly Sensitive Measurement of ¹⁵NH₃ Using Photoacoustic Spectroscopy for Environmental Applications

Authors: Emily Awuor, Helga Huszar, Zoltan Bozoki

Abstract:

Isotope analysis has found numerous applications in the environmental science discipline, most common being the tracing of environmental contaminants on both regional and global scales. Many environmental contaminants contain ammonia (NH₃) since it is the most abundant gas in the atmosphere and its largest sources are from agricultural and industrial activities. NH₃ isotopes (¹⁴NH₃ and ¹⁵NH₃) are therefore important and can be used in the traceability studies of these atmospheric pollutants. The goal of the project is the construction of a photoacoustic spectroscopy system that is capable of measuring ¹⁵NH₃ isotope selectively in terms of its concentration. A further objective is for the system to be robust, easy-to-use, and automated. This is provided by using two telecommunication type near-infrared distributed feedback (DFB) diode lasers and a laser coupler as the light source in the photoacoustic measurement system. The central wavelength of the lasers in use was 1532 nm, with the tuning range of ± 1 nm. In this range, strong absorption lines can be found for both ¹⁴NH₃ and ¹⁵NH₃. For the selective measurement of ¹⁵NH₃, wavelengths were chosen where the cross effect of ¹⁴NH₃ and water vapor is negligible. We completed the calibration of the photoacoustic system, and as a result, the lowest detectable concentration was 3.32 ppm (3Ϭ) in the case of ¹⁵NH₃ and 0.44 ppm (3Ϭ) in the case of ¹⁴NH₃. The results are most useful in the environmental pollution measurement and analysis.

Keywords: ammonia isotope, near-infrared DFB diode laser, photoacoustic spectroscopy, environmental monitoring

Procedia PDF Downloads 140
462 Transport Emission Inventories and Medical Exposure Modeling: A Missing Link for Urban Health

Authors: Frederik Schulte, Stefan Voß

Abstract:

The adverse effects of air pollution on public health are an increasingly vital problem in planning for urban regions in many parts of the world. The issue is addressed from various angles and by distinct disciplines in research. Epidemiological studies model the relative increase of numerous diseases in response to an increment of different forms of air pollution. A significant share of air pollution in urban regions is related to transport emissions that are often measured and stored in emission inventories. Though, most approaches in transport planning, engineering, and operational design of transport activities are restricted to general emission limits for specific air pollutants and do not consider more nuanced exposure models. We conduct an extensive literature review on exposure models and emission inventories used to study the health impact of transport emissions. Furthermore, we review methods applied in both domains and use emission inventory data of transportation hubs such as ports, airports, and urban traffic for an in-depth analysis of public health impacts deploying medical exposure models. The results reveal specific urban health risks related to transport emissions that may improve urban planning for environmental health by providing insights in actual health effects instead of only referring to general emission limits.

Keywords: emission inventories, exposure models, transport emissions, urban health

Procedia PDF Downloads 382
461 Cellulose Containing Metal Organic Frameworks in Environmental Applications

Authors: Hossam El-Sayed Emam

Abstract:

As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.

Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification

Procedia PDF Downloads 147
460 Study of Petroleum Hydrocarbons Biodegradation and the Role of Biosurfactants Produced by Bacteria Isolated from the Lagoon of Mar Chica in This Process

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Petroleum hydrocarbons are serious problems and global pollutants in the environment due to their toxicity, carcinogenicity and persistent organic pollutant properties. One of the approaches to enhance biodegradation of petroleum hydrocarbons is to use biosurfactant. Biosurfactants are amphiphilic biomolecules produced as metabolic by-products from microorganisms they received considerable attention in the field of environmental remediation processes such as bioremediation. Biosurfactants have been considered as a desirable alternative to synthetic surfactants in various applications particularly in the environmental field. In comparison with their synthetic counterparts, biosurfactants have been reported to be less toxic, biodegradable and persistent. In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a HPLC/MS was used to separate and identify different biosurfactants purified.

Keywords: petroleum hydrocarbons, biosurfactants, biodegradation, lagoon marchika, emulsification index

Procedia PDF Downloads 254
459 Advanced Nanomaterials in Catalysis: Bridging the Gap Between Pollution Control and Renewable Energy

Authors: Abonyi Matthew Ndubuisi, Christopher Chiedozie Obi, Joseph Tagbo Nwabanne

Abstract:

This review focuses on the application of advanced nanomaterials in catalysis for pollution control and renewable energy solutions. This review provides a comprehensive examination of the latest developments in nanocatalysts, highlighting their role in addressing environmental challenges and facilitating sustainable energy solutions. The unique properties of nanomaterials, including high surface area, tunable electronic properties, and enhanced reactivity, make them ideal candidates for catalytic applications. This review explores various types of nanomaterials, such as metal nanoparticles, carbon-based nanostructures, and metal-organic frameworks, and their effectiveness in processes like photocatalysis, electrocatalysis, and hydrogen production. Additionally, the review discusses the environmental benefits of using nanocatalysts in pollution control, focusing on the degradation of pollutants in water and air. The potential of these materials to bridge the gap between environmental remediation and clean energy production is emphasized, showcasing their dual role in mitigating pollution and advancing renewable energy technologies. In conclusion, the review analyzes the current challenges and future directions in the field, highlighting the need for continued research to improve the design and application of nanocatalysts for a sustainable future.

Keywords: nanomaterials, catalysis, pollution control, renewable energy, sustainable technology

Procedia PDF Downloads 9
458 Analysis and Study of Growth Rates of Indigenous Phytoplankton in Enriched Spent Oil Impacted Ecosystems in South Western Nigeria Coastal Waters

Authors: Lauretta Ighedo, Bukola Okunade, Monisade Okunade

Abstract:

In order to determine the effect of spent oil on the growth rates of indigenous phytoplankton in an aquaculture pond, a study was carried out on varying concentrations of samples using the bioassay procedure for a period of 14 days. Four divisions Cyanophyta, Chlorophyta, Euglenophyta and Bacillariophyta were observed in the water samples collected from the Aquaculture pond. The growth response was measured using a microprocessor photocolorimeter at optical density of 680nm. A general assessment of spent oil contaminated samples showed either a sharp rise or fall in growth rate from day 0 to day 2 followed by increased growth response for most higher concentration of pollutants up to Day 8, then fluctuations in the growth response pattern for the other days. There was no marked significant difference in the growth response of phytoplankton in the spent oil impacted water samples. The lowest and highest phytoplankton abundance was recorded in 10/90ml and 2.5/97.5ml spent oil impacted water sample respectively. Oscillatoria limosa, Chlorella sp., Microcystis aeruginosa, Nitzschia sp. and Navicula sp. showed high tolerance to oil pollution and these species used as bioindicators of an organic polluted environment increased abundantly and can therefore be employed in the cleanup and bioremediation process of an oil polluted freshwater body.

Keywords: phytoplankton, pollution, species abundance, environmental characteristics

Procedia PDF Downloads 367
457 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant

Abstract:

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Keywords: complex terrain, cross-ventilation, wind driven ventilation, wind resource, computational fluid dynamics, CFD

Procedia PDF Downloads 392
456 Solving the Overheating on the Top Floor of Energy Efficient Houses: The Envelope Improvement

Authors: Sormeh Sharifi, Wasim Saman, Alemu Alemu, David Whaley

Abstract:

Although various energy rating schemes and compulsory building codes are using around the world, there are increasing reports on overheating in energy efficient dwellings. Given that the cooling demand of buildings is rising globally because of the climate change, it is more likely that the overheating issue will be observed more. This paper studied the summer indoor temperature in eight air-conditioned multi-level houses in Adelaide which have complied with the Australian Nationwide Houses Energy Rating Scheme (NatHERS) minimum energy performance of 7.5 stars. Through monitored temperature, this study explores that overheating is experienced on 75.5% of top floors during cooling periods while the air-conditioners were running. This paper found that the energy efficiency regulations have significantly improved thermal comfort in low floors, but not on top floors, and the energy-efficient house is not necessarily adapted with the air temperature fluctuations particularly on top floors. Based on the results, this study suggests that the envelope of top floors for multi-level houses in South Australian context need new criteria to make the top floor more heat resistance in order to: preventing the overheating, reducing the summer pick electricity demand and providing thermal comfort. Some methods are used to improve the envelope of the eight case studies. The results demonstrate that improving roofs was the most effective part of the top floors envelope in terms of reducing the overheating.

Keywords: building code, climate change, energy-efficient building, energy rating, overheating, thermal comfort

Procedia PDF Downloads 202
455 Knowledge Based Behaviour Modelling and Execution in Service Robotics

Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll

Abstract:

In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.

Keywords: cognitive robotics, reasoning, service robotics, task based systems

Procedia PDF Downloads 234
454 Determination of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District of South Africa Using GC-TOF-MS

Authors: Joshua N. Edokpayi, John O. Odiyo, Titus A. M. Msagati, Elizabeth O. Popoola

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs classified by the United State Environmental Protection Agency as priority pollutants in Mvudi and Nzhelele Rivers and sediments. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using ultrasonication method. The extracts were purified using SPE technique and reconstituted in n-hexane before analyses with GC-TOF-MS. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174-26.382 mg/L and 27.10-55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs determined in both river waters and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs.

Keywords: polycyclic aromatic hydrocarbon, rivers, sediments, wastewater effluents

Procedia PDF Downloads 329
453 The Role of Microbe-Microplastics Associations in Marine Nematode Feeding Behaviors

Authors: A. Ridall, J. Ingels

Abstract:

Microplastics (MPs; < 5 mm) have been cited as exceptionally detrimental to marine organisms and ocean health. They can carry other pollutants and abundant microbes that can serve as food for other organisms. Their small particle size and high abundance means that non-discriminatory feeders may ingest MPs involuntarily and microbial colonization of the particles (a niche coined ‘Plastisphere’) could facilitate particle ingestion. To assess how marine nematodes, the most abundant member of the meiofauna (32-500 um), are affected by microbe-MP associations, an experiment was conducted with three MP concentrations (low, medium, and expected high values of MPs in a local bay system), and two levels of microbe-MP associations (absence or presence). MPs were introduced into sediment microcosms and treatments were removed at three distinct time points (0, 3, and 7 days) to measure mean MP consumption/individual nematode. The quantitative results from this work should inform on microbial facilitation of MP ingestion and MP effects on seafloor ecology. As most MP feeding experiments use straight-from-package or sterile MPs, this work represents an important step in realizing the effects of MPs and their plastispheres in coastal sediments where they likely accumulate microbial biofilms prior to their ingestion by marine metazoans. Furthermore, the results here convey realistic effects of MPs on faunal behaviors, as the MP concentrations used are based on field measurements rather than artificially high levels.

Keywords: ecosystem function, microbeads, plastisphere, pollution, polyethylene

Procedia PDF Downloads 88
452 Produce High-Quality Activated Carbon with a Large Surface Area from Date Seeds Biomass for Water Treatment

Authors: Rashad Al-Gaashani, Viktor Kochkodan, Jenny Lawler

Abstract:

Physico-chemical activation method wasused to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomasswastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were used to evaluate the AC samples. AC produced from date seeds have a wide range of the pores available, including micro- andnano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metalsiron (III) and copper (II) ions were removed from wastewater using the AC producedusinga batch adsorption technique. The AC produced from date seeds biomass wastes show high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, pH on the removal of heavy metalswere studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 93
451 The Effect of PM10 Dispersion from Industrial, Residential and Commercial Areas in Arid Environment

Authors: Meshari Al-Harbi

Abstract:

A comparative area-season-elemental-wise time series analysis by Dust Track monitor (2012-2013) revealed high PM10 dispersion in the outdoor environment in the sequence of industrial> express highways>residential>open areas. Time series analysis from 7AM-6AM (until next day), 30d (monthly), 3600sec. (for any given period of a month), and 12 months (yearly) showed peak PM10 dispersion during 1AM-7AM, 1d-4d and 25d-31d of every month, 1500-3600 with the exception in PM10 dispersion in residential areas, and in the months-March to June, respectively. This time-bound PM10 dispersion suggests the primary influence of human activities (peak mobility and productivity period for a given time frame) besides the secondary influence of meteorological parameters (high temperature and wind action) and, occasional dust storms. Whereas, gravimetric analysis reveals the influence of precipitation, low temperature and low volatility resulting high trace metals in PM10 during winter than in summer and primarily attributes to the influence of nature besides, the secondary attributes of smoke stack emission from various industries and automobiles. Furthermore, our study recommends residents to limit outdoor air pollution exposures and take precautionary measures to inhale PM10 pollutants from the atmosphere.

Keywords: aerosol, pollution, respirable particulates, trace-metals

Procedia PDF Downloads 304
450 Long Term Monitoring and Assessment of Atmospheric Aerosols in Indo-Gangetic Region of India

Authors: Ningombam Linthoingambi Devi, Amrendra Kumar

Abstract:

The long term sampling at one of the most populated city in Indo-Gangetic region shows higher mass concentration of atmospheric aerosol (PM₂.₅) during spring season (144.70µg/m³), summer season (91.96 µg/m³), the autumn season (266.48µg/m³) and winter season (367.09 µg/m³) respectively. The concentration of PM₂.₅ in Patna across the year shows much higher than the limit fixed by the national ambient air quality level fixed by central pollution control board India (CPCB, India) and World Health Organization (WHO). Different water-soluble cation (Na⁺, K⁺, Ca²⁺, NH₄⁺ , and Mg²⁺) and anion (Cl⁻, NO₃⁻ , and SO₄²⁻) species were detected in PM₂.₅. Results show the significantly higher loaded of water-soluble ions during winter and spring seasons. The acidity of the atmosphere was revealed and calculated using selected major cations (K⁺, Ca²⁺ , and NH₄⁺) and anions (SO₄²⁻, and NO₃⁻). A regression correlation was analyzed to check the significant linkage between the acidity and alkalinity ions. During the winter season (r² = 0.79) and spring season (r² = 0.64) shows good significant correlation between the cations and anions. The ratio of NO₃⁻/SO₄²⁻ indicates the sources of secondary pollutants were mainly influenced by industrial and vehicular emission however SO₄²⁻ mostly emitted from industries during the winter season.

Keywords: aerosols, inorganic species, source apportionment, Indo-Gangetic region

Procedia PDF Downloads 127
449 Valorisation of a Bioflocculant and Hydroxyapatites as Coagulation-Flocculation Adjuvants in Wastewater Treatment of the Steppe in the Wilaya of Saida

Authors: Fatima Zohra Choumane, Belkacem Benguella, Bouhana Maachou, Nacera Saadi

Abstract:

Pollution caused by wastewater is a serious problem in Algeria. This pollution has certainly harmful effects on the environment. In order to reduce the bad effects of these pollutants, many wastewater treatment processes, mainly physicochemical, are implemented. This study consists in using two flocculants; the first one is a biodegradable natural bioflocculant, i.e. Cactaceaeou ficus-indica cactus juice, and the second is the synthetic hydroxyapatite, in a physico-chemical process through coagulation-flocculation, using two coagulants, i.e. ferric chloride and aluminum sulfate, to treat wastewater collected at the entrance of the treatment plant, in the town of Saida. The influence of various experimental parameters, such as the amounts of coagulants and flocculants used, pH, turbidity, COD and BOD5, was investigated. The coagulation - flocculation jar tests of wastewater reveal that ferric chloride, containing a mass of 0.3 g – hydroxyapatite, treated for 1 hour through calcination, is the most effective adjuvant in clarifying the wastewater, with turbidity equal to 98.16 %. In the presence of the two bioflocculants, Cactaceae juice and aluminum sulphate, with a dose of 0.2 g, flocculation is good, with turbidity equal to 95.61 %. Examination of the key reaction parameters, following the flocculation tests of wastewater, shows that the degree of pollution decreases. This is confirmed by the COD and turbidity values obtained. Examination of these results suggests the use of these flocculants in wastewater treatment.

Keywords: wastewater, cactus ficus-indica, hydroxyapatite, coagulation - flocculation

Procedia PDF Downloads 333
448 Surface Modified Polyvinylidene Fluoride Membranes for Potential Use in Membrane Distillation

Authors: Lebea Nthunya, Arne Verliefde, Bhekie Mamba, Sabelo Mhlanga

Abstract:

A study aimed at developing membrane distillation (MD) processes that can be used for brackish/saline water purification will be presented. MD is a membrane-based technology that presents a possibility to counteract challenges associated with pressure driven membranes at high separation efficiencies. Membrane distillation membranes (MDM) are affected by wettability and fouling. Wetting inside the pores of the membrane is elevated by the hydrophilic characteristic of the membrane, while fouling is mostly induced by the hydrophobic-hydrophobic interaction of pollutants and the surface of the hydrophobic membranes, hence block the pores of the membranes. These properties are not desirable. As such, a carefully designed polyvinylidene fluoride (PVDF) MDM composed of a super-hydrophobic modified backbone and a super-hydrophilic thin layer has been developed to concurrently overcome these challenges. The membranes were characterized using contact angle measurements to confirm their hydrophobicity/hydrophilicity. SEM and SAXS were used to study the morphology and pore distribution on the surface of the membrane. The contact angles of the active surface ≤ 30º and that of the backbone ≥ 140º has thus revealed that the active surface was highly hydrophilic while the backbone was highly hydrophobic. The SEM and the SAXS results have also confirmed that the membranes are highly porous. These materials demonstrated a potential to remove salts from water at high efficiencies.

Keywords: membrane distillation, modification, energy efficiency, desalination

Procedia PDF Downloads 248
447 Sustained-Release Persulfate Tablets for Groundwater Remediation

Authors: Yu-Chen Chang, Yen-Ping Peng, Wei-Yu Chen, Ku-Fan Chen

Abstract:

Contamination of soil and groundwater has become a serious and widespread environmental problem. In this study, sustained-release persulfate tablets were developed using persulfate powder and a modified cellulose binder for organic-contaminated groundwater remediation. Conventional cement-based persulfate-releasing materials were also synthesized for the comparison. The main objectives of this study were to: (1) evaluate the release rates of the remedial tablets; (2) obtain the optimal formulas of the tablets; and (3) evaluate the effects of the tablets on the subsurface environment. The results of batch experiments show that the optimal parameter for the preparation of the persulfate-releasing tablet was persulfate:cellulose = 1:1 (wt:wt) with a 5,000 kg F/cm2 of pressure application. The cellulose-based persulfate tablet was able to release 2,030 mg/L of persulfate per day for 10 days. Compared to cement-based persulfate-releasing materials, the persulfate release rates of the cellulose-based persulfate tablets were much more stable. Moreover, since the tablets are soluble in water, no waste will be produced in the subsurface. The results of column tests show that groundwater flow would shorten the release time of the tablets. This study successfully developed unique persulfate tablets based on green remediation perspective. The efficacy of the persulfate-releasing tablets on the removal of organic pollutants needs to be further evaluated. The persulfate tablets are expected to be applied for site remediation in the future.

Keywords: sustained-release persulfate tablet, modified cellulose, green remediation, groundwater

Procedia PDF Downloads 278
446 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed, and Temperature of Incubator Shaker

Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar

Abstract:

Microbes have been used to solve environmental problems for many years. The use microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Processes by which microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida, pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P.putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of Pseudomonas putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to reduce ionic mercury from mercury nitrate solution. The overall levels of mercury removal in this study were between 80% and 90%. The information obtained in this study is of fundamental for understanding of the survival of P.putida ATTC 49128 in mercury solution. Thus, microbial mercury environmental pollutants removal is a potential biological treatment for waste water treatment especially in petrochemical industries in Malaysia.

Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical waste water

Procedia PDF Downloads 660
445 Using LTE-Sim in New Hanover Decision Algorithm for 2-Tier Macrocell-Femtocell LTE Network

Authors: Umar D. M., Aminu A. M., Izaddeen K. Y.

Abstract:

Deployments of mini macrocell base stations also referred to as femtocells, improve the quality of service of indoor and outdoor users. Nevertheless, mobility management remains a key issue with regards to their deployment. This paper is leaned towards this issue, with an in-depth focus on the most important aspect of mobility management -handover. In handover management, making a handover decision in the LTE two-tier macrocell femtocell network is a crucial research area. Decision algorithms in this research are classified and comparatively analyzed according to received signal strength, user equipment speed, cost function, and interference. However, it was observed that most of the discussed decision algorithms fail to consider cell selection with hybrid access policy in a single macrocell multiple femtocell scenario, another observation was a majority of these algorithms lack the incorporation of user equipment residence parameter. Not including this parameter boosts the number of unnecessary handover occurrence. To deal with these issues, a sophisticated handover decision algorithm is proposed. The proposed algorithm considers the user’s velocity, received signal strength, residence time, as well as the femtocell base station’s access policy. Simulation results have shown that the proposed algorithm reduces the number of unnecessary handovers when compared to conventional received signal strength-based handover decision algorithm.

Keywords: user-equipment, radio signal service, long term evolution, mobility management, handoff

Procedia PDF Downloads 120
444 Photocatalytic Degradation of Phenolic Compounds in Wastewater Using Magnetically Recoverable Catalyst

Authors: Ahmed K. Sharaby, Ahmed S. El-Gendy

Abstract:

Phenolic compounds (PCs) exist in the wastewater effluents of some industries such as oil refinery, pharmaceutical and cosmetics. Phenolic compounds are extremely hazardous pollutants that can cause severe problems to the aquatic life and human beings if disposed of without treatment. One of the most efficient treatment methods of PCs is photocatalytic degradation. The current work studies the performance of composite nanomaterial of titanium dioxide with magnetite as a photo-catalyst in the degradation of PCs. The current work aims at optimizing the synthesized photocatalyst dosage and contact time as part of the operational parameters at different initial concentrations of PCs and pH values in the wastewater. The study was performed in a lab-scale batch reactor under fixed conditions of light intensity and aeration rate. The initial concentrations of PCs and the pH values were in the range of (10-200 mg/l) and (3-9), respectively. Results of the study indicate that the dosage of the catalyst and contact time for total mineralization is proportional to the initial concentrations of PCs, while the optimum pH conditions for highly efficient degradation is at pH 3. Exceeding the concentration levels of the catalyst beyond certain limits leads to the decrease in the degradation efficiency due to the dissipation of light. The performance of the catalyst for degradation was also investigated in comparison to the pure TiO2 Degussa (P-25). The dosage required for the synthesized catalyst for photocatalytic degradation was approximately 1.5 times that needed from the pure titania.

Keywords: industrial, optimization, phenolic compounds, photocatalysis, wastewater

Procedia PDF Downloads 312
443 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model

Procedia PDF Downloads 348
442 Analysis of Impact of Air Pollution over Megacity Delhi Due to Agricultural Biomass Burning in the Neighbouring States

Authors: Ankur P. Sati, Manju Mohan

Abstract:

The hazardous combination of smoke and pollutant gases, smog, is harmful for health. There are strong evidences that the Agricultural waste burning (AWB) in the Northern India leads to adverse air quality in Delhi and its surrounding regions. A severe smog episode was observed over Delhi, India during November 2012 which resulted in very low visibility and various respiratory problems. Very high values of pollutants (PM10 as high as 989 µg m-3, PM2.5 as high as 585 µg m-3 an NO2 as high as 540 µg m-3) were measured all over Delhi during the smog episode. Ultra Violet Aerosol Index (UVAI) from Aura satellite and Aerosol Optical Depth (AOD) are used in the present study along with the output trajectories from HYSPLIT model and the in-situ data. Satellite data also reveal that AOD, UVAI are always at its highest during the farmfires duration in Punjab region of India and the extent of these farmfires may be increasing. It is observed that during the smog episode all the AOD, UVAI, PM2.5 and PM10 values surpassed those of the Diwali period (one of the most polluted events in the city) by a considerable amount at all stations across Delhi. The parameters used from the remote sensing data and the ground based observations at various stations across Delhi are very well in agreement about the intensity of Smog episode. The analysis clearly shows that regional pollution can have greater contributions in deteriorating the air quality than the local under adverse meteorological conditions.

Keywords: smog, farmfires, AOD, remote sensing

Procedia PDF Downloads 240
441 Fixed Point Iteration of a Damped and Unforced Duffing's Equation

Authors: Paschal A. Ochang, Emmanuel C. Oji

Abstract:

The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.

Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis

Procedia PDF Downloads 281
440 A Study on Marble-Slag Based Geopolymer Green Concrete

Authors: Zong-Xian Qiu, Ta-Wui Cheng, Wei-Hao Lee, Yung-Chin Ding

Abstract:

The greenhouse effect is an important issue since it has been responsible for global warming. Carbon dioxide plays an important part of role in the greenhouse effect. Therefore, human has the responsibility for reducing CO₂ emissions in their daily operations. Except iron making and power plants, another major CO₂ production industry is cement industry. According to the statistics by EPA of Taiwan, production 1 ton of Portland cement will produce 520.29 kg of CO₂. There are over 7.8 million tons of CO₂ produced annually. Thus, trying to development low CO₂ emission green concrete is an important issue, and it can reduce CO₂ emission problems in Taiwan. The purpose of this study is trying to use marble wastes and slag as the raw materials to fabricate geopolymer green concrete. The result shows the marble based geopolymer green concrete have good workability and the compressive strength after curing for 28 days and 365 days can be reached 44MPa and 53MPa in indoor environment, 28MPa and 40.43MPa in outdoor environment. The acid resistance test shows the geopolymer green concrete have good resistance for chemical attack. The coefficient of permeability of geopolymer green concrete is better than Portland concrete. By comparing with Portland cement products, the marble based geopolymer not only reduce CO₂ emission problems but also provides great performance in practices. According to the experiment results shown that geopolymer concrete has great potential for further engineering development in the future, the new material could be expected to replace the Portland cement products in the future days.

Keywords: marble, slag, geopolymer, green concrete, CO₂ emission

Procedia PDF Downloads 133
439 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH₄⁺ -N), nitrite- nitrogen (NO₂⁻ -N), nitrate- nitrogen (NO₃⁻ -N), phosphate –phosphorus (PO₄³⁻ -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO₂⁻ -N, NO₃⁻ -N and 70% for NH₄⁺ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.

Keywords: aquaculture effluent, macrophytes, mathematical model, phytoremediation

Procedia PDF Downloads 218
438 Performance Evaluation of Pilot Rotating Biological Contactor for Decentralised Management of Domestic Sewage in Delhi

Authors: T. R. Sreekrishnan, Mukesh Khare, Dinesh Upadhyay

Abstract:

In a Rotating Biological Contactor (RBC), the biological film responsible for removal of pollutants is formed on the surface of discs. Evaluation studies of a pilot RBC designed to treat sewage of 150 persons with BOD Loading Rate: 8.2–26.7 g/m2/d, Discharge: 57.6 – 115.2 m3/day, HRT 1.25 – 2.5 hrs, at STP Yamuna Vihar Delhi. Removal of organic materials through use of fixed film reactors such as RBC is accomplished by means of a biological film on the fixed media. May and June in Delhi are dry summer months where the ambient temperature is in the range of 35oC to 45oC. July is a wet monsoon month that receives occasional precipitation, cloud cover, high humidity, with ambient temperature in the range of 30oC to 35oC. The organic and inorganic loads to the RBC employed in this study are actual city sewage conditions. Average in fluent BOD concentrations have been 330 mg/l, 245 mg/l and 160 mg/l and the average COD concentrations have been 670 mg/l, 500 mg/l, and 275 mg/l. The city sewage also has high concentration of ammonia, phosphorous, total suspended solids (TSS). pH of the city sewage is near neutral. Overall, the substrate conditions of city sewage are conducive for biological treatment though aerobic process. The presentation is a part of the ongoing collaborative research initiative between IIT Delhi and Karlsruhe Institute of Technology, Germany which is going on for last 15 years or so in the treatment of sewage waste of Delhi using semi-decentralized treatment system based on Rotating Biological Contactor.

Keywords: Rotating Biological Contactor (RBC), COD, BOD, HRT, STP

Procedia PDF Downloads 383
437 Structural Insulated Panels

Authors: R. Padmini, G. V. Manoj Kumar

Abstract:

Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.

Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources

Procedia PDF Downloads 431
436 Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure

Authors: Safa'a M. Rasheed, Saba A. Gheni, Wadood T. Mohamed

Abstract:

Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results.

Keywords: wastewater, phenol, pulsing flow, wet oxidation, high pressure

Procedia PDF Downloads 134