Search results for: classification system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19320

Search results for: classification system

18570 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder

Procedia PDF Downloads 294
18569 The International Classification of Functioning, Disability and Health (ICF) as a Problem-Solving Tool in Disability Rehabilitation and Education Alliance in Metabolic Disorders (DREAM) at Sultan Bin Abdul Aziz Humanitarian City:A Prototype for Reh

Authors: Hamzeh Awad

Abstract:

Disability is considered to be a worldwide complex phenomenon which rising at a phenomenal rate and caused by many different factors. Chronic diseases such as cardiovascular disease and diabetes can lead to mobility disability in particular and disability in general. The ICF is an integrative bio-psycho-social model of functioning and disability and considered by the World Health Organization (WHO) to be a reference for disability classification using its categories and core set to classify disorder’s functional limitations. Specialist programs at Sultan Bin Abdul Aziz Humanitarian City (SBAHC) are providing both inpatient and outpatient services have started to implement the ICF and use it as a problem solving tool in Rehab. Diabetes is leading contributing factor for disability and considered epidemic in several Gulf countries including the Kingdom of Saudi Arabia (KSA), where its prevalence continues to increase dramatically. Metabolic disorders, mainly diabetes are not well covered in Rehab field. The purpose of this study is present to research and clinical rehabilitation field of DREAM and ICF as a framework in clinical and research setting in Rehab service. Also, shed the light on using the ICF as problem solving tool at SBAHC. There are synergies between disability causes and wider public health priorities in relation to both chronic disease and disability prevention. Therefore, there is a need for strong advocacy and understanding of the role of ICF as a reference in Rehab settings in Middle East if we wish to seize the opportunity to reverse current trends of acquired disability in the region.

Keywords: international classification of functioning, disability and health (ICF), prototype, rehabilitation and diabetes

Procedia PDF Downloads 355
18568 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 80
18567 An intelligent Troubleshooting System and Performance Evaluator for Computer Network

Authors: Iliya Musa Adamu

Abstract:

This paper seeks to develop an expert system that would troubleshoot computer network and evaluate the network system performance so as to reduce the workload on technicians and increase the efficiency and effectiveness of solutions proffered to computer network problems. The platform of the system was developed using ASP.NET, whereas the codes are implemented in Visual Basic and integrated with SQL Server 2005. The knowledge base was represented using production rule, whereas the searching method that was used in developing the network troubleshooting expert system is the forward-chaining-rule-based-system. This software tool offers the advantage of providing an immediate solution to most computer network problems encountered by computer users.

Keywords: expert system, forward chaining rule based system, network, troubleshooting

Procedia PDF Downloads 653
18566 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images

Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi

Abstract:

Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.

Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis

Procedia PDF Downloads 63
18565 EDM for Prediction of Academic Trends and Patterns

Authors: Trupti Diwan

Abstract:

Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.

Keywords: classification, educational data mining, student failure, grammar-based genetic programming

Procedia PDF Downloads 425
18564 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 116
18563 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method

Authors: M. M. Qasaymeh, M. A. Khodeir

Abstract:

Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.

Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT

Procedia PDF Downloads 414
18562 Magnetic Braking System of an Elevator in the Event of Sudden Breakage of the Hoisting Cable

Authors: Amita Singha

Abstract:

The project describes the scope of magnetic braking. The potential applications of the braking system can be a de-accelerating system to increase the safety of an elevator or any guided rail transportation system.

Keywords: boost and buck converter, electromagnet, elevator, ferromagnetic material, sensor, solenoid, timer

Procedia PDF Downloads 442
18561 New Coordinate System for Countries with Big Territories

Authors: Mohammed Sabri Ali Akresh

Abstract:

The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.

Keywords: harmonic equations, coordinate system, projections, algorithms, parallels

Procedia PDF Downloads 478
18560 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 149
18559 Preparation on Sentimental Analysis on Social Media Comments with Bidirectional Long Short-Term Memory Gated Recurrent Unit and Model Glove in Portuguese

Authors: Leonardo Alfredo Mendoza, Cristian Munoz, Marco Aurelio Pacheco, Manoela Kohler, Evelyn Batista, Rodrigo Moura

Abstract:

Natural Language Processing (NLP) techniques are increasingly more powerful to be able to interpret the feelings and reactions of a person to a product or service. Sentiment analysis has become a fundamental tool for this interpretation but has few applications in languages other than English. This paper presents a classification of sentiment analysis in Portuguese with a base of comments from social networks in Portuguese. A word embedding's representation was used with a 50-Dimension GloVe pre-trained model, generated through a corpus completely in Portuguese. To generate this classification, the bidirectional long short-term memory and bidirectional Gated Recurrent Unit (GRU) models are used, reaching results of 99.1%.

Keywords: natural processing language, sentiment analysis, bidirectional long short-term memory, BI-LSTM, gated recurrent unit, GRU

Procedia PDF Downloads 163
18558 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 346
18557 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 91
18556 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 122
18555 Software Defined Storage: Object Storage over Hadoop Platform

Authors: Amritesh Srivastava, Gaurav Sharma

Abstract:

The purpose of this project is to develop an open source object storage system that is highly durable, scalable and reliable. There are two representative systems in cloud computing: Google and Amazon. Their storage systems for Google GFS and Amazon S3 provide high reliability, performance and stability. Our proposed system is highly inspired from Amazon S3. We are using Hadoop Distributed File System (HDFS) Java API to implement our system. We propose the architecture of object storage system based on Hadoop. We discuss the requirements of our system, what we expect from our system and what problems we may encounter. We also give detailed design proposal along with the abstract source code to implement it. The final goal of the system is to provide REST based access to our object storage system that exists on top of HDFS.

Keywords: Hadoop, HBase, object storage, REST

Procedia PDF Downloads 343
18554 Iranian Sexual Health Needs in Viewpoint of Policy Makers: A Qualitative Study

Authors: Mahnaz Motamedi, Mohammad Shahbazi, Shahrzad Rahimi-Naghani, Mehrdad Salehi

Abstract:

Introduction: Identifying sexual health needs, developing appropriate plans, and delivering services to meet those needs is an essential component of health programs for women, men, and children all over the world, especially in poor countries. Main Subject: The aim of this study was to describe the needs of sexual health from the viewpoint of health policymakers in Iran. Methods: A qualitative study using thematic content analysis was designed and conducted. Data gathering was conducted through semi-structured, in-depth interviews with 25 key informants within the healthcare system. Key informants were selected through both purposive and snowball sampling. MAXQUDA software (version 10) was used to facilitate transcription, classification of codes, and conversion of data into meaningful units, by the process of reduction and compression. Results: The analysis of narratives and information categorized sexual health needs into five categories: culturalization of sexual health discourse, sexual health care services, sexual health educational needs, sexual health research needs, and organizational needs. Conclusion: Identifying and explaining sexual health needs is an important factor in determining the priority of sexual health programs and identification of barriers to meet these needs. This can help other policymakers and health planners to develop appropriate programs to promote sexual and reproductive health.

Keywords: sexual health, sexual health needs, policy makers, health system, qualitative study

Procedia PDF Downloads 226
18553 Issues in Translating Hadith Terminologies into English: A Critical Approach

Authors: Mohammed Riyas Pp

Abstract:

This study aimed at investigating major issues in translating the Arabic Hadith terminologies into English, focusing on choosing the most appropriate translation for each, reviewing major Hadith works in English. This study is confined to twenty terminologies with regard to classification of Hadith based on authority, strength, number of transmitters and connections in Isnad. Almost all available translations are collected and analyzed to find the most proper translation based on linguistic and translational values. To the researcher, many translations lack precise understanding of either Hadith terminologies or English language and varieties of methodologies have influence on varieties of translations. This study provides a classification of translational and conceptual issues. Translational issues are related to translatability of these terminologies and their equivalence. Conceptual issues provide a list of misunderstandings due to wrong translations of terminologies. This study ends with a suggestion for unification in translating terminologies based on convention of Muslim scholars having good understanding of Hadith terminologies and English language.

Keywords: english language, hadith terminologies, equivalence in translation, problems in translation

Procedia PDF Downloads 190
18552 Better Defined WHO International Classification of Disease Codes for Relapsing Fever Borreliosis, and Lyme Disease Education Aiding Diagnosis, Treatment Improving Human Right to Health

Authors: Mualla McManus, Jenna Luche Thaye

Abstract:

World Health Organisation International Classification of Disease codes were created to define disease including infections in order to guide and educate diagnosticians. Most infectious diseases such as syphilis are clearly defined by their ICD 10 codes and aid/help to educate the clinicians in syphilis diagnosis and treatment globally. However, current ICD 10 codes for relapsing fever Borreliosis and Lyme disease are less clearly defined and can impede appropriate diagnosis especially if the clinician is not familiar with the symptoms of these infectious diseases. This is despite substantial number of scientific articles published in peer-reviewed journals about relapsing fever and Lyme disease. In the USA there are estimated 380,000 people annually contacting Lyme disease, more cases than breast cancer and 6x HIV/AIDS cases. This represents estimated 0.09% of the USA population. If extrapolated to the global population (7billion), 0.09% equates to 63 million people contracting relapsing fever or Lyme disease. In many regions, the rate of contracting some form of infection from tick bite may be even higher. Without accurate and appropriate diagnostic codes, physicians are impeded in their ability to properly care for their patients, leaving those patients invisible and marginalized within the medical system and to those guiding public policy. This results in great personal hardship, pain, disability, and expense. This unnecessarily burdens health care systems, governments, families, and society as a whole. With accurate diagnostic codes in place, robust data can guide medical and public health research, health policy, track mortality and save health care dollars. Better defined ICD codes are the way forward in educating the diagnosticians about relapsing fever and Lyme diseases.

Keywords: WHO ICD codes, relapsing fever, Lyme diseases, World Health Organisation

Procedia PDF Downloads 199
18551 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 100
18550 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization

Authors: Christoph Linse, Thomas Martinetz

Abstract:

Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.

Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets

Procedia PDF Downloads 92
18549 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining

Procedia PDF Downloads 128
18548 Enhancing the Interpretation of Group-Level Diagnostic Results from Cognitive Diagnostic Assessment: Application of Quantile Regression and Cluster Analysis

Authors: Wenbo Du, Xiaomei Ma

Abstract:

With the empowerment of Cognitive Diagnostic Assessment (CDA), various domains of language testing and assessment have been investigated to dig out more diagnostic information. What is noticeable is that most of the extant empirical CDA-based research puts much emphasis on individual-level diagnostic purpose with very few concerned about learners’ group-level performance. Even though the personalized diagnostic feedback is the unique feature that differentiates CDA from other assessment tools, group-level diagnostic information cannot be overlooked in that it might be more practical in classroom setting. Additionally, the group-level diagnostic information obtained via current CDA always results in a “flat pattern”, that is, the mastery/non-mastery of all tested skills accounts for the two highest proportion. In that case, the outcome does not bring too much benefits than the original total score. To address these issues, the present study attempts to apply cluster analysis for group classification and quantile regression analysis to pinpoint learners’ performance at different proficiency levels (beginner, intermediate and advanced) thus to enhance the interpretation of the CDA results extracted from a group of EFL learners’ reading performance on a diagnostic reading test designed by PELDiaG research team from a key university in China. The results show that EM method in cluster analysis yield more appropriate classification results than that of CDA, and quantile regression analysis does picture more insightful characteristics of learners with different reading proficiencies. The findings are helpful and practical for instructors to refine EFL reading curriculum and instructional plan tailored based on the group classification results and quantile regression analysis. Meanwhile, these innovative statistical methods could also make up the deficiencies of CDA and push forward the development of language testing and assessment in the future.

Keywords: cognitive diagnostic assessment, diagnostic feedback, EFL reading, quantile regression

Procedia PDF Downloads 152
18547 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 97
18546 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 36
18545 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models

Authors: Chad Goldsworthy, B. Rajeswari Matam

Abstract:

The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.

Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation

Procedia PDF Downloads 199
18544 Spatial Data Mining by Decision Trees

Authors: Sihem Oujdi, Hafida Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining

Procedia PDF Downloads 620
18543 Remote Sensing and Geographic Information Systems for Identifying Water Catchments Areas in the Northwest Coast of Egypt for Sustainable Agricultural Development

Authors: Mohamed Aboelghar, Ayman Abou Hadid, Usama Albehairy, Asmaa Khater

Abstract:

Sustainable agricultural development of the desert areas of Egypt under the pressure of irrigation water scarcity is a significant national challenge. Existing water harvesting techniques on the northwest coast of Egypt do not ensure the optimal use of rainfall for agricultural purposes. Basin-scale hydrology potentialities were studied to investigate how available annual rainfall could be used to increase agricultural production. All data related to agricultural production included in the form of geospatial layers. Thematic classification of Sentinal-2 imagery was carried out to produce the land cover and crop maps following the (FAO) system of land cover classification. Contour lines and spot height points were used to create a digital elevation model (DEM). Then, DEM was used to delineate basins, sub-basins, and water outlet points using the Soil and Water Assessment Tool (Arc SWAT). Main soil units of the study area identified from Land Master Plan maps. Climatic data collected from existing official sources. The amount of precipitation, surface water runoff, potential, and actual evapotranspiration for the years (2004 to 2017) shown as results of (Arc SWAT). The land cover map showed that the two tree crops (olive and fig) cover 195.8 km2 when herbaceous crops (barley and wheat) cover 154 km2. The maximum elevation was 250 meters above sea level when the lowest one was 3 meters below sea level. The study area receives a massive variable amount of precipitation; however, water harvesting methods are inappropriate to store water for purposes.

Keywords: water catchements, remote sensing, GIS, sustainable agricultural development

Procedia PDF Downloads 120
18542 Comparing the Motion of Solar System with Water Droplet Motion to Predict the Future of Solar System

Authors: Areena Bhatti

Abstract:

The geometric arrangement of planet and moon is the result of a self-organizing system. In our solar system, the planets and moons are constantly orbiting around the sun. The aim of this theory is to compare the motion of a solar system with the motion of water droplet when poured into a water body. The basic methodology is to compare both motions to know how they are related to each other. The difference between both systems will be that one is extremely fast, and the other is extremely slow. The role of this theory is that by looking at the fast system we can conclude how slow the system will get to an end. Just like ripples are formed around water droplet that move away from the droplet and water droplet forming those ripples become small in size will tell us how solar system will behave in the same way. So it is concluded that large and small systems can work under the same process but with different motions of time, and motion of the solar system is the slowest form of water droplet motion.

Keywords: motion, water, sun, time

Procedia PDF Downloads 159
18541 Modified Naive Bayes-Based Prediction Modeling for Crop Yield Prediction

Authors: Kefaya Qaddoum

Abstract:

Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.

Keywords: tomato yield prediction, naive Bayes, redundancy, WSG

Procedia PDF Downloads 240