Search results for: agricultural waste
3750 Study of Environmental Impact
Authors: Houmame Benbouali
Abstract:
The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).Keywords: treatment plant, waste water, waste water treatment, environmental impact
Procedia PDF Downloads 5113749 Geographical Information System and Multi-Criteria Based Approach to Locate Suitable Sites for Industries to Minimize Agriculture Land Use Changes in Bangladesh
Authors: Nazia Muhsin, Tofael Ahamed, Ryozo Noguchi, Tomohiro Takigawa
Abstract:
One of the most challenging issues to achieve sustainable development on food security is land use changes. The crisis of lands for agricultural production mainly arises from the unplanned transformation of agricultural lands to infrastructure development i.e. urbanization and industrialization. Land use without sustainability assessment could have impact on the food security and environmental protections. Bangladesh, as the densely populated country with limited arable lands is now facing challenges to meet sustainable food security. Agricultural lands are using for economic growth by establishing industries. The industries are spreading from urban areas to the suburban areas and using the agricultural lands. To minimize the agricultural land losses for unplanned industrialization, compact economic zones should be find out in a scientific approach. Therefore, the purpose of the study was to find out suitable sites for industrial growth by land suitability analysis (LSA) by using Geographical Information System (GIS) and multi-criteria analysis (MCA). The goal of the study was to emphases both agricultural lands and industries for sustainable development in land use. The study also attempted to analysis the agricultural land use changes in a suburban area by statistical data of agricultural lands and primary data of the existing industries of the study place. The criteria were selected as proximity to major roads, and proximity to local roads, distant to rivers, waterbodies, settlements, flood-flow zones, agricultural lands for the LSA. The spatial dataset for the criteria were collected from the respective departments of Bangladesh. In addition, the elevation spatial dataset were used from the SRTM (Shuttle Radar Topography Mission) data source. The criteria were further analyzed with factors and constraints in ArcGIS®. Expert’s opinion were applied for weighting the criteria according to the analytical hierarchy process (AHP), a multi-criteria technique. The decision rule was set by using ‘weighted overlay’ tool to aggregate the factors and constraints with the weights of the criteria. The LSA found only 5% of land was most suitable for industrial sites and few compact lands for industrial zones. The developed LSA are expected to help policy makers of land use and urban developers to ensure the sustainability of land uses and agricultural production.Keywords: AHP (analytical hierarchy process), GIS (geographic information system), LSA (land suitability analysis), MCA (multi-criteria analysis)
Procedia PDF Downloads 2633748 A Review of Farmer Participation in Information and Communication Technology through Mobile Banking and Mobile Marketing in Rural Agricultural Systems
Authors: J. Cadby, K. Miyazawa
Abstract:
Information and Communication Technology (ICT) has been widely adopted into the agricultural landscape with advancements of mobile connectivity and data accessibility. In developed nations, mobile-technology is well integrated into marketing transactions, and also plays a crucial role in making data-driven decisions on-farm. In developing nations, mobile banking and access to agricultural extension services allow for informed decision-making and smoother transactions. In addition, the availability of updated and readily available market and climate data provides a negotiation platform, reducing economic risks for farmers worldwide. The total usage of mobile technology has risen over the past 20 years, and almost three-quarters of the world’s population subscribes to mobile technology. This study reviewed mobile technology integration into agricultural systems in developing and developed nations. Data from secondary sources were collected and investigated. The objectives of the study include a review of the success of mobile banking transactions in developing nations, and a review of application and SMS based services for direct marketing in both developed and developing nations. Rural farmers in developing countries with access to diverse m-banking options experienced increased access to farm investment resources with the use of mobile banking technology. Rural farmers involved in perishable crop production were also more likely to benefit from mobile platform sales participation. ICT programs reached through mobile application and SMS increased access to agricultural extension materials and marketing tools for demographics that faced literacy-challenges and isolated markets. As mobile technology becomes more ubiquitous in the global agricultural system, training and market opportunities to facilitate mobile usage in developing agricultural systems are necessary. Digital skills training programs are necessary in order to improve equal global adoption of ICT in agriculture.Keywords: market participation, mobile banking, mobile technology, rural farming
Procedia PDF Downloads 2553747 The Utilization of Tea Residues for Activated Carbon Preparation
Authors: Jiazhen Zhou, Youcai Zhao
Abstract:
Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area.Keywords: activated carbon, nitrogen adsorption isotherm, physical activation, waste tea
Procedia PDF Downloads 3283746 Perception of Agricultural Extension Agents of Private Sector Participation in Extension Services in Ogun State, Nigeria
Authors: E. O. Fakoya, B. G. Abiona, J. O. Soetan
Abstract:
The study determined Perception of Agricultural Extension Agents of Private Sector Participation in Extension Services in Ogun State, Nigeria. Data were collected from 80 respondents with a well-structured questionnaire. The result of the findings showed that there is need for private sector participation in extension services (=4.313), private extension services has facilities than public extension services (=4.97). Private sector participated in extension services by: giving of loans and credits to farmers (=4.50). Major constraints identified by the respondents were: Transportation problem (=2.88) and lack of fund (=2.77) A significant relationship (P<0.05) exists between factors affecting public extension services(r = 0.641, p = 0.00) and private sector participation in extension services. It was concluded from the study that there is need for private sector to participate in extension service in order to improve productivity of the farmers.Keywords: agricultural extension, extension agent, private sector, perception
Procedia PDF Downloads 5883745 Production of Bricks Using Mill Waste and Tyre Crumbs at a Low Temperature by Alkali-Activation
Authors: Zipeng Zhang, Yat C. Wong, Arul Arulrajah
Abstract:
Since automobiles became widely popular around the early 20th century, end-of-life tyres have been one of the major types of waste humans encounter. Every minute, there are considerable quantities of tyres being disposed of around the world. Most end-of-life tyres are simply landfilled or simply stockpiled, other than recycling. To address the potential issues caused by tyre waste, incorporating it into construction materials can be a possibility. This research investigated the viability of manufacturing bricks using mill waste and tyre crumb by alkali-activation at a relatively low temperature. The mill waste was extracted from a brick factory located in Melbourne, Australia, and the tyre crumbs were supplied by a local recycling company. As the main precursor, the mill waste was activated by the alkaline solution, which was comprised of sodium hydroxide (8m) and sodium silicate (liquid). The introduction ratio of alkaline solution (relative to the solid weight) and the weight ratio between sodium hydroxide and sodium silicate was fixed at 20 wt.% and 1:1, respectively. The tyre crumb was introduced to substitute part of the mill waste at four ratios by weight, namely 0, 5, 10 and 15%. The mixture of mill waste and tyre crumbs were firstly dry-mixed for 2 min to ensure the homogeneity, followed by a 2.5-min wet mixing after adding the solution. The ready mixture subsequently was press-moulded into blocks with the size of 109 mm in length, 112.5 mm in width and 76 mm in height. The blocks were cured at 50°C with 95% relative humidity for 2 days, followed by a 110°C oven-curing for 1 day. All the samples were then placed under the ambient environment until the age of 7 and 28 days for testing. A series of tests were conducted to evaluate the linear shrinkage, compressive strength and water absorption of the samples. In addition, the microstructure of the samples was examined via the scanning electron microscope (SEM) test. The results showed the highest compressive strength was 17.6 MPa, found in the 28-day-old group using 5 wt.% tyre crumbs. Such strength has been able to satisfy the requirement of ASTM C67. However, the increasing addition of tyre crumb weakened the compressive strength of samples. Apart from the strength, the linear shrinkage and water absorption of all the groups can meet the requirements of the standard. It is worth noting that the use of tyre crumbs tended to decrease the shrinkage and even caused expansion when the tyre content was over 15 wt.%. The research also found that there was a significant reduction in compressive strength for the samples after water absorption tests. In conclusion, the tyre crumbs have the potential to be used as a filler material in brick manufacturing, but more research needs to be done to tackle the durability problem in the future.Keywords: bricks, mill waste, tyre crumbs, waste recycling
Procedia PDF Downloads 1223744 Agro-Industrial Waste as a Source of Catalyst Production
Authors: Brenda Cecilia Ledesma, Andrea Beltramone
Abstract:
This work deals with the bio-waste valorization approach for catalyst development, the use of products derived from biomass as raw material and the obtaining of biofuels. In this research, activated carbons were synthesized from the orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, PtIr bimetallic catalysts were prepared. Carbon activation was carried out through a chemical process with phosphoric acid as an activating agent, varying the acid concentration, the ratio substrate/activating agent and time of contact between them. The best support was obtained using a carbonization time of 1 h, the temperature of carbonization of 470oC, the phosphoric acid concentration of 50 wt.% and a BET area of 1429 m2/g. Subsequently, the metallic nanoparticles were deposited in the activated carbon to use the solid as a catalytic material for the hydrogenation of HMF to 2,5-DMF. The catalyst presented an excellent performance for biofuels generation.Keywords: orange peel, bio-waste valorization, platinum, iridium, 5-hydroxymethylfurfural
Procedia PDF Downloads 1953743 Environmental Impacts on Urban Agriculture in Algiers
Authors: Sara Bouzekri, Said Madani
Abstract:
In many Mediterranean cities such as Algiers, the human activity, the strong mobility the urban sprawl, the air pollution, the problems of waste management, the wasting of the resources and the degradation of the environment weaken in an unquestionable way the farming. The question of sustainable action vis-a-vis these threats arises then in order to maintain a level of desired local development. The methodology is based on a multi-criteria method based on the AFOM diagnosis, which classifies agricultural strength indicators and those of threat, according to an analytical approach. In a sustainable development perspective, it will be appropriate to link the threat factors of the case study with the factors of climate change to see their impact on the future of agriculture. This will be accompanied by a SWOT analysis, which crosses the most significant criteria to arrive at the necessary recommendations based on future projects for urban agriculture.Keywords: Algiers, environment, urban agriculture, threat factors
Procedia PDF Downloads 2993742 Quantification of Hydrogen Sulfide and Methyl Mercaptan in Air Samples from a Waste Management Facilities
Authors: R. F. Vieira, S. A. Figueiredo, O. M. Freitas, V. F. Domingues, C. Delerue-Matos
Abstract:
The presence of sulphur compounds like hydrogen sulphide and mercaptans is one of the reasons for waste-water treatment and waste management being associated with odour emissions. In this context having a quantifying method for these compounds helps in the optimization of treatment with the goal of their elimination, namely biofiltration processes. The aim of this study was the development of a method for quantification of odorous gases in waste treatment plants air samples. A method based on head space solid phase microextraction (HS-SPME) coupled with gas chromatography - flame photometric detector (GC-FPD) was used to analyse H2S and Metil Mercaptan (MM). The extraction was carried out with a 75-μm Carboxen-polydimethylsiloxane fiber coating at 22 ºC for 20 min, and analysed by a GC 2010 Plus A from Shimadzu with a sulphur filter detector: splitless mode (0.3 min), the column temperature program was from 60 ºC, increased by 15 ºC/min to 100 ºC (2 min). The injector temperature was held at 250 ºC, and the detector at 260 ºC. For calibration curve a gas diluter equipment (digital Hovagas G2 - Multi Component Gas Mixer) was used to do the standards. This unit had two input connections, one for a stream of the dilute gas and another for a stream of nitrogen and an output connected to a glass bulb. A 40 ppm H2S and a 50 ppm MM cylinders were used. The equipment was programmed to the selected concentration, and it automatically carried out the dilution to the glass bulb. The mixture was left flowing through the glass bulb for 5 min and then the extremities were closed. This method allowed the calibration between 1-20 ppm for H2S and 0.02-0.1 ppm and 1-3.5 ppm for MM. Several quantifications of air samples from inlet and outlet of a biofilter operating in a waste management facility in the north of Portugal allowed the evaluation the biofilters performance.Keywords: biofiltration, hydrogen sulphide, mercaptans, quantification
Procedia PDF Downloads 4763741 Use of End-Of-Life Footwear Polymer EVA (Ethylene Vinyl Acetate) and PU (Polyurethane) for Bitumen Modification
Authors: Lucas Nascimento, Ana Rita, Margarida Soares, André Ribeiro, Zlatina Genisheva, Hugo Silva, Joana Carvalho
Abstract:
The footwear industry is an essential fashion industry, focusing on producing various types of footwear, such as shoes, boots, sandals, sneakers, and slippers. Global footwear consumption has doubled every 20 years since the 1950s. It is estimated that in 1950, each person consumed one new pair of shoes yearly; by 2005, over 20 billion pairs of shoes were consumed. To meet global footwear demand, production reached $24.2 billion, equivalent to about $74 per person in the United States. This means three new pairs of shoes per person worldwide. The issue of footwear waste is related to the fact that shoe production can generate a large amount of waste, much of which is difficult to recycle or reuse. This waste includes scraps of leather, fabric, rubber, plastics, toxic chemicals, and other materials. The search for alternative solutions for waste treatment and valorization is increasingly relevant in the current context, mainly when focused on utilizing waste as a source of substitute materials. From the perspective of the new circular economy paradigm, this approach is of utmost importance as it aims to preserve natural resources and minimize the environmental impact associated with sending waste to landfills. In this sense, the incorporation of waste into industrial sectors that allow for the recovery of large volumes, such as road construction, becomes an urgent and necessary solution from an environmental standpoint. This study explores the use of plastic waste from the footwear industry as a substitute for virgin polymers in bitumen modification, a solution that presents a more sustainable future. Replacing conventional polymers with plastic waste in asphalt composition reduces the amount of waste sent to landfills and offers an opportunity to extend the lifespan of road infrastructures. By incorporating waste into construction materials, reducing the consumption of natural resources and the emission of pollutants is possible, promoting a more circular and efficient economy. In the initial phase of this study, waste materials from end-of-life footwear were selected, and plastic waste with the highest potential for application was separated. Based on a literature review, EVA (ethylene vinyl acetate) and PU (polyurethane) were identified as the polymers suitable for modifying 50/70 classification bitumen. Each polymer was analysed at concentrations of 3% and 5%. The production process involved the polymer's fragmentation to a size of 4 millimetres after heating the materials to 180 ºC and mixing for 10 minutes at low speed. After was mixed for 30 minutes in a high-speed mixer. The tests included penetration, softening point, viscosity, and rheological assessments. With the results obtained from the tests, the mixtures with EVA demonstrated better results than those with PU, as EVA had more resistance to temperature, a better viscosity curve and a greater elastic recovery in rheology.Keywords: footwear waste, hot asphalt pavement, modified bitumen, polymers
Procedia PDF Downloads 153740 Comparative Analysis of Various Waste Oils for Biodiesel Production
Authors: Olusegun Ayodeji Olagunju, Christine Tyreesa Pillay
Abstract:
Biodiesel from waste sources is regarded as an economical and most viable fuel alternative to depleting fossil fuels. In this work, biodiesel was produced from three different sources of waste cooking oil; from cafeterias, which is vegetable-based using the transesterification method. The free fatty acids (% FFA) of the feedstocks were conducted successfully through the titration method. The results for sources 1, 2, and 3 were 0.86 %, 0.54 % and 0.20 %, respectively. The three variables considered in this process were temperature, reaction time, and catalyst concentration within the following range: 50 oC – 70 oC, 30 min – 90 min, and 0.5 % – 1.5 % catalyst. Produced biodiesel was characterized using ASTM standard methods for biodiesel property testing to determine the fuel properties, including kinematic viscosity, specific gravity, flash point, pour point, cloud point, and acid number. The results obtained indicate that the biodiesel yield from source 3 was greater than the other sources. All produced biodiesel fuel properties are within the standard biodiesel fuel specifications ASTM D6751. The optimum yield of biodiesel was obtained at 98.76%, 96.4%, and 94.53% from source 3, source 2, and source 1, respectively at optimum operating variables of 65 oC temperature, 90 minutes reaction time, and 0.5 wt% potassium hydroxide.Keywords: waste cooking oil, biodiesel, free fatty acid content, potassium hydroxide catalyst, optimization analysis
Procedia PDF Downloads 773739 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste
Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova
Abstract:
Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples
Procedia PDF Downloads 1193738 Possible Number of Dwelling Units Using Waste Plastic Bottle for Construction
Authors: Dibya Jivan Pati, Kazuhisa Iki, Riken Homma
Abstract:
Unlike other metro cities of India, Bhubaneswar–the capital city of Odisha, is expected to reach 1-million-mark population by now. The demands of dwelling unit requirement mostly among urban poor belonging to Economically Weaker section (EWS) and Low Income groups (LIG) is becoming a challenge due to high housing cost and rents. As a matter of fact, it’s also noted that, with increase in population, the solid waste generation also increases subsequently affecting the environment due to inefficiency in collection of waste by local government bodies. Methods of utilizing Solid Waste - especially in form of Plastic bottles, Glass bottles and Metal cans (PGM) are now widely used as an alternative material for construction of low-cost building by Non-Government Organizations (NGOs) in developing countries like India to help the urban poor afford a shelter. The application of disposed plastic bottle used in construction of single dwelling significantly reduces the overall cost of construction to as much as 14% compared to traditional construction material. Therefore, considering its cost-benefit result, it’s possible to provide housing to EWS and LIGs at an affordable price. In this paper, we estimated the quantity of plastic bottles generated in Bhubaneswar which further helped to estimate the possible number of single dwelling unit that can be constructed on yearly basis so as to refrain from further housing shortage. The estimation results will be practically used for planning and managing low-cost housing business by local government and NGOs.Keywords: construction, dwelling unit, plastic bottle, solid waste generation, groups
Procedia PDF Downloads 4753737 Agroforestry Systems: A Sustainable Strategy of the Agricultural Systems of Cumaral (Meta), Colombia
Authors: Amanda Silva Parra, Dayra Yisel García Ramirez
Abstract:
In developing countries, agricultural "modernization" has led to a loss of biodiversity and inefficiency of agricultural systems, manifested in increases in Greenhouse Gas Emissions (GHG) and the C footprint, generating the susceptibility of systems agriculture to environmental problems, loss of biodiversity, depletion of natural resources, soil degradation and loss of nutrients, and a decrease in the supply of products that affect food security for peoples and nations. Each year agriculture emits 10 to 12% (5.1 to 6.1 Gt CO2eq per year) of the total estimated GHG emissions (51 Gt CO2 eq per year). The FAO recommends that countries that have not yet done so consider declaring sustainable agriculture as an essential or strategic activity of public interest within the framework of green economies to better face global climate change. The objective of this research was to estimate the balance of GHG in agricultural systems of Cumaral, Meta (Colombia), to contribute to the recovery and sustainable operation of agricultural systems that guarantee food security and face changes generated by the climate in a more intelligent way. To determine the GHG balances, the IPCC methodologies were applied with a Tier 1 and 2 level of use. It was estimated that all the silvopastoral systems evaluated play an important role in this reconversion compared to conventional systems such as improved pastures. and degraded pastures due to their ability to capture C both in soil and in biomass, generating positive GHG balances, guaranteeing greater sustainability of soil and air resources.Keywords: climate change, carbon capture, environmental sustainability, GHG mitigation, silvopastoral systems
Procedia PDF Downloads 1183736 Characterization of Copper Slag and Jarofix Waste Materials for Road Construction
Authors: V. K. Arora, V. G. Havanagi, A. K. Sinha
Abstract:
Copper slag and Jarofix are waste materials, generated during the manufacture of copper and zinc respectively, which have potential for utility in embankment and road construction. Accordingly, a research project was carried out to study the characteristics of copper slag and Jarofix to utilize in the construction of road. In this study, copper slag and Jarofix were collected from Tuticorin, State of Tamil Nadu and Hindustan Zinc Ltd., Chittorgarh, Rajasthan state, India respectively. These materials were investigated for their physical, chemical, and geotechnical characteristics. The materials were collected from the disposal area and laboratory investigations were carried out to study its feasibility for use in the construction of embankment and sub grade layers of road pavement. This paper presents the results of physical, chemical and geotechnical characteristics of copper slag and Jarofix. It was concluded that copper slag and Jarofix may be utilized in the construction of road.Keywords: copper slag, Jarofix waste, material, road construction
Procedia PDF Downloads 4463735 Utilization of Sludge in the Manufacturing of Fired Clay Bricks
Authors: Anjali G. Pillai, S. Chadrakaran
Abstract:
The extensive amount of sludge generated throughout the world, as a part of water treatment works, have caused various social and economic issues, such as a demand on landfill spaces, increase in environmental pollution and raising the waste management cost. With growing social awareness about toxic incinerator emissions and the increasing concern over the disposal of sludge on the agricultural land, the recovery of sewage sludge as a building and construction raw material can be considered as an innovative approach to tackle the sludge disposal problem. The proposed work aims at studying the recycling ability of the sludge, generated from the water treatment process, by incorporating it into the fired clay brick units. The work involves initial study of the geotechnical characteristics of the brick-clay and the sludge. Chemical compatibility of both the materials will be analyzed by X-ray fluorescence technique. The variation in the strength aspects with varying proportions of sludge i.e. 10%, 20%, 30% and 40% in the sludge-clay mix will also be determined by the proctor density test. Based on the optimum moisture content, the sludge-clay bricks will be manufactured in a brick manufacturing plant and the modified brick units will be tested to determine the variation in compressive strength, bulk density, firing shrinkage, shrinkage loss and initial water absorption rate with respect to the conventional clay bricks. The results will be compared with the specifications given in Indian Standards to arrive at the potential use of the new bricks. The durability aspect will be studied by conducting the leachate analysis test using atomic adsorption spectrometry. The lightweight characteristics of the sludge modified bricks will be ascertained with the scanning electron microscope technique which will be indicative of the variation in pore structure with the increase in sludge content within the bricks. The work will determine the suitable proportion of the sludge – clay mix in the brick which can then be effectively implemented. The feasibility aspect of the work will be determined for commercial production of the units. The work involves providing a strategy for conversion of waste to resource. Moreover, it provides an alternative solution to the problem of growing scarcity of brick-clay for the manufacturing of fired clay bricks.Keywords: eco-bricks, green construction material, sludge amended bricks, sludge disposal, waste management
Procedia PDF Downloads 3053734 Assessment of Conditions and Experience for Plantation of Agro-Energy Crops on Degraded Agricultural Land in Serbia
Authors: Djordjevic J. Sladjana, Djordjevic-Milošević B. Suzana, Milošević M. Slobodan
Abstract:
The potential of biomass as a renewable energy source leads Serbia to be the top of European countries by the amount of available but unused biomass. Technologies for its use are available and ecologically acceptable. Moreover, they are not expensive high-tech solutions even for the poor investment environment of Serbia, while other options seem to be less achievable. From the other point of view, Serbia has a huge percentage of unused agriculture land. Agricultural production in Serbia languishes: a large share of agricultural land therefore remains untreated, and there is a significant proportion of degraded land. From all the above, biomass intended for energy production is becoming an increasingly important factor in the stabilization of agricultural activities. Orientation towards the growing bioenergy crops versus conventional crop cultivation becomes an interesting option. The aim of this paper is to point out the possibility of growing energy crops in accordance with the conditions and cultural practice in rural areas of Serbia. First of all, the cultivation of energy crops on lower quality land is being discussed, in order to revitalize the rural areas of crops through their inclusion into potential energy sector. Next is the theme of throwing more light on the increase in the area under this competitive agricultural production to correct land use in terms of climate change in Serbia. The goal of this paper is to point out the contribution of the share of biomass in energy production and consumption, and the effect of reducing the negative environmental impact.Keywords: agro-energy crops, conditions for plantation, revitalization of rural areas, degraded and unused soils
Procedia PDF Downloads 2663733 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA
Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen
Abstract:
To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis
Procedia PDF Downloads 1483732 A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train
Authors: N. A. Ahmad Zubairi, H. Takaijudin, K. W. Yusof
Abstract:
Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants' growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive.Keywords: pesticides, heavy metal, agricultural runoff, bioretention, mechanism removal, treatment train
Procedia PDF Downloads 1583731 Engaging African Youth in Agribusiness through ICT
Authors: Adebola Adedugbe
Abstract:
Agriculture is the mainstay of most countries in Africa. It employs up to 90 per cent of the rural workforce, who are mostly youths and women. Engaging youths in Information and Communications Technology (ICT) in agriculture is critical to economic and agricultural development of the African continent. The objective of this paper is to identify and mobilize the potentials of young Africans in agriculture through ICT and recognize their role as the dominant driver for sustainable agricultural development in Africa. The youth is vibrant, energetic, creative, and innovative and has the potential to play a significant role sustainable agriculture. This paper identifies the role of ICT as a tool for attracting youths in agriculture. The development of ICT is important in stimulating youths in SME’s to compete favorably and effectively as a way to fight poverty through job and wealth creation. It is one of the strategies for promoting entrepreneurship by increasing the availability and diversity of online information. ICT has become a key factor in economic development in most developing countries. The exchange of information is essential for stakeholders in the agricultural sector, as it is the tool to establish, develop and manage efforts to improve performance, productivity and economic competitiveness in local and international markets. In this regard, Information and Communications Technology (ICT) is a powerful tool, fast and innovative to facilitate the exchange of information among all stakeholders in the agricultural sector.Keywords: Africa, agriculture, ICT, tool, youth
Procedia PDF Downloads 4803730 A Systematic Mapping of the Use of Information and Communication Technology (ICT)-Based Remote Agricultural Extension for Women Smallholders
Authors: Busiswa Madikazi
Abstract:
This systematic mapping study explores the underrepresentation of women's contributions to farming in the Global South within the development of Information and Communication Technologies (ICT)-based extension methods. Despite women farmers constituting 70% of the agricultural labour force, their productivity is hindered by various constraints, including illiteracy, household commitments, and limited access to credit and markets. A systematic mapping approach was employed with the aim of identifying evidence gaps in existing ICT extension for women farmers. The data collection protocol follows a structured approach, incorporating key criteria for inclusion, exclusion, search strategy, and coding and the PICO strategy (Population, Intervention, Comparator, and Outcome). The results yielded 119 articles that qualified for inclusion. The findings highlight that mobile phone apps (WhatsApp) and radio/television programming are the primary extension methods employed while integrating ICT with training, field visits, and demonstrations are underutilized. Notably, the study emphasizes the inadequate attention to critical issues such as food security, gender equality, and attracting youth to farming within ICT extension efforts. These findings indicate a significant policy and practice gap, neglecting community-driven approaches that cater to women's specific needs and enhance their agricultural production. Map highlights the importance of refocusing ICT extension efforts to address women farmers’ unique challenges, thereby contributing to their empowerment and improving agricultural practices.Keywords: agricultural extension, ICT, women farmers, smallholders
Procedia PDF Downloads 633729 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming
Authors: David Muyise
Abstract:
Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing
Procedia PDF Downloads 1293728 Availability of Safety Measures and Knowledge Towards Hazardous Waste Management among Workers in Scientific Laboratories of Two Universities in Lebanon
Authors: Inaam Nasrallah, Pascale Salameh, Abbas El-Outa, Assem Alkak, Rihab Nasr, Wafa Toufic Bawab
Abstract:
Background: Hazardous Waste Management(HWM). is critical to human health outcomes and environmental protection. This study evaluated the knowledge regarding safety measures to be applied when collecting and storing waste in scientific laboratories of two universities in Lebanon.Method: A survey-based observational study was conducted in scientific laboratories of the public university and that of a private university, where a total of 309 participants were recruited.Result: The mean total knowledge score on safety measures of HWM was 9.02±4.34 (maximum attainable score, 13). Significant association (p<0.05) was found between knowledge score and job function, years of experience, educational level, professional status, work schedule, and training on proper HWM. Participants had adequate perceptions regarding the impact of HWM on health and the environment. Linear regression modeling revealed that knowledge score was significantly higher among bachelor level lab workers compared to those with doctoral degrees (p=0.043), full-time schedule workers versus part-timers (p=0.03), and among public university participants as compared to those of the private university (p<0.001).Conclusion: This study showed good knowledge concerning HWM in the scientific laboratoriesof the studied universities in Lebanon and a good awareness of the HWM on health and the environment. It highlights the importance of culture, attitude, and practice on proper HWM in the academic scientific laboratory.Keywords: hasardous waste, safety measures, waste management, knwoledge score, scientific laboratory workers
Procedia PDF Downloads 2093727 Methane Production from Biomedical Waste (Blood)
Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan
Abstract:
This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal
Procedia PDF Downloads 3013726 Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement
Authors: Abdul Rahman Mohd. Sam, Olukotun Nathaniel, Dunu Williams
Abstract:
Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete.Keywords: concrete, rice husk ash, wood waste ash, ordinary Portland cement, compressive strength, tensile strength
Procedia PDF Downloads 2593725 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon
Authors: Layan Moussa, Darine Salam, Samir Mustapha
Abstract:
Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination
Procedia PDF Downloads 1013724 Phytoremediation of Cr from Tannery Effluent by Vetiver Grass
Authors: Mingizem Gashaw Seid
Abstract:
Phytoremediation of chromium metal by vetiver grass was investigated in hydroponic system. The removal efficiency for organic load, nutrient and chromium were evaluated as a function of concentration of waste effluent (40 and 50% dilution with distilled water). Under this conditions 64.49-94.06 % of chromium was removed. This shows vetiver grass has potential for accumulation of chromium metal from tannery waste water stream.Keywords: chromium, phytoremediation, tannery effluent, vetiver grass
Procedia PDF Downloads 4163723 Economic Analysis of the Impact of Commercial Agricultural Credit Scheme (CACS) on Farmers Income in Nigeria
Authors: Titus Wuyah Yunana
Abstract:
This study analyzed the impact of commercial agricultural credit scheme on income of beneficiary farmers in Kaduna State using the Net farm income and double difference method. A questionnaire was used to source the data from 306 farmers comprising of 153 beneficiaries and 153 non-beneficiaries. The results indicated that the net farm income of the commercial agricultural credit scheme beneficiaries increases from N15,006,352.00 before scheme to N24,862,585.00 after the first and the second phases of the scheme. There was also an increase in the net farm income of the non-beneficiaries from N9, 670,385.40 to N14, 391,469.00 during the scheme. The double difference method analysis indicated a positive mean income difference value between beneficiaries and nonbeneficiaries after the first and the second phases of the scheme. The study recommends expansion in the number of beneficiaries and efficient allocation and utilization of the resources. The government should also introduce more programs that will assist the farmers to increase their productivity, income and the economy as a whole.Keywords: agriculture, credit scheme, farmers, income, beneficiary
Procedia PDF Downloads 3393722 Industrial Wastewater Treatment Improvements Using Activated Carbon
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran
Abstract:
The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.Keywords: adsorption, COD removal, filtration, TDS removal
Procedia PDF Downloads 4983721 Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment
Authors: Nguyen Thi Thanh Truc, Chi-Hyeon Lee, Srinivasa Reddy Mallampati, Byeong-Kyu Lee
Abstract:
This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics.Keywords: ABS, hydrophilic, heat treatment, froth flotation, contact angle
Procedia PDF Downloads 359