Search results for: learning integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9376

Search results for: learning integration

1636 Social Ties and the Prevalence of Single Chronic Morbidity and Multimorbidity among the Elderly Population in Selected States of India

Authors: Sree Sanyal

Abstract:

Research in ageing often highlights the age-related health dimension more than the psycho-social characteristics of the elderly, which also influences and challenges the health outcomes. Multimorbidity is defined as the person having more than one chronic non-communicable diseases and their prevalence increases with ageing. The study aims to evaluate the influence of social ties on self-reported prevalence of multimorbidity (selected chronic non-communicable diseases) among the selected states of elderly population in India. The data is accessed from Building Knowledge Base on Population Ageing in India (BKPAI), collected in 2011 covering the self-reported chronic non-communicable diseases like arthritis, heart disease, diabetes, lung disease with asthma, hypertension, cataract, depression, dementia, Alzheimer’s disease, and cancer. The data of the above diseases were taken together and categorized as: ‘no disease’, ‘one disease’ and ‘multimorbidity’. The predicted variables were demographic, socio-economic, residential types, and the variable of social ties includes social support, social engagement, perceived support, connectedness, and importance of the elderly. Predicted probability for multiple logistic regression was used to determine the background characteristics of the old in association with chronic morbidities showing multimorbidity. The finding suggests that 24.35% of the elderly are suffering from multimorbidity. Research shows that with reference to ‘no disease’, according to the socio-economic characteristics of the old, the female oldest old (80+) from others in caste and religion, widowed, never had any formal education, ever worked in their life, coming from the second wealth quintile standard, from rural Maharashtra are more prone with ‘one disease’. From the social ties background, the elderly who perceives they are important to the family, after getting older their decision-making status has been changed, prefer to stay with son and spouse only, satisfied with the communication from their children are more likely to have less single morbidity and the results are significant. Again, with respect to ‘no disease’, the female oldest old (80+), who are others in caste, Christian in religion, widowed, having less than 5 years of education completed, ever worked, from highest wealth quintile, residing in urban Kerala are more associated with multimorbidity. The elderly population who are more socially connected through family visits, public gatherings, gets support in decision making, who prefers to spend their later years with son and spouse only but stays alone shows lesser prevalence of multimorbidity. In conclusion, received and perceived social integration and support from associated neighborhood in the older days, knowing about their own needs in life facilitates better health and wellbeing of the elderly population in selected states of India.

Keywords: morbidity, multi-morbidity, prevalence, social ties

Procedia PDF Downloads 121
1635 Optimizing Electric Vehicle Charging with Charging Data Analytics

Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat

Abstract:

Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.

Keywords: charging data, electric vehicles, machine learning, waiting times

Procedia PDF Downloads 195
1634 Daily Stand-up Meetings - Relationships with Psychological Safety and Well-being in Teams

Authors: Sarah Rietze, Hannes Zacher

Abstract:

Daily stand-up meetings are the most commonly used method in agile teams. In daily stand-ups, team members gather to coordinate and align their efforts, typically for a predefined period of no more than 15 minutes. The primary purpose is to ask and answer the following three questions: What was accomplished yesterday? What will be done today? What obstacles are impeding my progress? Daily stand-ups aim to enhance communication, mutual understanding, and support within the team, as well as promote collective learning from mistakes through daily synchronization and transparency. The use of daily stand-ups is intended to positively influence psychological safety within teams, which is the belief that it is safe to show oneself and take personal risks. Two studies will be presented, which explore the relationships between daily stand-ups, psychological safety, and psychological well-being. In a first study, based on survey results (n = 318), we demonstrated that daily stand-ups have a positive indirect effect on job satisfaction and a negative indirect effect on turnover intention through their impact on psychological safety. In a second study, we investigate, using an experimental design, how the use of daily stand-ups in teams enhances psychological safety and well-being compared to a control group that does not use daily stand-ups. Psychological safety is considered one of the most crucial cultural factors for a sustainable, agile organization. Agile approaches, such as daily stand-ups, are a critical part of the evolving work environment and offer a proactive means to shape and foster psychological safety within teams.

Keywords: occupational wellbeing, agile work practices, psychological safety, daily stand-ups

Procedia PDF Downloads 66
1633 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 332
1632 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis

Authors: Adrian-Gabriel Chifu, Sebastien Fournier

Abstract:

One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.

Keywords: sentiment analysis, difficulty, classification, machine learning

Procedia PDF Downloads 89
1631 Self-Attention Mechanism for Target Hiding Based on Satellite Images

Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai

Abstract:

Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.

Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding

Procedia PDF Downloads 136
1630 Development a Home-Hotel-Hospital-School Community-Based Palliative Care Model for Patients with Cancer in Suratthani, Thailand

Authors: Patcharaporn Sakulpong, Wiriya Phokhwang

Abstract:

Background: Banpunrug (Love Sharing House) established in 2013 provides a community-based palliative care for patients with cancer from 7 provinces in southern Thailand. These patients come to receive outpatient chemotherapy and radiotherapy at Suratthani Cancer Hospital. They are poor and uneducated; they need an accommodation during their 30-45 day course of therapy. Methods: A community-participatory action research (PAR) was employed to establish a model of palliative care for patients with cancer. The participants included health care providers, community, and patients and families. The PAR process includes problem identification and need assessment, community and team establishment, field survey, organization founding, model of care planning, action and inquiry (PDCA), outcome evaluation, and model distribution. Results: The model of care at Banpunrug involves the concepts of HHHS model, in that Banpunrug is a Home for patients; patients live in a house comfortable like in a Hotel resource; the patients are given care and living facilities similarly to those in a Hospital; the house is a School for patients to learn how to take care themselves, how to live well with cancer, and most importantly how to prepare themselves for a good death. The house is also a humanized care school for health care providers. Banpunrug’s philosophy of care is based on friendship therapy, social and spiritual support, community partnership, patient-family centeredness, Live & Love sharing house, and holistic and humanized care. With this philosophy, the house is managed as a home of the patients and everyone involved; everything is costless for all eligible patients and their family members; all facilities and living expense are donated from benevolent people, friends, and community. Everyone, including patients and family, has a sense of belonging to the house and there is no authority between health care providers and the patients in the house. The house is situated in a temple and a community and supported by many local nonprofit organizations and healthcare facilities such as a health promotion hospital at sub-disctrict level and Suratthani Cancer Hospital. Village health volunteers and multi-professional health care volunteers have contributed not only appropriate care, but also knowledge and experience to develop a distinguishing HHHS community-based palliative care model for patients with cancer. Since its opening the house has been a home for more than 400 patients and 300 family members. It is also a model for many national and international healthcare organizations and providers, who come to visit and learn about palliative care in and by community. Conclusions: The success of this palliative care model comes from community involvement, multi-professional volunteers and distributions, and concepts of HHHS model. Banpunrug promotes a consistent care across the cancer trajectory independent of prognosis in order to strengthen a full integration of palliative

Keywords: community-based palliative care, model, participatory action research, patients with cancer

Procedia PDF Downloads 268
1629 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent

Authors: Kwame Amoah

Abstract:

Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.

Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence

Procedia PDF Downloads 83
1628 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 66
1627 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 316
1626 Household Climate-Resilience Index Development for the Health Sector in Tanzania: Use of Demographic and Health Surveys Data Linked with Remote Sensing

Authors: Heribert R. Kaijage, Samuel N. A. Codjoe, Simon H. D. Mamuya, Mangi J. Ezekiel

Abstract:

There is strong evidence that climate has changed significantly affecting various sectors including public health. The recommended feasible solution is adopting development trajectories which combine both mitigation and adaptation measures for improving resilience pathways. This approach demands a consideration for complex interactions between climate and social-ecological systems. While other sectors such as agriculture and water have developed climate resilience indices, the public health sector in Tanzania is still lagging behind. The aim of this study was to find out how can we use Demographic and Health Surveys (DHS) linked with Remote Sensing (RS) technology and metrological information as tools to inform climate change resilient development and evaluation for the health sector. Methodological review was conducted whereby a number of studies were content analyzed to find appropriate indicators and indices for climate resilience household and their integration approach. These indicators were critically reviewed, listed, filtered and their sources determined. Preliminary identification and ranking of indicators were conducted using participatory approach of pairwise weighting by selected national stakeholders from meeting/conferences on human health and climate change sciences in Tanzania. DHS datasets were retrieved from Measure Evaluation project, processed and critically analyzed for possible climate change indicators. Other sources for indicators of climate change exposure were also identified. For the purpose of preliminary reporting, operationalization of selected indicators was discussed to produce methodological approach to be used in resilience comparative analysis study. It was found that household climate resilient index depends on the combination of three indices namely Household Adaptive and Mitigation Capacity (HC), Household Health Sensitivity (HHS) and Household Exposure Status (HES). It was also found that, DHS alone cannot complement resilient evaluation unless integrated with other data sources notably flooding data as a measure of vulnerability, remote sensing image of Normalized Vegetation Index (NDVI) and Metrological data (deviation from rainfall pattern). It can be concluded that if these indices retrieved from DHS data sets are computed and scientifically integrated can produce single climate resilience index and resilience maps could be generated at different spatial and time scales to enhance targeted interventions for climate resilient development and evaluations. However, further studies are need to test for the sensitivity of index in resilience comparative analysis among selected regions.

Keywords: climate change, resilience, remote sensing, demographic and health surveys

Procedia PDF Downloads 165
1625 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 163
1624 A Quantitative Analysis for the Correlation between Corporate Financial and Social Performance

Authors: Wafaa Salah, Mostafa A. Salama, Jane Doe

Abstract:

Recently, the corporate social performance (CSP) is not less important than the corporate financial performance (CFP). Debate still exists about the nature of the relationship between the CSP and CFP, whether it is a positive, negative or a neutral correlation. The objective of this study is to explore the relationship between corporate social responsibility (CSR) reports and CFP. The study uses the accounting-based and market-based quantitative measures to quantify the financial performance of seven organizations listed on the Egyptian Stock Exchange in 2007-2014. Then uses the information retrieval technologies to quantify the contribution of each of the three dimensions of the corporate social responsibility report (environmental, social and economic). Finally, the correlation between these two sets of variables is viewed together in a model to detect the correlations between them. This model is applied on seven firms that generate social responsibility reports. The results show a positive correlation between the Earnings per share (market based measure) and the economical dimension in the CSR report. On the other hand, total assets and property, plant and equipment (accounting-based measure) are positively correlated to the environmental and social dimensions of the CSR reports. While there is not any significant relationship between ROA, ROE, Operating income and corporate social responsibility. This study contributes to the literature by providing more clarification of the relationship between CFP and the isolated CSR activities in a developing country.

Keywords: financial, social, machine learning, corporate social performance, corporate social responsibility

Procedia PDF Downloads 311
1623 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol

Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani

Abstract:

Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.

Keywords: heuristics routing, intelligent routing, VANET, route optimization

Procedia PDF Downloads 178
1622 Developing a Moodle Course for Translation Theory and Methodology: The Importance of Theory in Translation Studies and Its Application

Authors: Antonia Tsaknaki

Abstract:

There are many and divergent views on how the science of translation should be taught in academic institutions or colleges, meaning as an independent study area or as part of Linguistics, Literature or Foreign Languages Departments. A much more debated issue refers to the question of whether translation theory should be included in syllabuses and study programs or the focus should be solely on practicing the profession, that is translating texts. This dissertation examines prevailing views on the significance of translation theory in translation studies in order to design an open course on moodle. Taking into account that there is a remarkable percentage of translation professionals who are self-taught without having any specific studies, the course aims at helping either translation students or professional translators familiarize with concepts, methods and problem-solving strategies that are considered necessary during the process. It is organized in four modules where the learner is guided through a series of topics (register, equivalence, decision-making, level of naturalness, Skopos theory etc); after completing these topics, they are given assignments (further reading) and texts to work on in order to practice the skills obtained. The course does not focus on a specific language pair and therefore is suitable for every individual who needs a theoretical background to boost their performance or for institutions seeking to save classroom time but not at the expense of learners’ skills.

Keywords: MOOCs, moodle, online learning, open courses, translation, translation theory

Procedia PDF Downloads 145
1621 Detecting and Thwarting Interest Flooding Attack in Information Centric Network

Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S

Abstract:

Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.

Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy

Procedia PDF Downloads 206
1620 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 162
1619 An Experiential Learning of Ontology-Based Multi-document Summarization by Removal Summarization Techniques

Authors: Pranjali Avinash Yadav-Deshmukh

Abstract:

Remarkable development of the Internet along with the new technological innovation, such as high-speed systems and affordable large storage space have led to a tremendous increase in the amount and accessibility to digital records. For any person, studying of all these data is tremendously time intensive, so there is a great need to access effective multi-document summarization (MDS) systems, which can successfully reduce details found in several records into a short, understandable summary or conclusion. For semantic representation of textual details in ontology area, as a theoretical design, our system provides a significant structure. The stability of using the ontology in fixing multi-document summarization problems in the sector of catastrophe control is finding its recommended design. Saliency ranking is usually allocated to each phrase and phrases are rated according to the ranking, then the top rated phrases are chosen as the conclusion. With regards to the conclusion quality, wide tests on a selection of media announcements are appropriate for “Jammu Kashmir Overflow in 2014” records. Ontology centered multi-document summarization methods using “NLP centered extraction” outshine other baselines. Our participation in recommended component is to implement the details removal methods (NLP) to enhance the results.

Keywords: disaster management, extraction technique, k-means, multi-document summarization, NLP, ontology, sentence extraction

Procedia PDF Downloads 386
1618 A Collection of Voices on Higher Educational Access, Quality and Equity in Africa: A Systematic Review

Authors: Araba A. Z. Osei-Tutu, Ebenezer Odame, Joseph Bawa, Samuel Amponsah

Abstract:

Education is recognized as a fundamental human right and a catalyst for development. Despite progress in the provision of higher education on the African continent, there persist challenges with the tripartite areas of access, equity and quality. Therefore, this systematic review aimed at providing a comprehensive overview of conversations and voices of scholars on these three concepts in HE in Africa. The systematic review employed a thematic analysis approach, synthesizing findings from 38 selected sources. After a critical analysis of the sources included in the systematic review, deficits in access, quality, and equity were outlined, focusing on infrastructure, regional disparities, and privatization challenges. The review also revealed the weak enforcement of quality assurance measures. Strategies for improvement, proffered by the study, include expanding public sector HE, deregulating the educational sector, promoting open and distance learning, implementing preferential admission policies, and enhancing financial aid. This research contributes valuable insights for policymakers, educators, and stakeholders, fostering a collaborative approach to address challenges and promote holistic development in African higher education.

Keywords: access, equity, quality, higher education, Africa, systematic review, strategies

Procedia PDF Downloads 71
1617 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals

Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti

Abstract:

Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.

Keywords: neuroinformatics, bioinformatics, network tools, brain mapping

Procedia PDF Downloads 182
1616 Deep Learning Approach to Trademark Design Code Identification

Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger

Abstract:

Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.

Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2

Procedia PDF Downloads 232
1615 Analyzing Students' Writing in an English Code-Mixing Context in Nepali: An Ecological and Systematic Functional Approach

Authors: Binod Duwadi

Abstract:

This article examines the language and literacy practices of English Code-mixing in Nepalese Classroom. Situating the study within an ecological framework, a systematic functional linguistic (SFL) approach was used to analyze students writing in two Neplease schools. Data collection included interviews with teachers, classroom observations, instructional materials, and focal students’ writing samples. Data analyses revealed vastly different language ecologies between the schools owing to sharp socioeconomic stratification, the structural organization of schools, and the pervasiveness of standard language ideology, with stigmatizes English code mixing (ECM) and privileges Standard English in schools. Functional analysis of students’ writing showed that the nature of the writing tasks at the schools created different affordances for exploiting lexicogrammatically choices for meaning making-enhancing them in the case of one school but severely restricting them in the case of another- perpetuating the academic disadvantage for code mixing speakers. Recommendations for structural and attitudinal changes through teacher training and implementation of approaches that engage students’ bidialectal competence for learning are made as important first steps towards addressing educational inequities in Nepalese schools.

Keywords: code-mixing, ecological perspective, systematic functional approach, language and identity

Procedia PDF Downloads 124
1614 Elite Female Football Coaches’ Experiences and Reflections in a Male-dominated Environment: The Case of Ghana

Authors: Fiona Soraya Addai-Sundiata, Ernest Yeboah Acheampong, Ralph Frimpong

Abstract:

The rationale of this study is to examine the career experiences of elite female football coaches in Ghana. More importantly, it focus on their motives, the challenges of football coaching and their experiences along their career paths. The study draws from literature on female coaches in football to understand their experiences and reflections in their chosen careers. The findings of the study relied on in-depth semi-structured interviews with five elite female football coaches aged between 28 and 50 years. Participants’ responses reveal that both intrinsic and extrinsic motives drive them into football coaching, including learning experiences from abroad, a strong desire to break the gendered hegemony of coaching in Ghana, serving as role models, enjoyment, satisfaction and passion for their chosen careers. Results indicate that they encountered sociocultural, organisational, personal and interpersonal challenges. Also, they experience gender stereotyping, limited career mobility, sexism and marginalisation, which prevent them from becoming elite coaches. The study provides useful data for stakeholders, including Ghana Football Association (GFA), to use effective strategies (e.g., special incentives for women coaches) to attract and retain women in the football coaching space.

Keywords: elite female football coaches, career experiences, gender, motives, trajectories

Procedia PDF Downloads 69
1613 Elite Female Football Coaches’ Experiences and Reflections in a Male-Dominated Environment: The Case of Ghana

Authors: Fiona Soraya Addai-Sundiata, Ernest Yeboah Acheampong, Ralph Frimpong

Abstract:

The rationale of this study is to examine the career experiences of elite female football coaches in Ghana. More importantly, it focus on their motives, the challenges of football coaching and their experiences along their career paths. The study draws from literature on female coaches in football to understand their experiences and reflections in their chosen careers. The findings of the study relied on in-depth semi-structured interviews with five elite female football coaches aged between 28 and 50 years. Participants’ responses reveal that both intrinsic and extrinsic motives drive them into football coaching including learning experiences from abroad, a strong desire to break the gendered hegemony of coaching in Ghana, serving as role models, enjoyment, satisfaction and passion for their chosen careers. Results indicate that they encountered sociocultural, organisational, personal and interpersonal challenges. Also, they experience gender stereotyping, limited career mobility, sexism and marginalisation, which prevent them from becoming elite coaches. The study provides useful data for stakeholders including Ghana Football Association (GFA) to use effective strategies (e.g., special incentives for women coaches) to attract and retain women in the football coaching space.

Keywords: elite female football coaches, career experiences, gender, motives, trajectories

Procedia PDF Downloads 62
1612 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks

Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem

Abstract:

The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.

Keywords: classification, gated recurrent unit, recurrent neural network, transportation

Procedia PDF Downloads 137
1611 Impact of Organic Architecture in Building Design

Authors: Zainab Yahaya Suleiman

Abstract:

Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning.

Keywords: organic architecture, fitness center, environment, natural resources, natural features, building design

Procedia PDF Downloads 413
1610 TQM Framework Using Notable Authors Comparative

Authors: Redha M. Elhuni

Abstract:

This paper presents an analysis of the essential characteristics of the TQM philosophy by comparing the work of five notable authors in the field. A framework is produced which gather the identified TQM enablers under the well-known operations management dimensions of process, business and people. These enablers are linked with sustainable development via balance scorecard type economic and non-economic measures. In order to capture a picture of Libyan Company’s efforts to implement the TQM, a questionnaire survey is designed and implemented. Results of the survey are presented showing the main differentiating factors between the sample companies, and a way of assessing the difference between the theoretical underpinning and the practitioners’ undertakings. Survey results indicate that companies are experiencing much difficulty in translating TQM theory into practice. Only a few companies have successfully adopted a holistic approach to TQM philosophy, and most of these put relatively high emphasis on hard elements compared with soft issues of TQM. However, where companies can realize the economic outputs, non- economic benefits such as workflow management, skills development and team learning are not realized. In addition, overall, non-economic measures have secured low weightings compared with the economic measures. We believe that the framework presented in this paper can help a company to concentrate its TQM implementation efforts in terms of process, system and people management dimensions.

Keywords: TQM, balance scorecard, EFQM excellence model, oil sector, Libya

Procedia PDF Downloads 405
1609 Human Resources Recruitment Defining Peculiarities of Students as Job Seekers

Authors: O. Starineca

Abstract:

Some organizations as employers have difficulties to attract job seekers and retain their employees. Strategic planning of Human Resources (HR) presumes broad analysis of perspectives including analysis of potential job seekers in the field. Human Resources Recruitment (HRR) influences employer brand of an organization and peculiarities of both external organizational factors and stakeholders. Defining peculiarities of the future job seekers, who could potentially become the employees of the organization, could help to adjust HRR tools and methods adapt to the youngest generation employees’ preferences and be more successful in selecting the best candidates, who are likely to be loyal to the employer. The aim of the empirical study is definition of some students’ as job seekers peculiarities and their requirements to their potential employer. The survey in Latvia, Lithuania and Spain. Respondents were students from these countries’ tertiary education institutions Public Administration (PA) or relevant study programs. All three countries students’ peculiarities have just a slight difference. Overall, they all wish to work for a socially responsible employer that is able to provide positive working environment and possibilities for professional development and learning. However, respondents from each country have own peculiarities. The study might have a practical application. PA of the examined countries might use the results developing employer brand and creating job advertisements focusing on recent graduates’ recruitment.

Keywords: generation Y, human resources recruitment, job seekers, public administration

Procedia PDF Downloads 208
1608 Developing Critical-Process Skills Integrated Assessment Instrument as Alternative Assessment on Electrolyte Solution Matter in Senior High School

Authors: Sri Rejeki Dwi Astuti, Suyanta

Abstract:

The demanding of the asessment in learning process was impact by policy changes. Nowadays, the assessment not only emphasizes knowledge, but also skills and attitude. However, in reality there are many obstacles in measuring them. This paper aimed to describe how to develop instrument of integrated assessment as alternative assessment to measure critical thinking skills and science process skills in electrolyte solution and to describe instrument’s characteristic such as logic validity and construct validity. This instrument development used test development model by McIntire. Development process data was acquired based on development test step and was analyzed by qualitative analysis. Initial product was observed by three peer reviewer and six expert judgment (two subject matter expert, two evaluation expert and two chemistry teacher) to acquire logic validity test. Logic validity test was analyzed using Aiken’s formula. The estimation of construct validity was analyzed by exploratory factor analysis. Result showed that integrated assessment instrument has 0,90 of Aiken’s Value and all item in integrated assessment asserted valid according to construct validity.

Keywords: construct validity, critical thinking skills, integrated assessment instrument, logic validity, science process skills

Procedia PDF Downloads 263
1607 The Application of System Approach to Knowledge Management and Human Resource Management Evidence from Tehran Municipality

Authors: Vajhollah Ghorbanizadeh, Seyed Mohsen Asadi, Mirali Seyednaghavi, Davoud Hoseynpour

Abstract:

In the current era, all organizations need knowledge to be able to manage the diverse human resources. Creative, dynamic and knowledge-based Human resources are important competitive advantage and the scarcest resource in today's knowledge-based economy. In addition managers with skills of knowledge management must be aware of human resource management science. It is now generally accepted that successful implementation of knowledge management requires dynamic interaction between knowledge management and human resource management. This is emphasized at systematic approach to knowledge management as well. However human resource management can be complementary of knowledge management because human resources management with the aim of empowering human resources as the key resource organizations in the 21st century, the use of other resources, creating and growing and developing today. Thus, knowledge is the major capital of every organization which is introduced through the process of knowledge management. In this context, knowledge management is systematic approach to create, receive, organize, access, and use of knowledge and learning in the organization. This article aims to define and explain the concepts of knowledge management and human resource management and the importance of these processes and concepts. Literature related to knowledge management and human resource management as well as related topics were studied, then to design, illustrate and provide a theoretical model to explain the factors affecting the relationship between knowledge management and human resource management and knowledge management system approach, for schematic design and are drawn.

Keywords: systemic approach, human resources, knowledge, human resources management, knowledge management

Procedia PDF Downloads 377