Search results for: charring rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8072

Search results for: charring rate

482 Nursery Treatments May Improve Restoration Outcomes by Reducing Seedling Transplant Shock

Authors: Douglas E. Mainhart, Alejandro Fierro-Cabo, Bradley Christoffersen, Charlotte Reemts

Abstract:

Semi-arid ecosystems across the globe have faced land conversion for agriculture and resource extraction activities, posing a threat to the important ecosystem services they provide. Revegetation-centered restoration efforts in these regions face low success rates due to limited soil water availability and high temperatures leading to elevated seedling mortality after planting. Typical methods to alleviate these stresses require costly post-planting interventions aimed at improving soil moisture status. We set out to evaluate the efficacy of applying in-nursery treatments to address transplant shock. Four native Tamaulipan thornscrub species were compared. Three treatments were applied: elevated CO2, drought hardening (four-week exposure each), and antitranspirant foliar spray (the day prior to planting). Our goal was to answer two primary questions: (1) Do treatments improve survival and growth of seedlings in the early period post-planting? (2) If so, what underlying physiological changes are associated with this improved performance? To this end, we measured leaf gas exchange (stomatal conductance, light saturated photosynthetic rate, water use efficiency), leaf morphology (specific leaf area), and osmolality before and upon the conclusion of treatments. A subset of seedlings from all treatments have been planted, which will be monitored in coming months for in-field survival and growth.First month field survival for all treatment groups were high due to ample rainfall following planting (>85%). Growth data was unreliable due to high herbivory (68% of all sampled plants). While elevated CO2 had infrequent or no detectable influence on all aspects of leaf gas exchange, drought hardening reduced stomatal conductance in three of the four species measured without negatively impacting photosynthesis. Both CO2 and drought hardening elevated leaf osmolality in two species. Antitranspirant application significantly reduced conductance in all species for up to four days and reduced photosynthesis in two species. Antitranspirants also increased the variability of water use efficiency compared to controls. Collectively, these results suggest that antitranspirants and drought hardening are viable treatments for reducing short-term water loss during the transplant shock period. Elevated CO2, while not effective at reducing water loss, may be useful for promoting more favorable water status via osmotic adjustment. These practices could improve restoration outcomes in Tamaulipan thornscrub and other semi-arid systems. Further research should focus on evaluating combinations of these treatments and their species-specific viability.

Keywords: conservation, drought conditioning, semi-arid restoration, plant physiology

Procedia PDF Downloads 86
481 A Retrospective Cohort Study on an Outbreak of Gastroenteritis Linked to a Buffet Lunch Served during a Conference in Accra

Authors: Benjamin Osei Tutu, Sharon Annison

Abstract:

On 21st November, 2016, an outbreak of foodborne illness occurred after a buffet lunch served during a stakeholders’ consultation meeting held in Accra. An investigation was conducted to characterise the affected people, determine the etiologic food, the source of contamination and the etiologic agent and to implement appropriate public health measures to prevent future occurrences. A retrospective cohort study was conducted via telephone interviews, using a structured questionnaire developed from the buffet menu. A case was defined as any person suffering from symptoms of foodborne illness e.g. diarrhoea and/or abdominal cramps after eating food served during the stakeholder consultation meeting in Accra on 21st November, 2016. The exposure status of all the members of the cohort was assessed by taking the food history of each respondent during the telephone interview. The data obtained was analysed using Epi Info 7. An environmental risk assessment was conducted to ascertain the source of the food contamination. Risks of foodborne infection from the foods eaten were determined using attack rates and odds ratios. Data was obtained from 54 people who consumed food served during the stakeholders’ meeting. Out of this population, 44 people reported with symptoms of food poisoning representing 81.45% (overall attack rate). The peak incubation period was seven hours with a minimum and maximum incubation periods of four and 17 hours, respectively. The commonly reported symptoms were diarrhoea (97.73%, 43/44), vomiting (84.09%, 37/44) and abdominal cramps (75.00%, 33/44). From the incubation period, duration of illness and the symptoms, toxin-mediated food poisoning was suspected. The environmental risk assessment of the implicated catering facility indicated a lack of time/temperature control, inadequate knowledge on food safety among workers and sanitation issues. Limited number of food samples was received for microbiological analysis. Multivariate analysis indicated that illness was significantly associated with the consumption of the snacks served (OR 14.78, P < 0.001). No stool and blood or samples of etiologic food were available for organism isolation; however, the suspected etiologic agent was Staphylococcus aureus or Clostridium perfringens. The outbreak could probably be due to the consumption of unwholesome snack (tuna sandwich or chicken. The contamination and/or growth of the etiologic agent in the snack may be due to the breakdown in cleanliness, time/temperature control and good food handling practices. Training of food handlers in basic food hygiene and safety is recommended.

Keywords: Accra, buffet, conference, C. perfringens, cohort study, food poisoning, gastroenteritis, office workers, Staphylococcus aureus

Procedia PDF Downloads 233
480 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters

Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng

Abstract:

Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.

Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum

Procedia PDF Downloads 167
479 Contraceptive Uptake among Women in Low Socio-Economic Areas in Kenya: Quantitative Analysis of Secondary Data

Authors: J. Waita, S. Wamuhu, J. Makoyo, M. Rachel, T. Ngangari, W. Christine, M. Zipporah

Abstract:

Contraceptive use is one of the key global strategies to alleviate maternal mortality. Global efforts through advocating for contraceptive uptake and service provision has led improved contraceptive prevalence. In Kenya maternal mortality rate has remained a challenged despites efforts by government and non-governmental organizations. Objective: To describe the uptake of contraceptives among women in Tunza Clinics, Kenya. Design and Methods: Ps Kenya through health care marketing fund is implementing a family planning program among its 350 Tunza fractional franchise facilities. Through private partnership, private owned facilities in low socio-economic areas are recruited and trained on contraceptive technology update. The providers are supported through facilitative supervision through a mobile based application Health Network Quality Improvement System (HNQIS) and interpersonal communication through 150 community based volunteers. The data analyzed in this paper was collected between January to July 2017 to show the uptake of modern Contraceptives among women in the Tunza franchise, method mix, age and distribution among the age bracket. Further analysis compares two different service delivery strategies; outreach and walk ins. Supportive supervision HNQIS scores was analyzed. Results: During the time period, a total of 132121 family planning clients were attended in 350 facilities. The average age of clients was 29.6 years. The average number of clients attended in the facilities per month was 18874. 73.7 %( n=132121) of the clients attended in the Tunza facilities were aged above 25 years while 22.1% 20-24 years and 4.2% 15-19 years. On contraceptive method mix, intra uterine device insertions clients contributed to 7.5%, implant insertions 15.3%, pills 11.2%, injections 62.7% while condoms and emergency pills had 2.7% and 0.6% respectively. Analysis of service delivery strategy indicated more than 79% of the clients were walk ins while 21% were attended to during outreaches. Uptake of long term contraceptive methods during outreaches was 73% of the clients while short term modern methods were 27%. Health Network Quality Improvement system assessment scores indicated 51% of the facilities scored over 90%, 25% scoring 80-89% while 21% scored below 80%. Conclusion: Preference for short term methods by women is possibly associated to cost as they are cheaper and easy to administer. When the cost of intra uterine device Implants is meant affordable during outreaches, the uptake is observed to increase. Making intra uterine device and implants affordable to women is a key strategy in increasing contraceptive prevalence hence averting maternal mortality.

Keywords: contraceptives, contraceptive uptake, low socio economic, supportive supervision

Procedia PDF Downloads 169
478 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 139
477 The Effectiveness of an Occupational Therapy Metacognitive-Functional Intervention for the Improvement of Human Risk Factors of Bus Drivers

Authors: Navah Z. Ratzon, Rachel Shichrur

Abstract:

Background: Many studies have assessed and identified the risk factors of safe driving, but there is relatively little research-based evidence concerning the ability to improve the driving skills of drivers in general and in particular of bus drivers, who are defined as a population at risk. Accidents involving bus drivers can endanger dozens of passengers and cause high direct and indirect damages. Objective: To examine the effectiveness of a metacognitive-functional intervention program for the reduction of risk factors among professional drivers relative to a control group. Methods: The study examined 77 bus drivers working for a large public company in the center of the country, aged 27-69. Twenty-one drivers continued to the intervention stage; four of them dropped out before the end of the intervention. The intervention program we developed was based on previous driving models and the guiding occupational therapy practice framework model in Israel, while adjusting the model to the professional driving in public transportation and its particular risk factors. Treatment focused on raising awareness to safe driving risk factors identified at prescreening (ergonomic, perceptual-cognitive and on-road driving data), with reference to the difficulties that the driver raises and providing coping strategies. The intervention has been customized for each driver and included three sessions of two hours. The effectiveness of the intervention was tested using objective measures: In-Vehicle Data Recorders (IVDR) for monitoring natural driving data, traffic accident data before and after the intervention, and subjective measures (occupational performance questionnaire for bus drivers). Results: Statistical analysis found a significant difference between the degree of change in the rate of IVDR perilous events (t(17)=2.14, p=0.046), before and after the intervention. There was significant difference in the number of accidents per year before and after the intervention in the intervention group (t(17)=2.11, p=0.05), but no significant change in the control group. Subjective ratings of the level of performance and of satisfaction with performance improved in all areas tested following the intervention. The change in the ‘human factors/person’ field, was significant (performance : t=- 2.30, p=0.04; satisfaction with performance : t=-3.18, p=0.009). The change in the ‘driving occupation/tasks’ field, was not significant but showed a tendency toward significance (t=-1.94, p=0.07,). No significant differences were found in driving environment-related variables. Conclusions: The metacognitive-functional intervention significantly improved the objective and subjective measures of safety of bus drivers’ driving. These novel results highlight the potential contribution of occupational therapists, using metacognitive functional treatment, to preventing car accidents among the healthy drivers population and improving the well-being of these drivers. This study also enables familiarity with advanced technologies of IVDR systems and enriches the knowledge of occupational therapists in regards to using a wide variety of driving assessment tools and making the best practice decisions.

Keywords: bus drivers, IVDR, human risk factors, metacognitive-functional intervention

Procedia PDF Downloads 348
476 Pricing Effects on Equitable Distribution of Forest Products and Livelihood Improvement in Nepalese Community Forestry

Authors: Laxuman Thakuri

Abstract:

Despite the large number of in-depth case studies focused on policy analysis, institutional arrangement, and collective action of common property resource management; how the local institutions take the pricing decision of forest products in community forest management and what kinds of effects produce it, the answers of these questions are largely silent among the policy-makers and researchers alike. The study examined how the local institutions take the pricing decision of forest products in the lowland community forestry of Nepal and how the decisions affect to equitable distribution of benefits and livelihood improvement which are also objectives of Nepalese community forestry. The study assumes that forest products pricing decisions have multiple effects on equitable distribution and livelihood improvement in the areas having heterogeneous socio-economic conditions. The dissertation was carried out at four community forests of lowland, Nepal that has characteristics of high value species, matured-experience of community forest management and better record-keeping system of forest products production, pricing and distribution. The questionnaire survey, individual to group discussions and direct field observation were applied for data collection from the field, and Lorenz curve, gini-coefficient, χ²-text, and SWOT (Strong, Weak, Opportunity, and Threat) analysis were performed for data analysis and results interpretation. The dissertation demonstrates that the low pricing strategy of high-value forest products was supposed crucial to increase the access of socio-economically weak households, and to and control over the important forest products such as timber, but found counter productive as the strategy increased the access of socio-economically better-off households at higher rate. In addition, the strategy contradicts to collect a large-scale community fund and carry out livelihood improvement activities as per the community forestry objectives. The crucial part of the study is despite the fact of low pricing strategy; the timber alone contributed large part of community fund collection. The results revealed close relation between pricing decisions and livelihood objectives. The action research result shows that positive price discrimination can slightly reduce the prevailing inequality and increase the fund. However, it lacks to harness the full price of forest products and collects a large-scale community fund. For broader outcomes of common property resource management in terms of resource sustainability, equity, and livelihood opportunity, the study suggests local institutions to harness the full price of resource products with respect to the local market.

Keywords: community, equitable, forest, livelihood, socioeconomic, Nepal

Procedia PDF Downloads 538
475 Knowledge, Attitudes, and Practices of Army Soldiers on Prehospital Trauma Care in Matara District

Authors: Hatharasinghe Liyanage Saneetha Chathaurika, Shreenika De Silva Weliange

Abstract:

Background and Significance of the Study: Natural and human-induced disasters have become more common due to rapid development and climate change. Therefore hospitalization due to injuries has increased in the midst of advancement in medicine. Prehospital trauma care is critical in reducing morbidity and mortality following injury. Army soldiers are one of the first responder categories after a major disaster causing injury. Thus, basic life support measures taken by trained lay first responders is life-saving, it is important to build up their capacities by updating their knowledge and practices while cultivating positive attitudes toward it. Objective: To describe knowledge, attitudes and practices on prehospital trauma care among army soldiers in Matara District. Methodology: A descriptive cross sectional study was carried out among army soldiers in Matara district. The whole population was studied belonging to the above group during the study period. Self-administered questionnaire was used as the study instrument. Cross tabulations were done to identify the possible associations using chi square statistics. Knowledge and practices were categorized in to two groups as “Poor” and “Good” taking 50% as the cut off. Results: The study population consists of 266 participants (response rate 97.79%).The overall level of knowledge on prehospital trauma care is poor (78.6%) while knowledge on golden hour of trauma (77.1%), triage system (74.4%), cardio pulmonary resuscitation (92.5%) and transportation of patients with spinal cord injury (69.2%) was markedly poor. Good knowledge is significantly associated with advance age, higher income and higher level of education whereas it has no significant association with work duration. More than 80% of them had positive attitudes on most aspects of prehospital trauma care while majority thinks it is good to have knowledge on this topic and they would have performed better in disaster situations if they were trained on pre-hospital trauma care. With regard to the practice, majority (62.8%) is included in the group of poor level of practice. They lack practice on first-aid, cardiopulmonary resuscitation and safe transportation of the patients. Moreover, they had less opportunity to participate in drills/simulation programs done on disaster events. Good practice is significantly associated with advance age and higher level of education but not associated with level of income and working duration of army soldiers. Highly significant association was observed between the level of knowledge and level of practice on prehospital trauma care of army soldiers. It is observed that higher the knowledge practices become better. Conclusion: A higher proportion of army soldiers had poor knowledge and practice on prehospital trauma care while majority had positive attitudes regarding it. Majority lacks knowledge and practice in first-aid and cardiopulmonary resuscitation. Due to significant association observed between knowledge and practice it can be recommended to include a training session on prehospital trauma care in the basic military curriculum which will enhance the ability to act as first responders effectively. Further research is needed in this area of prehospital trauma care to enhance the qualitative outcome.

Keywords: disaster, prehospital trauma care, first responders, army soldiers

Procedia PDF Downloads 234
474 Importance of Macromineral Ratios and Products in Association with Vitamin D in Pediatric Obesity Including Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Metabolisms of macrominerals, those of calcium, phosphorus and magnesium, are closely associated with the metabolism of vitamin D. Particularly magnesium, the second most abundant intracellular cation, is related to biochemical and metabolic processes in the body, such as those of carbohydrates, proteins and lipids. The status of each mineral was investigated in obesity to some extent. Their products and ratios may possibly give much more detailed information about the matter. The aim of this study is to investigate possible relations between each macromineral and some obesity-related parameters. This study was performed on 235 children, whose ages were between 06-18 years. Aside from anthropometric measurements, hematological analyses were performed. TANITA body composition monitor using bioelectrical impedance analysis technology was used to establish some obesity-related parameters including basal metabolic rate (BMR), total fat, mineral and muscle masses. World Health Organization body mass index (BMI) percentiles for age and sex were used to constitute the groups. The values above 99th percentile were defined as morbid obesity. Those between 95th and 99th percentiles were included into the obese group. The overweight group comprised of children whose percentiles were between 95 and 85. Children between the 85th and 15th percentiles were defined as normal. Metabolic syndrome (MetS) components (waist circumference, fasting blood glucose, triacylglycerol, high density lipoprotein cholesterol, systolic pressure, diastolic pressure) were determined. High performance liquid chromatography was used to determine Vitamin D status by measuring 25-hydroxy cholecalciferol (25-hydroxy vitamin D3, 25(OH)D). Vitamin D values above 30.0 ng/ml were accepted as sufficient. SPSS statistical package program was used for the evaluation of data. The statistical significance degree was accepted as p < 0.05. The important points were the correlations found between vitamin D and magnesium as well as phosphorus (p < 0.05) that existed in the group with normal BMI values. These correlations were lost in the other groups. The ratio of phosphorus to magnesium was even much more highly correlated with vitamin D (p < 0.001). The negative correlation between magnesium and total fat mass (p < 0.01) was confined to the MetS group showing the inverse relationship between magnesium levels and obesity degree. In this group, calcium*magnesium product exhibited the highest correlation with total fat mass (p < 0.001) among all groups. Only in the MetS group was a negative correlation found between BMR and calcium*magnesium product (p < 0.05). In conclusion, magnesium is located at the center of attraction concerning its relationships with vitamin D, fat mass and MetS. The ratios and products derived from macrominerals including magnesium have pointed out stronger associations other than each element alone. Final considerations have shown that unique correlations of magnesium as well as calcium*magnesium product with total fat mass have drawn attention particularly in the MetS group, possibly due to the derangements in some basic elements of carbohydrate as well as lipid metabolism.

Keywords: macrominerals, metabolic syndrome, pediatric obesity, vitamin D

Procedia PDF Downloads 115
473 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle

Authors: Pawel Magryta, Mateusz Paszko

Abstract:

In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag

Procedia PDF Downloads 313
472 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 237
471 Combustion Characteristics and Pollutant Emissions in Gasoline/Ethanol Mixed Fuels

Authors: Shin Woo Kim, Eui Ju Lee

Abstract:

The recent development of biofuel production technology facilitates the use of bioethanol and biodiesel on automobile. Bioethanol, especially, can be used as a fuel for gasoline vehicles because the addition of ethanol has been known to increase octane number and reduce soot emissions. However, the wide application of biofuel has been still limited because of lack of detailed combustion properties such as auto-ignition temperature and pollutant emissions such as NOx and soot, which has been concerned mainly on the vehicle fire safety and environmental safety. In this study, the combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally. For auto-ignition temperature and NOx emission, the numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. Also, the response surface method (RSM) was introduced as a design of experiment (DOE), which enables the various combustion properties to be predicted and optimized systematically with respect to three independent variables, i.e., ethanol mole fraction, equivalence ratio and residence time. The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence needs to adjust combustion itself rather than an after-treatment system. RSM results analyzed with three independent variables predict the auto-ignition temperature accurately. However, NOx emission had a big difference between the calculated values and the predicted values using conventional RSM because NOx emission varies very steeply and hence the obtained second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, NOx emission is taken as common logarithms and worked again with RSM. NOx emission predicted through logarithm transformation is in a fairly good agreement with the experimental results. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires, which is widely used as a fire source of laboratory scale experiments. Three measurement methods were introduced to clarify the pollutant emissions, i.e., various gas concentrations including NOx, gravimetric soot filter sampling for elements analysis and pyrolysis, thermophoretic soot sampling with transmission electron microscopy (TEM). Soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. The morphology of the soot particle was investigated to address the degree of soot maturing. The incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

Keywords: gasoline/ethanol fuel, NOx, pool fire, soot, well-stirred reactor (WSR)

Procedia PDF Downloads 213
470 Piled Critical Size Bone-Biomimetic and Biominerizable Nanocomposites: Formation of Bioreactor-Induced Stem Cell Gradients under Perfusion and Compression

Authors: W. Baumgartner, M. Welti, N. Hild, S. C. Hess, W. J. Stark, G. Meier Bürgisser, P. Giovanoli, J. Buschmann

Abstract:

Perfusion bioreactors are used to solve problems in tissue engineering in terms of sufficient nutrient and oxygen supply. Such problems especially occur in critical size grafts because vascularization is often too slow after implantation ending up in necrotic cores. Biominerizable and biocompatible nanocomposite materials are attractive and suitable scaffold materials for bone tissue engineering because they offer mineral components in organic carriers – mimicking natural bone tissue. In addition, human adipose derived stem cells (ASCs) can potentially be used to increase bone healing as they are capable of differentiating towards osteoblasts or endothelial cells among others. In the present study, electrospun nanocomposite disks of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/a-CaP) were seeded with human ASCs and eight disks were stacked in a bioreactor running with normal culture medium (no differentiation supplements). Under continuous perfusion and uniaxial cyclic compression, load-displacement curves as a function of time were assessed. Stiffness and energy dissipation were recorded. Moreover, stem cell densities in the layers of the piled scaffold were determined as well as their morphologies and differentiation status (endothelial cell differentiation, chondrogenesis and osteogenesis). While the stiffness of the cell free constructs increased over time caused by the transformation of the a-CaP nanoparticles into flake-like apatite, ASC-seeded constructs showed a constant stiffness. Stem cell density gradients were histologically determined with a linear increase in the flow direction from the bottom to the top of the 3.5 mm high pile (r2 > 0.95). Cell morphology was influenced by the flow rate, with stem cells getting more roundish at higher flow rates. Less than 1 % osteogenesis was found upon osteopontin immunostaining at the end of the experiment (9 days), while no endothelial cell differentiation and no chondrogenesis was triggered under these conditions. All ASCs had mainly remained in their original pluripotent status within this time frame. In summary, we have fabricated a critical size bone graft based on a biominerizable bone-biomimetic nanocomposite with preserved stiffness when seeded with human ASCs. The special feature of this bone graft was that ASC densities inside the piled construct varied with a linear gradient, which is a good starting point for tissue engineering interfaces such as bone-cartilage where the bone tissue is cell rich while the cartilage exhibits low cell densities. As such, this tissue-engineered graft may act as a bone-cartilage interface after the corresponding differentiation of the ASCs.

Keywords: bioreactor, bone, cartilage, nanocomposite, stem cell gradient

Procedia PDF Downloads 310
469 The Impact of Inconclusive Results of Thin Layer Chromatography for Marijuana Analysis and It’s Implication on Forensic Laboratory Backlog

Authors: Ana Flavia Belchior De Andrade

Abstract:

Forensic laboratories all over the world face a great challenge to overcame waiting time and backlog in many different areas. Many aspects contribute to this situation, such as an increase in drug complexity, increment in the number of exams requested and cuts in funding limiting laboratories hiring capacity. Altogether, those facts pose an essential challenge for forensic chemistry laboratories to keep both quality and time of response within an acceptable period. In this paper we will analyze how the backlog affects test results and, in the end, the whole judicial system. In this study data from marijuana samples seized by the Federal District Civil Police in Brazil between the years 2013 and 2017 were tabulated and the results analyzed and discussed. In the last five years, the number of petitioned exams increased from 822 in February 2013 to 1358 in March 2018, representing an increase of 32% in 5 years, a rise of more than 6% per year. Meanwhile, our data shows that the number of performed exams did not grow at the same rate. Product numbers are stationed as using the actual technology scenario and analyses routine the laboratory is running in full capacity. Marijuana detection is the most prevalence exam required, representing almost 70% of all exams. In this study, data from 7,110 (seven thousand one hundred and ten) marijuana samples were analyzed. Regarding waiting time, most of the exams were performed not later than 60 days after receipt (77%). Although some samples waited up to 30 months before being examined (0,65%). When marijuana´s exam is delayed we notice the enlargement of inconclusive results using thin-layer chromatography (TLC). Our data shows that if a marijuana sample is stored for more than 18 months, inconclusive results rise from 2% to 7% and when if storage exceeds 30 months, inconclusive rates increase to 13%. This is probably because Cannabis plants and preparations undergo oxidation under storage resulting in a decrease in the content of Δ9-tetrahydrocannabinol ( Δ9-THC). An inconclusive result triggers other procedures that require at least two more working hours of our analysts (e.g., GC/MS analysis) and the report would be delayed at least one day. Those new procedures increase considerably the running cost of a forensic drug laboratory especially when the backlog is significant as inconclusive results tend to increase with waiting time. Financial aspects are not the only ones to be observed regarding backlog cases; there are also social issues as legal procedures can be delayed and prosecution of serious crimes can be unsuccessful. Delays may slow investigations and endanger public safety by giving criminals more time on the street to re-offend. This situation also implies a considerable cost to society as at some point, if the exam takes a long time to be performed, an inconclusive can turn into a negative result and a criminal can be absolved by flawed expert evidence.

Keywords: backlog, forensic laboratory, quality management, accreditation

Procedia PDF Downloads 124
468 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst

Authors: Totsaporn Suwannaruang, Kitirote Wantala

Abstract:

The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.

Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation

Procedia PDF Downloads 159
467 The Language of COVID-19: Psychological Effects of the Label 'Essential Worker' on Spanish-Speaking Adults

Authors: Natalia Alvarado, Myldred Hernandez-Gonzalez, Mary Laird, Madeline Phillips, Elizabeth Miller, Luis Mendez, Teresa Satterfield Linares

Abstract:

Objectives: Focusing on the reported levels of depressive symptoms from Hispanic individuals in the U.S. during the ongoing COVID-19 pandemic, we analyze the psychological effects of being labeled an ‘essential worker/trabajador(a) esencial.’ We situate this attribute within the complex context of how an individual’s mental health is linked to work status and his/her community’s attitude toward such a status. Method: 336 Spanish-speaking adults (Mage = 34.90; SD = 11.00; 46% female) living in the U.S. participated in a mixed-method study. Participants completed a self-report Spanish-language survey consisting of COVID-19 prompts (e.g., Soy un trabajador esencial durante la pandemia. I am an ‘essential worker’ during the pandemic), civic engagement scale (CES) attitudes (e.g., Me siento responsable de mi comunidad. I feel responsible for my community) and behaviors (e.g., Ayudo a los miembros de mi comunidad. I help members of my community), and the Center for Epidemiological Studies Depression Scale (e.g., Me sentía deprimido/a. I felt depressed). The survey was conducted several months into the pandemic and before the vaccine distribution. Results: Regression analyses show that being labeled an essential worker was correlated to CES attitudes (b= .28, p < .001) and higher CES behaviors (b= .32, p < .001). Essential worker status also reported higher levels of depressive symptoms (b= .17, p < .05). In addition, we found that CES attitudes and CES behaviors were related to higher levels of depressive symptoms (b= .11, p <.05, b = .22, p < .001, respectively). These findings suggest that those who are on the frontlines during the COVID-19 pandemic suffer higher levels of depressive symptoms, despite their affirming community attitudes and behaviors. Discussion: Hispanics/Latinxs make up 53% of the high-proximity employees who must work in person and in close contact with others; this is the highest rate of any racial or ethnic category. Moreover, 31% of Hispanics are classified as essential workers. Our outcomes show that those labeled as trabajadores esenciales convey attitudes of remaining strong and resilient for COVID-19 victims. They also express community attitudes and behaviors reflecting a sense of responsibility to continue working to help others during these unprecedented times. However, we also find that the pressure of maintaining basic needs for others exacerbates mental health challenges and stressors, as many essential workers are anxious and stressed about their physical and economic security. As a result, community attitudes do not protect from depressive symptoms as Hispanic essential workers are failing to balance everyone’s needs, including their own (e.g., physical exhaustion and psychological distress). We conclude with a discussion on alternatives to the phrase ‘essential worker’ and of incremental steps that can be taken to address pandemic-related mental health issues targeting US Hispanic workers.

Keywords: COVID-19, essential worker, mental health, race and ethnicity

Procedia PDF Downloads 130
466 The Power of in situ Characterization Techniques in Heterogeneous Catalysis: A Case Study of Deacon Reaction

Authors: Ramzi Farra, Detre Teschner, Marc Willinger, Robert Schlögl

Abstract:

Introduction: The conventional approach of characterizing solid catalysts under static conditions, i.e., before and after reaction, does not provide sufficient knowledge on the physicochemical processes occurring under dynamic conditions at the molecular level. Hence, the necessity of improving new in situ characterizing techniques with the potential of being used under real catalytic reaction conditions is highly desirable. In situ Prompt Gamma Activation Analysis (PGAA) is a rapidly developing chemical analytical technique that enables us experimentally to assess the coverage of surface species under catalytic turnover and correlate these with the reactivity. The catalytic HCl oxidation (Deacon reaction) over bulk ceria will serve as our example. Furthermore, the in situ Transmission Electron Microscopy is a powerful technique that can contribute to the study of atmosphere and temperature induced morphological or compositional changes of a catalyst at atomic resolution. The application of such techniques (PGAA and TEM) will pave the way to a greater and deeper understanding of the dynamic nature of active catalysts. Experimental/Methodology: In situ Prompt Gamma Activation Analysis (PGAA) experiments were carried out to determine the Cl uptake and the degree of surface chlorination under reaction conditions by varying p(O2), p(HCl), p(Cl2), and the reaction temperature. The abundance and dynamic evolution of OH groups on working catalyst under various steady-state conditions were studied by means of in situ FTIR with a specially designed homemade transmission cell. For real in situ TEM we use a commercial in situ holder with a home built gas feeding system and gas analytics. Conclusions: Two complimentary in situ techniques, namely in situ PGAA and in situ FTIR were utilities to investigate the surface coverage of the two most abundant species (Cl and OH). The OH density and Cl uptake were followed under multiple steady-state conditions as a function of p(O2), p(HCl), p(Cl2), and temperature. These experiments have shown that, the OH density positively correlates with the reactivity whereas Cl negatively. The p(HCl) experiments give rise to increased activity accompanied by Cl-coverage increase (opposite trend to p(O2) and T). Cl2 strongly inhibits the reaction, but no measurable increase of the Cl uptake was found. After considering all previous observations we conclude that only a minority of the available adsorption sites contribute to the reactivity. In addition, the mechanism of the catalysed reaction was proposed. The chlorine-oxygen competition for the available active sites renders re-oxidation as the rate-determining step of the catalysed reaction. Further investigations using in situ TEM are planned and will be conducted in the near future. Such experiments allow us to monitor active catalysts at the atomic scale under the most realistic conditions of temperature and pressure. The talk will shed a light on the potential and limitations of in situ PGAA and in situ TEM in the study of catalyst dynamics.

Keywords: CeO2, deacon process, in situ PGAA, in situ TEM, in situ FTIR

Procedia PDF Downloads 293
465 The Incidence of Inferior Alveolar Nerve Dysfunction Following Bilateral Sagittal Split Osteotomies: A Single Centre Retrospective Audit in the United Kingdom

Authors: Krupali Mukeshkumar, Jinesh Shah

Abstract:

Background: Bilateral Sagittal Split Osteotomy (BSSO), used for the correction of mandibular deformities, is a common oral and maxillofacial surgical procedure. Inferior alveolar nerve dysfunction is commonly reported post-operatively by patients as paresthesia or anesthesia. The current literature lacks a consensus on the incidence of inferior alveolar nerve dysfunction as patients are not routinely assessed pre and post-operatively with an objective assessment. The range of incidence varies from 9% to 85% of patients, with some authors arguing that 100% of patients experience nerve dysfunction immediately post-surgery. Systematic reviews have shown a difference between incidence rates at different follow-up periods using objective and subjective methods. Aim: To identify the incidence of inferior alveolar nerve dysfunction following BSSO. Gold standard: Nerve dysfunction incidence rates similar or lower than current literature of 83% day one post-operatively and 18.4% at one year follow up. Setting: A retrospective cross-sectional audit of patients treated between 2017-2019 at the Royal Stoke University Hospital, Maxillofacial and Orthodontic departments. Sample: All patients who underwent a BSSO (with or without le fort one osteotomy) between 2017–2019 were identified from the database. Patients with pre-existing neurosensory disturbance, those who had a genioplasty at the same time and those with no follow-up were excluded. The sample consisted of 121 patients, 37 males and 84 females between the ages of 17-50 years at the time of surgery. Methods: Clinical records of 121 cases were reviewed to assess the age, sex, type of mandibular osteotomy, status of the nerve during the surgical procedure, type of bony split and incidence of nerve dysfunction at follow-up appointments. The surgical procedure was carried out by three Maxillo-facial surgeons and follow-up appointments were carried out in the Orthodontic and Oral and Maxillo-facial departments. Results: 120 patients were treated to correct the mandibular facial deformity and 1 patient was treated for sleep apnoea. Seventeen patients had a mandibular setback and 104 patients had mandibular advancement. 68 patients reported inferior alveolar nerve dysfunction at one week following their surgery. Seventy-six patients had temporary paresthesia present between 2 weeks and 12 months post-surgery. 13 patients had persistent nerve dysfunction at 12 months, of which 1 had a bad bony split during the BSSO. The incidence of nerve dysfunction postoperatively was 6.6% after 1 day, 56.1% at 1 week, 62.8% at 2 weeks, 59.5% between 3-6 weeks, 43.0% between 8-16 weeks and 10.7% at 1 year. Conclusions: The results of this audit show a similar incidence rate to the research gold standard at the one-year follow-up. Future Recommendations: No changes to surgical procedure or technique are indicated, but a need for improved documentation and a standardized approach for assessment of post-operative nerve dysfunction would be beneficial.

Keywords: bilateral sagittal split osteotomy, inferior alveolar nerve, mandible, nerve dysfunction

Procedia PDF Downloads 240
464 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 281
463 Threats to the Business Value: The Case of Mechanical Engineering Companies in the Czech Republic

Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak

Abstract:

Successful achievement of strategic goals requires an effective performance management system, i.e. determining the appropriate indicators measuring the rate of goal achievement. Assuming that the goal of the owners is to grow the assets they invested in, it is vital to identify the key performance indicators, which contribute to value creation. These indicators are known as value drivers. Based on the undertaken literature search, a value driver is defined as any factor that affects the value of an enterprise. The important factors are then monitored by both financial and non-financial indicators. Financial performance indicators are most useful in strategic management, since they indicate whether a company's strategy implementation and execution are contributing to bottom line improvement. Non-financial indicators are mainly used for short-term decisions. The identification of value drivers, however, is problematic for companies which are not publicly traded. Therefore financial ratios continue to be used to measure the performance of companies, despite their considerable criticism. The main drawback of such indicators is the fact that they are calculated based on accounting data, while accounting rules may differ considerably across different environments. For successful enterprise performance management it is vital to avoid factors that may reduce (or even destroy) its value. Among the known factors reducing the enterprise value are the lack of capital, lack of strategic management system and poor quality of production. In order to gain further insight into the topic, the paper presents results of the research identifying factors that adversely affect the performance of mechanical engineering enterprises in the Czech Republic. The research methodology focuses on both the qualitative and the quantitative aspect of the topic. The qualitative data were obtained from a questionnaire survey of the enterprises senior management, while the quantitative financial data were obtained from the Analysis Major Database for European Sources (AMADEUS). The questionnaire prompted managers to list factors which negatively affect business performance of their enterprises. The range of potential factors was based on a secondary research – analysis of previously undertaken questionnaire surveys and research of studies published in the scientific literature. The results of the survey were evaluated both in general, by average scores, and by detailed sub-analyses of additional criteria. These include the company specific characteristics, such as its size and ownership structure. The evaluation also included a comparison of the managers’ opinions and the performance of their enterprises – measured by return on equity and return on assets ratios. The comparisons were tested by a series of non-parametric tests of statistical significance. The results of the analyses show that the factors most detrimental to the enterprise performance include the incompetence of responsible employees and the disregard to the customers‘ requirements.

Keywords: business value, financial ratios, performance measurement, value drivers

Procedia PDF Downloads 225
462 An Investigation of Wind Loading Effects on the Design of Elevated Steel Tanks with Lattice Tower Supporting Structures

Authors: J. van Vuuren, D. J. van Vuuren, R. Muigai

Abstract:

In recent times, South Africa has experienced extensive droughts that created the need for reliable small water reservoirs. These reservoirs have comparatively quick fabrication and installation times compared to market alternatives. An elevated water tank has inherent potential energy, resulting in that no additional water pumps are required to sustain water pressure at the outlet point – thus ensuring that, without electricity, a water source is available. The initial construction formwork and the complex geometric shape of concrete towers that requires casting can become time-consuming, rendering steel towers preferable. Reinforced concrete foundations, cast in advance, are required to be of sufficient strength. Thereafter, the prefabricated steel supporting structure and tank, which consist of steel panels, can be assembled and erected on site within a couple of days. Due to the time effectiveness of this system, it has become a popular solution to aid drought-stricken areas. These sites are normally in rural, schools or farmland areas. As these tanks can contain up to 2000kL (approximately 19.62MN) of water, combined with supporting lattice steel structures ranging between 5m and 30m in height, failure of one of the supporting members will result in system failure. Thus, there is a need to gain a comprehensive understanding of the operation conditions because of wind loadings on both the tank and the supporting structure. The aim of the research is to investigate the relationship between the theoretical wind loading on a lattice steel tower in combination with an elevated sectional steel tank, and the current wind loading codes, as applicable to South Africa. The research compares the respective design parameters (both theoretical and wind loading codes) whereby FEA analyses are conducted on the various design solutions. The currently available wind loading codes are not sufficient to design slender cantilever latticed steel towers that support elevated water storage tanks. Numerous factors in the design codes are not comprehensively considered when designing the system as these codes are dependent on various assumptions. Factors that require investigation for the study are; the wind loading angle to the face of the structure that will result in maximum load; the internal structural effects on models with different bracing patterns; the loading influence of the aspect ratio of the tank; and the clearance height of the tank on the structural members. Wind loads, as the variable that results in the highest failure rate of cantilevered lattice steel tower structures, require greater understanding. This study aims to contribute towards the design process of elevated steel tanks with lattice tower supporting structures.

Keywords: aspect ratio, bracing patterns, clearance height, elevated steel tanks, lattice steel tower, wind loads

Procedia PDF Downloads 151
461 The Charge Exchange and Mixture Formation Model in the ASz-62IR Radial Aircraft Engine

Authors: Pawel Magryta, Tytus Tulwin, Paweł Karpiński

Abstract:

The ASz62IR engine is a radial aircraft engine with 9 cylinders. This object is produced by the Polish company WSK "PZL-KALISZ" S.A. This is engine is currently being developed by the above company and Lublin University of Technology. In order to provide an effective work of the technological development of this unit it was decided to made the simulation model. The model of ASz-62IR was developed with AVL BOOST software which is a tool dedicated to the one-dimensional modeling of internal combustion engines. This model can be used to calculate parameters of an air and fuel flow in an intake system including charging devices as well as combustion and exhaust flow to the environment. The main purpose of this model is the analysis of the charge exchange and mixture formation in this engine. For this purpose, the model consists of elements such: as air inlet, throttle system, compressor connector, charging compressor, inlet pipes and injectors, outlet pipes, fuel injection and model of fuel mixing and evaporation. The model of charge exchange and mixture formation was based on the model of mass flow rate in intake and exhaust pipes, and also on the calculation of gas properties values like gas constant or thermal capacity. This model was based on the equations to describe isentropic flow. The energy equation to describe flow under steady conditions was transformed into the mass flow equation. In the model the flow coefficient μσ was used, that varies with the stroke/valve opening and was determined in a steady flow state. The geometry of the inlet channels and other key components was mapped with reference to the technical documentation of the engine and empirical measurements of the structure elements. The volume of elements on the charge flow path between the air inlet and the exhaust outlet was measured by the CAD mapping of the structure. Taken from the technical documentation, the original characteristics of the compressor engine was entered into the model. Additionally, the model uses a general model for the transport of chemical compounds of the mixture. There are 7 compounds used, i.e. fuel, O2, N2, CO2, H2O, CO, H2. A gasoline fuel of a calorific value of 43.5 MJ/kg and an air mass fraction for stoichiometric mixture of 14.5 were used. Indirect injection into the intake manifold is used in this model. The model assumes the following simplifications: the mixture is homogenous at the beginning of combustion, accordingly, mixture stoichiometric coefficient A/F remains constant during combustion, combusted and non-combusted charges show identical pressures and temperatures although their compositions change. As a result of the simulation studies based on the model described above, the basic parameters of combustion process, charge exchange, mixture formation in cylinders were obtained. The AVL Boost software is very useful for the piston engine performance simulations. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: aviation propulsion, AVL Boost, engine model, charge exchange, mixture formation

Procedia PDF Downloads 343
460 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage

Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan

Abstract:

The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.

Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water

Procedia PDF Downloads 200
459 Health Care Teams during COVID-19: Roles, Challenges, Emotional State and Perceived Preparedness to the Next Pandemic

Authors: Miriam Schiff, Hadas Rosenne, Ran Nir-Paz, Shiri Shinan Altman

Abstract:

To examine (1) the level, predictors, and subjective perception of professional quality of life (PRoQL), posttraumatic growth, roles, task changes during the pandemic, and perceived preparedness for the next pandemic. These variables were added as part of an international study on social workers in healthcare stress, resilience, and perceived preparedness we took part in, along with Australia, Canada, China, Hong Kong, Singapore, and Taiwan. (2) The extent to which background variables, rate of exposure to the virus, working in COVID wards, profession, personal resilience, and resistance to organizational change predict posttraumatic growth, perceived preparedness, and PRoQL (the latter was examined among social workers only). (3) The teams' perceptions of how the pandemic impacted them at the personal, professional, and organizational levels and what assisted them. Methodologies: Mixed quantitative and qualitative methods were used. 1039 hospital healthcare workers from various professions participated in the quantitative study while 32 participated in in-depth interviews. The same methods were used in six other countries. Findings: The level of PRoQL was moderate, with higher burnout and secondary traumatization level than during routine times. Differences between countries in the level of PRoQL were found as well. Perceived preparedness for the next pandemic at the personal level was moderate and similar among the different health professions. Higher exposure to the virus was associated with lower perceived preparedness of the hospitals. Compared to other professions, doctors and nurses perceived hospitals as significantly less prepared for the next pandemic. The preparedness of the State of Israel for the next pandemic is perceived as low by all healthcare professionals. A moderate level of posttraumatic growth was found. Staff who worked at the COVID ward reported a greater level of growth. Doctors reported the lowest level of growth. The staff's resilience was high, with no differences among professions or levels of exposure. Working in the COVID ward and resilience predicted better preparedness, while resistance to organizational change predicted worse preparedness. Findings from the qualitative part of the study revealed that healthcare workers reported challenges at the personal, professional and organizational level during the different waves of the pandemic. They also report on internal and external resources they either owned or obtained during that period. Conclusion: Exposure to the COVID-19 virus is associated with secondary traumatization on one hand and personal posttraumatic growth on the other hand. Personal and professional discoveries and a sense of mission helped cope with the pandemic that was perceived as a historical event, war, or mass casualty event. Personal resilience, along with the support of colleagues, family, and direct management, were seen as significant components of coping. Hospitals should plan ahead and improve their preparedness to the next pandemic.

Keywords: covid-19, health-care, social workers, burnout, preparedness, international perspective

Procedia PDF Downloads 75
458 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment

Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues

Abstract:

Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.

Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.

Procedia PDF Downloads 213
457 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications

Authors: Hande Yavuz, Grégory Girard, Jinbo Bai

Abstract:

Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.

Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability

Procedia PDF Downloads 235
456 One-Stage Conversion of Adjustable Gastric Band to One-Anastomosis Gastric Bypass Versus Sleeve Gastrectomy : A Single-Center Experience With a Short and Mid-term Follow-up

Authors: Basma Hussein Abdelaziz Hassan, Kareem Kamel, Philobater Bahgat Adly Awad, Karim Fahmy

Abstract:

Background: Laparoscopic adjustable gastric band was one of the most applied and common bariatric procedures in the last 8 years. However; the failure rate was very high, reaching approximately 60% of the patients not achieving the desired weight loss. Most patients sought another revisional surgery. In which, we compared two of the most common weight loss surgeries performed nowadays: the laparoscopic sleeve gastrectomy and laparoscopic one- anastomosis gastric bypass. Objective: To compare the weight loss and postoperative outcomes among patients undergoing conversion laparoscopic one-anastomosis gastric bypass (cOAGB) and laparoscopic sleeve gastrectomy (cSG) after a failed laparoscopic adjustable gastric band (LAGB). Patients and Methods: A prospective cohort study was conducted from June 2020 to June 2022 at a single medical center, which included 77 patients undergoing single-stage conversion to (cOAGB) vs (cSG). Patients were reassessed for weight loss, comorbidities remission, and post-operative complications at 6, 12, and 18 months. Results: There were 77 patients with failed LAGB in our study. Group (I) was 43 patients who underwent cOAGB and Group (II) was 34 patients who underwent cSG. The mean age of the cOAGB group was 38.58. While in the cSG group, the mean age was 39.47 (p=0.389). Of the 77 patients, 10 (12.99%) were males and 67 (87.01%) were females. Regarding Body mass index (BMI), in the cOAGB group the mean BMI was 41.06 and in the cSG group the mean BMI was 40.5 (p=0.042). The two groups were compared postoperative in relation to EBWL%, BMI, and the co-morbidities remission within 18 months follow-up. The BMI was calculated post-operative at three visits. After 6 months of follow-up, the mean BMI in the cOAGB group was 34.34, and the cSG group was 35.47 (p=0.229). In 12-month follow-up, the mean BMI in the cOAGB group was 32.69 and the cSG group was 33.79 (p=0.2). Finally, the mean BMI after 18 months of follow-up in the cOAGB group was 30.02, and in the cSG group was 31.79 (p=0.001). Both groups had no statistically significant values at 6 and 12 months follow-up with p-values of 0.229, and 0.2 respectively. However, patients who underwent cOAGB after 18 months of follow-up achieved lower BMI than those who underwent cSG with a statistically significant p-value of 0.005. Regarding EBWL% there was a statistically significant difference between the two groups. After 6 months of follow-up, the mean EBWL% in the cOAGB group was 35.9% and the cSG group was 33.14%. In the 12-month follow-up, the EBWL % mean in the cOAGB group was 52.35 and the cSG group was 48.76 (p=0.045). Finally, the mean EBWL % after 18 months of follow-up in the cOAGB group was 62.06 ±8.68 and in the cSG group was 55.58 ±10.87 (p=0.005). Regarding comorbidities remission; Diabetes mellitus remission was found in 22 (88%) patients in the cOAGB group and 10 (71.4%) patients in the cSG group with (p= 0.225). Hypertension remission was found in 20 (80%) patients in the cOAGB group and 14 (82.4%) patients in the cSG group with (p=1). In addition, dyslipidemia remission was found in 27(87%) patients in cOAGB group and 17(70%) patients in the cSG group with (p=0.18). Finally, GERD remission was found in about 15 (88.2%) patients in the cOAGB group and 6 (60%) patients in the cSG group with (p=0.47). There are no statistically significant differences between the two groups in the post-operative data outcomes. Conclusion: This study suggests that the conversion of LAGB to either cOAGB or cSG could be feasibly performed in a single-stage operation. cOAGB had a significant difference as regards the weight loss results than cSG among the mid-term follow-up. However, there is no significant difference in the postoperative complications and the resolution of the co-morbidities. Therefore, cOAGB could provide a reliable alternative but needs to be substantiated in future long-term studies.

Keywords: laparoscopic, gastric banding, one-anastomosis gastric bypass, Sleeve gastrectomy, revisional surgery, weight loss

Procedia PDF Downloads 64
455 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 83
454 Multicomponent Positive Psychology Intervention for Health Promotion of Retirees: A Feasibility Study

Authors: Helen Durgante, Mariana F. Sparremberger, Flavia C. Bernardes, Debora D. DellAglio

Abstract:

Health promotion programmes for retirees, based on Positive Psychology perspectives for the development of strengths and virtues, demand broadened empirical investigation in Brazil. In the case of evidence-based applied research, it is suggested feasibility studies are conducted prior to efficacy trials of the intervention, in order to identify and rectify possible faults in the design and implementation of the intervention. The aim of this study was to evaluate the feasibility of a multicomponent Positive Psychology programme for health promotion of retirees, based on Cognitive Behavioural Therapy and Positive Psychology perspectives. The programme structure included six weekly group sessions (two hours each) encompassing strengths such as Values and self-care, Optimism, Empathy, Gratitude, Forgiveness, and Meaning of life and work. The feasibility criteria evaluated were: Demand, Acceptability, Satisfaction with the programme and with the moderator, Comprehension/Generalization of contents, Evaluation of the moderator (Social Skills and Integrity/Fidelity), Adherence, and programme implementation. Overall, 11 retirees (F=11), age range 54-75, from the metropolitan region of Porto Alegre-RS-Brazil took part in the study. The instruments used were: Qualitative Admission Questionnaire; Moderator Field Diary; the Programme Evaluation Form to assess participants satisfaction with the programme and with the moderator (a six-item 4-point likert scale), and Comprehension/Generalization of contents (a three-item 4-point likert scale); Observers’ Evaluation Form to assess the moderator Social Skills (a five-item 4-point likert scale), Integrity/Fidelity (a 10 item 4-point likert scale), and Adherence (a nine-item 5-point likert scale). Qualitative data were analyzed using content analysis. Descriptive statistics as well as Intraclass Correlations coefficients were used for quantitative data and inter-rater reliability analysis. The results revealed high demand (N = 55 interested people) and acceptability (n = 10 concluded the programme with overall 88.3% frequency rate), satisfaction with the program and with the moderator (X = 3.76, SD = .34), and participants self-report of Comprehension/Generalization of contents provided in the programme (X = 2.82, SD = .51). In terms of the moderator Social Skills (X = 3.93; SD = .40; ICC = .752 [IC = .429-.919]), Integrity/Fidelity (X = 3.93; SD = .31; ICC = .936 [IC = .854-.981]), and participants Adherence (X = 4.90; SD = .29; ICC = .906 [IC = .783-.969]), evaluated by two independent observers present in each session of the programme, descriptive and Intraclass Correlation results were considered adequate. Structural changes were introduced in the intervention design and implementation methods, as well as the removal of items from questionnaires and evaluation forms. The obtained results were satisfactory, allowing changes to be made for further efficacy trials of the programme. Results are discussed taking cultural and contextual demands in Brazil into account.

Keywords: feasibility study, health promotion, positive psychology intervention, programme evaluation, retirees

Procedia PDF Downloads 197
453 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends

Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.

Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment

Procedia PDF Downloads 340