Search results for: solar salt
1476 Energy Complementary in Colombia: Imputation of Dataset
Authors: Felipe Villegas-Velasquez, Harold Pantoja-Villota, Sergio Holguin-Cardona, Alejandro Osorio-Botero, Brayan Candamil-Arango
Abstract:
Colombian electricity comes mainly from hydric resources, affected by environmental variations such as the El Niño phenomenon. That is why incorporating other types of resources is necessary to provide electricity constantly. This research seeks to fill the wind speed and global solar irradiance dataset for two years with the highest amount of information. A further result is the characterization of the data by region that led to infer which errors occurred and offered the incomplete dataset.Keywords: energy, wind speed, global solar irradiance, Colombia, imputation
Procedia PDF Downloads 1461475 High-Pressure Steam Turbine for Medium-Scale Concentrated Solar Power Plants
Authors: Ambra Giovannelli, Coriolano Salvini
Abstract:
Many efforts have been spent in the design and development of Concentrated Solar Power (CPS) Plants worldwide. Most of them are for on-grid electricity generation and they are large plants which can benefit from the economies of scale. Nevertheless, several potential applications for Small and Medium-Scale CSP plants can be relevant in the industrial sector as well as for off-grid purposes (i.e. in rural contexts). In a wide range of industrial processes, CSP technologies can be used for heat generation replacing conventional primary sources. For such market, proven technologies (usually hybrid solutions) already exist: more than 100 installations, especially in developing countries, are in operation and performance can be verified. On the other hand, concerning off-grid applications, solar technologies are not so mature. Even if the market offers a potential deployment of such systems, especially in countries where the access to grid is strongly limited, optimized solutions have not been developed yet. In this context, steam power plants can be taken into consideration for medium scale installations, due to the recent results achieved with direct steam generation systems based on paraboloidal dish or Fresnel lens solar concentrators. Steam at 4.0-4.5 MPa and 500°C can be produced directly by means of innovative solar receivers (some prototypes already exist). Although it could seem a promising technology, presently, steam turbines commercially available do not cover the required cycle specifications. In particular, while low-pressure turbines already exist on the market, high-pressure groups, necessary for the abovementioned applications, are not available. The present paper deals with the preliminary design of a high-pressure steam turbine group for a medium-scale CSP plant (200-1000 kWe). Such a group is arranged in a single geared package composed of four radial expander wheels. Such wheels have been chosen on the basis of automotive turbocharging technology and then modified to take the new requirements into account. Results related to the preliminary geometry selection and to the analysis of the high-pressure turbine group performance are reported and widely discussed.Keywords: concentrated solar power (CSP) plants, steam turbine, radial turbine, medium-scale power plants
Procedia PDF Downloads 2171474 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method
Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk
Abstract:
In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS
Procedia PDF Downloads 2051473 Exergy Model for a Solar Water Heater with Flat Plate Collector
Authors: P. Sathyakala, G. Sai Sundara Krishnan
Abstract:
The objective of this paper is to derive an exergy model for a solar water heater with honey comb structure in order to identify the element which has larger irreversibility in the system. This will help us in finding the means to reduce the wasted work potential so that the overall efficiency of the system can be improved by finding the ways to reduce those wastages.Keywords: exergy, energy balance, entropy balance, work potential, degradation, honey comb, flat plate collector
Procedia PDF Downloads 4781472 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells
Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos
Abstract:
Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.Keywords: nickel doped cobalt sulfide, counter electrodes, dye-sensitized solar cells, quasi-solid state electrolyte, hybrid organic-inorganic materials
Procedia PDF Downloads 7601471 Investigation of Polymer Solar Cells Degradation Behavior Using High Defect States Influence Over Various Polymer Absorber Layers
Authors: Azzeddine Abdelalim, Fatiha Rogti
Abstract:
The degradation phenomenon in polymer solar cells (PCSs) has not been clearly explained yet. In fact, there are many causes that show up and influence these cells in a variety of ways. Also, there has been a growing concern over this degradation in the photovoltaic community. One of the main variables deciding PSCs photovoltaic output is defect states. In this research, devices modeling is carried out to analyze the multiple effects of degradation by applying high defect states (HDS) on ideal PSCs, mainly poly(3-hexylthiophene) (P3HT) absorber layer. Besides, a comparative study is conducted between P3HT and other PSCs by a simulation program called Solar Cell Capacitance Simulator (SCAPS). The adjustments to the defect parameters in several absorber layers explain the effect of HDS on the total output properties of PSCs. The performance parameters for HDS, quantum efficiency, and energy band were therefore examined. This research attempts to explain the degradation process of PSCs and the causes of their low efficiency. It was found that the defects often affect PSCs performance, but defect states have a little effect on output when the defect level is less than 1014cm-3, which gives similar performance values with P3HT cells when these defects is about 1019cm-3. The high defect states can cause up to 11% relative reduction in conversion efficiency of ideal P3HT. In the center of the band gap, defect states become more noxious. This approach is for one of the degradation processes potential of PSCs especially that use fullerene derivative acceptors.Keywords: degradation, high defect states, polymer solar cells, SCAPS-1D
Procedia PDF Downloads 911470 Spin-Polarized Investigation of Ferromagnetism on Magnetic Semiconductors MnxCa1-xS in the Rock-salt Phase
Authors: B. Ghebouli, M. A. Ghebouli, H. Choutri, M. Fatmi, L. Louail
Abstract:
The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors MnxCa1-xS in the rock-salt phase have been investigated using first-principles calculations. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of MnxCa1-xS is 4.4µB and is independent of the Mn concentration. The unfilled Mn -3d levels reduce the local magnetic moment of Mn from its free space charge value of 5µB to 4.4µB due to 3p–3d hybridization.Keywords: semiconductors, Ab initio calculations, band-structure, magnetic properties
Procedia PDF Downloads 3561469 Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology
Authors: Shuwen Hu, Yuancheng Lou, Dongxu Ji
Abstract:
Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio.Keywords: feasibility analysis, material assessment methodology, photovoltaic waste heat recovery, tandem photovoltaic-thermoelectric
Procedia PDF Downloads 721468 Therapeutic Effect of Diisopropyldithiocarbamate Sodium Salt Against Diclofenac Induced Testicular Damage in Male Wistar Rats
Authors: Tella Toluwani, Adegbegi Ademuyiwa, Musei Chiedu, Adekunle Odola, Ayangbenro Ayansina, Adaramoye Oluwatosin
Abstract:
Dithiocarbamates are very useful biological agents with antioxidant properties. Diclofenac (DIC) is a non-steroidal analgesic, anti-inflammatory, and antipyretic agent. The use of diclofenac has been linked with reproductive toxicity/damage. The purpose of this study is (i) To investigate the therapeutic potential of diisopropyldithiocarbamate sodium salt (Na(i-Pr₂dtc)) and vitamin E (VIT E) against diclofenac induced toxicity in the testes of male Wistar rats. (ii) To investigate the effect of (Na(i-Pr₂dtc)) and vitamin E on ameliorating damage done to the testes through histological analysis of the testes. Thirty-six (36) male Wistar rats were used for the experiment, they were divided into six (6) groups, the animals in group 1 served as control, animals in groups 2, 3, 4, 5 and 6 received DIC only, DIC and (Na(i-Pr₂dtc)), DIC and VIT E, (Na(i-Pr₂dtc) only and VIT E only respectively. A single dose of 100 mg/kg body weight of DIC was administered to male Wistar rats, while 30 mg/kg body weight of (Na(i-Pr₂dtc)) was used to treat both normal and DIC treated animals, control animals were treated with the vehicle, after 24 hrs of treatment the animals were euthanized and the testes were removed for analysis. The treatment of rats with Na(i-Pr₂dtc) significantly restored catalase (CAT) activity depressed by diclofenac. (Na(i-Pr₂dtc)) also restored glutathione levels reduced by DIC treatment and this was also accompanied by reduced lipid peroxidation (LPO) level. VIT E significantly restored superoxide dismutase (SOD) activity when compared with DIC only treated animals. Photomicrographs of testes from (Na(i-Pr₂dtc)) treated rats showed seminiferous epithelium with no lesions. We conclude that (Na(i-Pr₂dtc)) has an antioxidant effect, which might be related to the dose and duration of administration.Keywords: diisopropyldithiocarbamate sodium salt, diclofenac, vitamin E, testes
Procedia PDF Downloads 1871467 Performance Monitoring and Environmental Impact Analysis of a Photovoltaic Power Plant: A Numerical Modeling Approach
Authors: Zahzouh Zoubir
Abstract:
The widespread adoption of photovoltaic panel systems for global electricity generation is a prominent trend. Algeria, demonstrating steadfast commitment to strategic development and innovative projects for harnessing solar energy, emerges as a pioneering force in the field. Heat and radiation, being fundamental factors in any solar system, are currently subject to comprehensive studies aiming to discern their genuine impact on crucial elements within photovoltaic systems. This endeavor is particularly pertinent given that solar module performance is exclusively assessed under meticulously defined Standard Test Conditions (STC). Nevertheless, when deployed outdoors, solar modules exhibit efficiencies distinct from those observed under STC due to the influence of diverse environmental factors. This discrepancy introduces ambiguity in performance determination, especially when surpassing test conditions. This article centers on the performance monitoring of an Algerian photovoltaic project, specifically the Oued El Keberite power (OKP) plant boasting a 15 megawatt capacity, situated in the town of Souk Ahras in eastern Algeria. The study elucidates the behavior of a subfield within this facility throughout the year, encompassing various conditions beyond the STC framework. To ensure the optimal efficiency of solar panels, this study integrates crucial factors, drawing on an authentic technical sheet from the measurement station of the OKP photovoltaic plant. Numerical modeling and simulation of a sub-field of the photovoltaic station were conducted using MATLAB Simulink. The findings underscore how radiation intensity and temperature, whether low or high, impact the short-circuit current, open-circuit voltage; fill factor, and overall efficiency of the photovoltaic system.Keywords: performance monitoring, photovoltaic system, numerical modeling, radiation intensity
Procedia PDF Downloads 691466 Repurposing of Crystalline Solar PV For Sodium Silicate Production
Authors: Lawal Alkasim, Clement M. Gonah, Zainab S. Aliyu
Abstract:
This work is focus on recovering silicon form photovoltaic cells and repurposing it toward the use in glass, ceramics or glass ceramics as it is made up of silicon material. Silicon is the main back-bone and responsible for the thermodynamic properties of glass, ceramics and glass ceramics materials. Antireflection silicon is soluble in hot alkali. Successfully the recovered material composed of silicon and silicon nitride of the A.R, with a small amount of silver, Aluminuim, lead & copper in the sunshine of crystalline/non-crystalline silicon solar cell. Aquaregia is used to remove the silver, Aluminium, lead & copper. The recovered material treated with hot alkali highly concentrated to produce sodium silicate, which is an alkali silicate glass (water glass). This type of glass is produced through chemical process, unlike other glasses that are produced through physical process of melting and non-crystalline solidification. It has showed a property of being alkali silicate glass from its solubility in water and insoluble in alcohol. The XRF analysis shows the presence of sodium silicate.Keywords: unrecyclable solar PV, crystalline silicon, hot conc. alkali, sodium silicate
Procedia PDF Downloads 1011465 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village
Authors: Corinna Barraco, Ornella Salimbene
Abstract:
This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.Keywords: drinking water, Ethiopia, treatments, water pumping
Procedia PDF Downloads 1561464 Differential Response of Cellular Antioxidants and Proteome Expression to Salt, Cadmium and Their Combination in Spinach (Spinacia oleracea)
Authors: Rita Bagheri, Javed Ahmed, Humayra Bashir, M. Irfan Qureshi
Abstract:
Agriculture lands suffer from a combination of stresses such as salinity and metal contamination including cadmium at the same time. Under such condition of multiple stresses, plant may exhibit unique responses different from the stress occurring individually. Thus, it would be interesting to investigate that how plant respond to combined stress at level of antioxidants and proteome expression, and identifying the proteins which are involved in imparting stress tolerance. With an approach of comparative proteomics and antioxidant analysis, present study investigates the response of Spinacia oleracea to salt (NaCl), cadmium (Cd), and their combination (NaCl+Cd) stress. Two-dimensional gel electrophoresis was used for resolving leaf proteome, and proteins of interest were identified using PDQuest software. A number of proteins expressed differentially, those indicated towards their roles in imparting stress tolerance, were digested by trypsin and analyzed on mass spectrometer for peptide mass fingerprinting (PMF). Data signals were then matched with protein databases using MASCOT. Results show that NaCl, Cd and both together (NaCl+Cd) induce oxidative stress which was highest in combined stress of Cd+NaCl. Correspondingly, the activities of enzymatic antioxidants viz., SOD, APX, GR and CAT, and non-enzymatic antioxidants had highest changes under combined stress compares to single stress over their respective controls. Among the identified proteins, several interesting proteins were identified that may be have role in Spinacia oleracia tolerance in individual and combinatorial stress of salt and cadmium. The functional classification of identified proteins indicates the importance and necessity of keeping higher ratio of defence and disease responsive proteins.Keywords: Spinacia oleracea, Cd, salinity, proteomics, antioxidants, combinatorial stress
Procedia PDF Downloads 3821463 The Cost of Solar-Centric Renewable Portfolio
Authors: Timothy J. Considine, Edward J. M. Manderson
Abstract:
This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide
Procedia PDF Downloads 4851462 Modeling of Silicon Window Layers for Solar Cells Based SIGE
Authors: Meriem Boukais, B. Dennai, A. Ould- Abbas
Abstract:
The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).Keywords: modeling, SiGe, AMPS-1D, quantum efficiency, conversion, efficiency
Procedia PDF Downloads 7211461 Simulation Of Silicon Window Layers For Solar Cells Based Sige
Authors: Boukais Meriem, B. Dennai, A. Ould-Abbas
Abstract:
The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).Keywords: SiGe, AMPS-1D, simulation, conversion, efficiency, quantum efficiency
Procedia PDF Downloads 8051460 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction
Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani
Abstract:
A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide
Procedia PDF Downloads 2401459 Modeling and Design of a Solar Thermal Open Volumetric Air Receiver
Authors: Piyush Sharma, Laltu Chandra, P. S. Ghoshdastidar, Rajiv Shekhar
Abstract:
Metals processing operations such as melting and heat treatment of metals are energy-intensive, requiring temperatures greater than 500oC. The desired temperature in these industrial furnaces is attained by circulating electrically-heated air. In most of these furnaces, electricity produced from captive coal-based thermal power plants is used. Solar thermal energy could be a viable heat source in these furnaces. A retrofitted solar convective furnace (SCF) concept, which uses solar thermal generated hot air, has been proposed. Critical to the success of a SCF is the design of an open volumetric air receiver (OVAR), which can heat air in excess of 800oC. The OVAR is placed on top of a tower and receives concentrated solar radiation from a heliostat field. Absorbers, mixer assembly, and the return air flow chamber (RAFC) are the major components of an OVAR. The absorber is a porous structure that transfers heat from concentrated solar radiation to ambient air, referred to as primary air. The mixer ensures uniform air temperature at the receiver exit. Flow of the relatively cooler return air in the RAFC ensures that the absorbers do not fail by overheating. In an earlier publication, the detailed design basis, fabrication, and characterization of a 2 kWth open volumetric air receiver (OVAR) based laboratory solar air tower simulator was presented. Development of an experimentally-validated, CFD based mathematical model which can ultimately be used for the design and scale-up of an OVAR has been the major objective of this investigation. In contrast to the published literature, where flow and heat transfer have been modeled primarily in a single absorber module, the present study has modeled the entire receiver assembly, including the RAFC. Flow and heat transfer calculations have been carried out in ANSYS using the LTNE model. The complex return air flow pattern in the RAFC requires complicated meshes and is computational and time intensive. Hence a simple, realistic 1-D mathematical model, which circumvents the need for carrying out detailed flow and heat transfer calculations, has also been proposed. Several important results have emerged from this investigation. Circumferential electrical heating of absorbers can mimic frontal heating by concentrated solar radiation reasonably well in testing and characterizing the performance of an OVAR. Circumferential heating, therefore, obviates the need for expensive high solar concentration simulators. Predictions suggest that the ratio of power on aperture (POA) and mass flow rate of air (MFR) is a normalizing parameter for characterizing the thermal performance of an OVAR. Increasing POA/MFR increases the maximum temperature of air, but decreases the thermal efficiency of an OVAR. Predictions of the 1-D mathematical are within 5% of ANSYS predictions and computation time is reduced from ~ 5 hours to a few seconds.Keywords: absorbers, mixer assembly, open volumetric air receiver, return air flow chamber, solar thermal energy
Procedia PDF Downloads 1971458 Analysis of Ionospheric Variations over Japan during 23rd Solar Cycle Using Wavelet Techniques
Authors: C. S. Seema, P. R. Prince
Abstract:
The characterization of spatio-temporal inhomogeneities occurring in the ionospheric F₂ layer is remarkable since these variations are direct consequences of electrodynamical coupling between magnetosphere and solar events. The temporal and spatial variations of the F₂ layer, which occur with a period of several days or even years, mainly owe to geomagnetic and meteorological activities. The hourly F₂ layer critical frequency (foF2) over 23rd solar cycle (1996-2008) of three ionosonde stations (Wakkanai, Kokunbunji, and Okinawa) in northern hemisphere, which falls within same longitudinal span, is analyzed using continuous wavelet techniques. Morlet wavelet is used to transform continuous time series data of foF2 to a two dimensional time-frequency space, quantifying the time evolution of the oscillatory modes. The presence of significant time patterns (periodicities) at a particular time period and the time location of each periodicity are detected from the two-dimensional representation of the wavelet power, in the plane of scale and period of the time series. The mean strength of each periodicity over the entire period of analysis is studied using global wavelet spectrum. The quasi biennial, annual, semiannual, 27 day, diurnal and 12 hour variations of foF2 are clearly evident in the wavelet power spectra in all the three stations. Critical frequency oscillations with multi-day periods (2-3 days and 9 days in the low latitude station, 6-7 days in all stations and 15 days in mid-high latitude station) are also superimposed over large time scaled variations.Keywords: continuous wavelet analysis, critical frequency, ionosphere, solar cycle
Procedia PDF Downloads 2201457 Feasibility and Energy Efficiency Analysis of Chilled Water Radiant Cooling System of Office Apartment in Nigeria’s Tropical Climate City
Authors: Rasaq Adekunle Olabomi
Abstract:
More than 30% of the global building energy consumption is attributed to heating, ventilation and air-conditioning (HVAC) due to increasing urbanization and the need for more personal comfort. While heating is predominant in the temperate regions (especially during winter), comfort cooling is constantly needed in tropical regions such as Nigeria. This makes cooling a major contributor to the peak electrical load in the tropics. Meanwhile, the high solar energy availability in the tropical climate region presents a higher application potentials for solar thermal cooling systems; more so, the need for cooling mostly coincides with the solar energy availability. In addition to huge energy consumption, conventional (compressor type) air-conditioning systems mostly use refrigerants that are regarded as environmental unfriendly because of their ozone depletion potentials; this has made the alternative cooling systems to become popular in the present time. The better thermal capacity and less pumping power requirement of chilled water than chilled air has also made chilled water a preferred option over the chilled air cooling system. Radiant floor chilled water cooling is particularly is also considered suitable for spaces such as meeting room, seminar hall, auditorium, airport arrival and departure halls among others. This study did the analysis of the feasibility and energy efficiency of solar thermal chilled water for radiant flood cooling of an office apartment in a tropical climate city in Nigeria with a view to recommend its up-scaling. The analysis considered the weather parameters including available solar irradiance (kWh/m2-day) as well as the technical details of the solar thermal cooling systems to determine the feasibility. Project cost, its energy savings, emission reduction potentials and cost-to-benefits ration are used to analyze its energy efficiency as well as the viability of the cooling system. The techno-economic analysis of the proposed system, carried out using RETScreen software shows that its viability in but SWOT analysis of policy and institutional framework to promote solar energy utilization for the cooling systems shows weakness such as poor infrastructure and inadequate local capacity for technological development as major challenges.Keywords: cooling load, absorption cooling system, coefficient of performance, radiant floor, cost saving, emission reduction
Procedia PDF Downloads 271456 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure
Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail
Abstract:
We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon
Procedia PDF Downloads 5401455 STC Parameters versus Real Time Measured Parameters to Determine Cost Effectiveness of PV Panels
Authors: V. E. Selaule, R. M. Schoeman H. C. Z. Pienaar
Abstract:
Research has shown that solar energy is a renewable energy resource with the most potential when compared to other renewable energy resources in South Africa. There are many makes of Photovoltaic (PV) panels on the market and it is difficult to assess which to use. PV panel manufacturers use Standard Test Conditions (STC) to rate their PV panels. STC conditions are different from the actual operating environmental conditions were the PV panels are used. This paper describes a practical method to determine the most cost effective available PV panel. The method shows that PV panel manufacturer STC ratings cannot be used to select a cost effective PV panel.Keywords: PV orientation, PV panel, PV STC, Solar energy
Procedia PDF Downloads 4731454 Economic Forecasting Analysis for Solar Photovoltaic Application
Authors: Enas R. Shouman
Abstract:
Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.Keywords: photovoltaic, financial methods, solar energy, economics, PV panel
Procedia PDF Downloads 1091453 An Investigation of System and Operating Parameters on the Performance of Parabolic Trough Solar Collector for Power Generation
Authors: Umesh Kumar Sinha, Y. K. Nayak, N. Kumar, Swapnil Saurav, Monika Kashyap
Abstract:
The authors investigate the effect of system and operating parameters on the performance of high temperature solar concentrator for power generation. The effects of system and operating parameters were investigated using the developed mathematical expressions for collector efficiency, heat removal factor, fluid outlet temperature and power, etc. The results were simulated using C++program. The simulated results were plotted for investigation like effect of thermal loss parameter and radiative loss parameters on the collector efficiency, heat removal factor, fluid outlet temperature, rise of temperature and effect of mass flow rate of the fluid outlet temperature. In connection with the power generation, plots were drawn for the effect of (TM–TAMB) on the variation of concentration efficiency, concentrator irradiance on PM/PMN, evaporation temperature on thermal to electric power efficiency (Conversion efficiency) of the plant and overall efficiency of solar power plant.Keywords: parabolic trough solar collector, radiative and thermal loss parameters, collector efficiency, heat removal factor, fluid outlet and inlet temperatures, rise of temperature, mass flow rate, conversion efficiency, concentrator irradiance
Procedia PDF Downloads 3221452 Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform
Authors: Ali Abdrhman M. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression-salt- peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption
Procedia PDF Downloads 4371451 Study of Hybrid Cells Based on Perovskite Materials Using Oghmasimultion
Authors: Nadia Bachir (Dahmani), Fatima Zohra Otmani
Abstract:
Due to its interesting optoelectronic properties, methylammonium perovskite CH3NH3PbI3 is used as the active layer in the development of several solar cells. In this work, the hybrid (organic-inorganic) cell with the architecture FTO/pedotpss/CH3NH3PbI3/pcdtbt/Al is simulated using the Organic and Hybrid Material Nano Simulation Tool (OghmaNano). We studied the influence of certain parameters, such as thickness, on the characteristics of the solar cell. The effect of the device temperature was also investigated. The photovoltaic characteristic curves, such as current-voltage (j-V), are presented in this work. The optimized final parameters are Voc = 0.947 V, FF = 0.8034%, and PCE = 23.16%.Keywords: OghmaNano software, hybrid perovskite cell, CH3NH3PbI3, conversion efficiency
Procedia PDF Downloads 141450 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles
Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli
Abstract:
Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system
Procedia PDF Downloads 581449 Sizing Residential Solar Power Systems Based on Site-Specific Energy Statistics
Authors: Maria Arechavaleta, Mark Halpin
Abstract:
In the United States, costs of solar energy systems have declined to the point that they are viable options for most consumers. However, there are no consistent procedures for specifying sufficient systems. The factors that must be considered are energy consumption, potential solar energy production, and cost. The traditional method of specifying solar energy systems is based on assumed daily levels of available solar energy and average amounts of daily energy consumption. The mismatches between energy production and consumption are usually mitigated using battery energy storage systems, and energy use is curtailed when necessary. The main consumer decision question that drives the total system cost is how much unserved (or curtailed) energy is acceptable? Of course additional solar conversion equipment can be installed to provide greater peak energy production and extra energy storage capability can be added to mitigate longer lasting low solar energy production periods. Each option increases total cost and provides a benefit which is difficult to quantify accurately. An approach to quantify the cost-benefit of adding additional resources, either production or storage or both, based on the statistical concepts of loss-of-energy probability and expected unserved energy, is presented in this paper. Relatively simple calculations, based on site-specific energy availability and consumption data, can be used to show the value of each additional increment of production or storage. With this incremental benefit-cost information, consumers can select the best overall performance combination for their application at a cost they are comfortable paying. The approach is based on a statistical analysis of energy consumption and production characteristics over time. The characteristics are in the forms of curves with each point on the curve representing an energy consumption or production value over a period of time; a one-minute period is used for the work in this paper. These curves are measured at the consumer location under the conditions that exist at the site and the duration of the measurements is a minimum of one week. While greater accuracy could be obtained with longer recording periods, the examples in this paper are based on a single week for demonstration purposes. The weekly consumption and production curves are overlaid on each other and the mismatches are used to size the battery energy storage system. Loss-of-energy probability and expected unserved energy indices are calculated in addition to the total system cost. These indices allow the consumer to recognize and quantify the benefit (probably a reduction in energy consumption curtailment) available for a given increase in cost. Consumers can then make informed decisions that are accurate for their location and conditions and which are consistent with their available funds.Keywords: battery energy storage systems, loss of load probability, residential renewable energy, solar energy systems
Procedia PDF Downloads 2341448 Solar-Powered Water Purification Using Ozone and Sand Filtration
Authors: Kayla Youhanaie, Kenneth Dott, Greg Gillis-Smith
Abstract:
Access to clean water is a global challenge that affects nearly one-third of the world’s population. A lack of safe drinking water negatively affects a person’s health, safety, and economic status. However, many regions of the world that face this clean water challenge also have high solar energy potential. To address this worldwide issue and utilize available resources, a solar-powered water purification device was developed that could be implemented in communities around the world that lack access to potable water. The device uses ozone to destroy water-borne pathogens and sand filtration to filter out particulates from the water. To select the best method for this application, a quantitative energy efficiency comparison of three water purification methods was conducted: heat, UV light, and ozone. After constructing an initial prototype, the efficacy of the device was tested using agar petri dishes to test for bacteria growth in treated water samples at various time intervals after applying the device to contaminated water. The results demonstrated that the water purification device successfully removed all bacteria and particulates from the water within three minutes, making it safe for human consumption. These results, as well as the proposed design that utilizes widely available resources in target communities, suggest that the device is a sustainable solution to address the global water crisis and could improve the quality of life for millions of people worldwide.Keywords: clean water, solar powered water purification, ozonation, sand filtration, global water crisis
Procedia PDF Downloads 771447 Bitplanes Image Encryption/Decryption Using Edge Map (SSPCE Method) and Arnold Transform
Authors: Ali A. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression, salt and peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption
Procedia PDF Downloads 498