Search results for: salt deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1547

Search results for: salt deposition

827 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition

Procedia PDF Downloads 445
826 Electric Field Analysis of XLPE, Cross-Linked Polyethylene Covered Aerial Line and Insulator Lashing

Authors: Jyh-Cherng Gu, Ming-Ta Yang, Dai-Ling Tsai

Abstract:

Both sparse lashing and dense lashing are applied to secure overhead XLPE (cross-linked polyethylene) covered power lines on ceramic insulators or HDPE polymer insulators. The distribution of electric field in and among the lashing wires, the XLPE power lines and insulators in normal clean condition and when conducting materials such as salt, metal particles, dust, smoke or acidic smog are present is studied in this paper. The ANSYS Maxwell commercial software is used in this study for electric field analysis. Although the simulation analysis is performed assuming ideal conditions due to the constraints of the simulation software, the result may not be the same as in real situation but still be of sufficient practical values.

Keywords: electric field intensity, insulator, XLPE covered aerial line, empty

Procedia PDF Downloads 264
825 Isolation and Characterization of Salt-Tolerance of Rhizobia under the Effects of Salinity

Authors: Sarra Sobti, Baelhadj Hamdi-Aïssa

Abstract:

The bacteria of the soil, usually called rhizobium, have a considerable importance in agriculture because of their capacity to fix the atmospheric nitrogen in symbiosis with the plants of the family of legumes. The present work was to study the effect of the salinity on growth and nodulation of alfalfa-rhizobia symbiosis at different agricultural experimental sites in Ouargla. The experiment was conducted in 3 steps. The first one was the isolation and characterization of the Rhizobia; next, the evolution of the isolates tolerance to salinity at three levels of NaCl (6, 8,12 and 16 g/L); and the last step was the evolution of the tolerance on symbiotic characteristics. The results showed that the phenotypic characterizations behave practically as Rhizobia spp, and the effects of salinity affect the symbiotic process. The tolerance to high levels of salinity and the survival and persistence in severe and harsh desert conditions make these rhizobia highly valuable inoculums to improve productivity of the leguminous plants cultivated under extreme environments.

Keywords: rhizobia, symbiosis, salinity, tolerance, nodulation, soil, Medicago sativa L.

Procedia PDF Downloads 319
824 Multi-Layer Mn-Doped SnO2 Thin Film for Multi-State Resistive Switching

Authors: Zhemi Xu, Dewei Chu, Sean Li

Abstract:

Well self-assembled pure and Mn-doped SnO2 nanocubes were synthesized by interface thermodynamic method, which is ideal for highly homogeneous large scale thin film deposition on flexible substrates for various electric devices. Mn-doped SnO2 shows very good resistive switching with high On/Off ratio (over 103), endurance and retention characteristics. More important, the resistive state can be tuned by multi-layer fabrication by alternate pure SnO2 and Mn-doped SnO2 nanocube layer, which improved the memory capacity of resistive switching effectively. Thus, such a method provides transparent, multi-level resistive switching for next generation non-volatile memory applications.

Keywords: metal oxides, self-assembly nanoparticles, multi-level resistive switching, multi-layer thin film

Procedia PDF Downloads 345
823 Effect of Electromagnetic Field on Capacitive Deionization Performance

Authors: Alibi Kilybay, Emad Alhseinat, Ibrahim Mustafa, Abdulfahim Arangadi, Pei Shui, Faisal Almarzooqi

Abstract:

In this work, the electromagnetic field has been used for improving the performance of the capacitive deionization process. The effect of electromagnetic fields on the efficiency of the capacitive deionization (CDI) process was investigated experimentally. The results showed that treating the feed stream of the CDI process using an electromagnetic field can enhance the electrosorption capacity from 20% up to 70%. The effect of the degree of time of exposure, concentration, and type of ions have been examined. The electromagnetic field enhanced the salt adsorption capacity (SAC) of the Ca²⁺ ions by 70%, while the SAC enhanced 20% to the Na⁺ ions. It is hypnotized that the electrometric field affects the hydration shell around the ions and thus reduces their effective size and enhances the mass transfer. This reduction in ion effective size and increase in mass transfer enhanced the electrosorption capacity and kinetics of the CDI process.

Keywords: capacitive deionization, desalination, electromagnetic treatment, water treatment

Procedia PDF Downloads 265
822 Prevalence of Eimeria spp in Cattle in Anatolia Region, Turkey

Authors: Nermin Isik, Onur Ceylan

Abstract:

Bovine coccidiosis is a protozoan infection caused by coccidia parasites of the genus Eimeria which develops in the small and the large intestine. The aim of this study was to determine the prevalence of Eimeria spp. in cattle. This study was conducted between March 2014 and April 2015, involved 624 fecal samples of cattle. Cattle were grouped according to their age as follows: 6-12, 12-24 and >24 months. In a retrospective study from these faecal samples of cattle submitted to the University of Selcuk, Faculty of Veterinary Medicine, Laboratory of Parasitology were evaluated regarding the prevalence of Eimeria spp. In the laboratory, faecal samples were examined by Fulleborn saturated salt flotation technique and examined under a microscope for the presence of protozoan oocysts. Eimeria oocysts were found in 4.8% of all the samples. Eimeria infection was detected in 11.8%, 5.3% and 0.4% of the cattle in the age groups, respectively. This study showed that Eimeria infection was commonly seen in 6-24-month-old cattle. Further epidemiological investigation on economic significance and species composition of bovine coccidiosis needs to be pursued.

Keywords: cattle, diarrhea, Eimeria spp, Turkey

Procedia PDF Downloads 352
821 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser

Authors: Junze Li, M. Li

Abstract:

Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.

Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride

Procedia PDF Downloads 189
820 A Sustainable Pt/BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ Catalyst for Dry Reforming of Methane-Derived from Recycled Primary Pt

Authors: Alessio Varotto, Lorenzo Freschi, Umberto Pasqual Laverdura, Anastasia Moschovi, Davide Pumiglia, Iakovos Yakoumis, Marta Feroci, Maria Luisa Grilli

Abstract:

Dry reforming of Methane (DRM) is considered one of the most valuable technologies for green-house gas valorization thanks to the fact that through this reaction, it is possible to obtain syngas, a mixture of H₂ and CO in an H₂/CO ratio suitable for utilization in the Fischer-Tropsch process of high value-added chemicals and fuels. Challenges of the DRM process are the reduction of costs due to the high temperature of the process and the high cost of precious metals of the catalyst, the metal particles sintering, and carbon deposition on the catalysts’ surface. The aim of this study is to demonstrate the feasibility of the synthesis of catalysts using a leachate solution containing Pt coming directly from the recovery of spent diesel oxidation catalysts (DOCs) without further purification. An unusual perovskite support for DRM, the BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ (BCZG) perovskite, has been chosen as the catalyst support because of its high thermal stability and capability to produce oxygen vacancies, which suppress the carbon deposition and enhance the catalytic activity of the catalyst. BCZG perovskite has been synthesized by a sol-gel modified Pechini process and calcinated in air at 1100 °C. BCZG supports have been impregnated with a Pt-containing leachate solution of DOC, obtained by a mild hydrometallurgical recovery process, as reported elsewhere by some of the authors of this manuscript. For comparison reasons, a synthetic solution obtained by digesting commercial Pt-black powder in aqua regia was used for BCZG support impregnation. Pt nominal content was 2% in both BCZG-based catalysts formed by real and synthetic solutions. The structure and morphology of catalysts were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Thermogravimetric Analysis (TGA) was used to study the thermal stability of the catalyst’s samples. Brunauer-Emmett-Teller (BET) analysis provided a high surface area of the catalysts. H₂-TPR (Temperature Programmed Reduction) analysis was used to study the consumption of hydrogen for reducibility, and it was associated with H₂-TPD characterization to study the dispersion of Pt on the surface of the support and calculate the number of active sites used by the precious metal. Dry reforming of methane (DRM) reaction, carried out in a fixed bed reactor, showed a high conversion efficiency of CO₂ and CH4. At 850°C, CO₂ and CH₄ conversion were close to 100% for the catalyst obtained with the aqua regia-based solution of commercial Pt-black, and ~70% (for CH₄) and ~80 % (for CO₂) in the case of real HCl-based leachate solution. H₂/CO ratios were ~0.9 and ~0.70 in the first and latter cases, respectively. As far as we know, this is the first pioneering work in which a BCGZ catalyst and a real Pt-containing leachate solution were successfully employed for DRM reaction.

Keywords: dry reforming of methane, perovskite, PGM, recycled Pt, syngas

Procedia PDF Downloads 38
819 Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films

Authors: Kai Huang, Assamen Ayalew Ejigu, Mu-Jie Lin, Liang-Chiun Chao

Abstract:

Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0.

Keywords: copper, ion beam, NiO, oxide, resistivity, transparent

Procedia PDF Downloads 312
818 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: aluminium compounds, molecular dynamics simulations, interatomic potential, thermodynamic properties, structural phase transition

Procedia PDF Downloads 305
817 A New Seperation / Precocentration and Determination Procedure Based on Solidified Floating Organic Drop Microextraction (SFODME) of Lead by Using Graphite Furnace Atomic Absorption Spectrometry

Authors: Seyda Donmez, Oya Aydin Urucu, Ece Kok Yetimoglu

Abstract:

Solidified floating organic drop microextraction was used for a preconcentration method of trace amount of lead. The analyte was complexed with 1-(2-pyridylazo)-2-naphtol and 1-undecanol, acetonitrile was added as an extraction and dispersive solvent respectively. The influences of some analytical parameters pH, volumes of extraction and disperser solvent, concentration of chelating agent, and concentration of salt were optimized. Under the optimum conditions the detection limits of Pb (II) was determined. The procedure was validated for the analysis of NCS DC 73347a hair standard reference material with satisfactory result. The developed procedure was successfully applied to food and water samples for detection of Pb (II) ions.

Keywords: analytical methods, graphite furnace atomic absorption spectrometry, heavy metals, solidified floating organic drop microextraction

Procedia PDF Downloads 277
816 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 274
815 A Study on Removal of SO3 in Flue Gas Generated from Power Plant

Authors: E. Y. Jo, S. M. Park, I. S. Yeo, K. K. Kim, S. J. Park, Y. K. Kim, Y. D. Kim, C. G. Park

Abstract:

SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts.

Keywords: flue gas desulfurization, petroleum cokes, Sulfur trioxide, SO3 removal

Procedia PDF Downloads 521
814 Design, Prototyping, Integration, Flight Testing of a 20 cm Span Fully Autonomous Fixed Wing Micro Air Vehicle

Authors: Vivek Paul, Abel Nelly, Shoeb A Adeel, R. Tilak, S. Maheshwaran, S. Pulikeshi, Roshan Antony, C. S. Suraj

Abstract:

This paper presents the complete design and development cycle of a 20 cm span fixed wing micro air vehicle that was developed at CSIR-NAL, under the micro air vehicle development program. The design is a cropped delta flying wing MAV with a modified N22 airfoil of 12.3% thickness. The design was fabricated using the fused deposition method- RPT technique. COTS components were procured and integrated into this RPT prototype. A commercial autopilot that was proven in the earlier MAV designs was used for this MAV. The MAV was flown fully autonomous for 14mins at an open field. The flight data showed good performance as expected from the MAV design. The paper also describes about the process involved in the design of MAVs.

Keywords: autopilot, autonomous mode, flight testing, MAV, RPT

Procedia PDF Downloads 519
813 Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method

Authors: Assamen Ayalew Ejigu, Liang-Chiun Chao

Abstract:

In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials.

Keywords: defect levels, nanorods, photoluminescence, Raman modes

Procedia PDF Downloads 241
812 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: all-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide

Procedia PDF Downloads 228
811 Preparation, Characterization and Ionic Conductivity of (1‒x) (CdI2‒Ag2CrO4)‒(x) Al2O3 Composite Solid Electrolytes

Authors: Rafiuddin

Abstract:

Composite solid electrolyte of the salt and oxide type is an effective approach to improve the ionic conductivity in low and intermediate temperature regions. The conductivity enhancement in the composites occurs via interfaces. Because of their high ionic conduction, composite electrolytes have wide applications in different electrochemical devices such as solid-state batteries, solid oxide fuel cells, and electrochemical cells. In this work, a series of novel (1‒x) (CdI2‒Ag2CrO4)‒xAl2O3 composite solid electrolytes has been synthesized. The prepared materials were characterized by X‒ray diffraction, differential thermal analysis, and AC impedance spectroscopy. The impedance spectra show single semicircle representing the simultaneous contribution of grain and grain boundary. The conductivity increased with the increase of Al2O3 content and shows the maximum conductivity (σ= 0.0012 S cm‒1) for 30% of Al2O3 content at 30 ℃.

Keywords: composite solid electrolyte, X-ray diffraction, Impedance spectroscopy, ionic conductivity

Procedia PDF Downloads 405
810 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass

Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu

Abstract:

The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.

Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst

Procedia PDF Downloads 302
809 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 179
808 Molecular Dynamics Simulation Study of Sulfonated Polybenzimidazole Polymers as Promising Forward Osmosis Membranes

Authors: Seyedeh Pardis Hosseini

Abstract:

With increased levels of clean and affordable water scarcity crises in many countries, wastewater treatment has been chosen as a viable method to produce freshwater for various consumptions. Even though reverse osmosis dominates the wastewater treatment market, forward osmosis (FO) processes have significant advantages, such as potentially using a renewable and low-grade energy source and improving water quality. FO is an osmotically driven membrane process that uses a high concentrated draw solution and a relatively low concentrated feed solution across a semi-permeable membrane. Among many novel FO membranes that have been introduced over the past decades, polybenzimidazole (PBI) membranes, a class of aromatic heterocyclic-based polymers, have shown high thermal and chemical stability because of their unique chemical structure. However, the studies reviewed indicate that the hydrophilicity of PBI membranes is comparatively low. Hence, there is an urgent need to develop novel FO membranes with modified PBI polymers to promote hydrophilicity. A few studies have been undertaken to improve the PBI hydrophilicity by fabricating mixed matrix polymeric membranes and surface modification. Thereby, in this study, two different sulfonated polybenzimidazole (SPBI) polymers with the same backbone but different functional groups, namely arylsulfonate PBI (PBI-AS) and propylsulfonate PBI (PBI-PS), are introduced as FO membranes and studied via the molecular dynamics (MD) simulation method. The FO simulation box consists of three distinct regions: a saltwater region, a membrane region, and a pure-water region. The pure-water region is situated at the upper part of the simulation box, while the saltwater region, which contains an aqueous salt solution of Na+ and Cl− ions along with water molecules, occupies the lower part of the simulation box. Specifically, the saltwater region includes 710 water molecules and 24 Na+ and 24 Cl− ions, resulting in a combined concentration of 10 weight percent (wt%). The pure-water region comprises 788 water molecules. Both the saltwater and pure-water regions have a density of 1.0 g/cm³. The membrane region, positioned between the saltwater and pure-water regions, is constructed from three types of polymers: PBI, PBI-AS, and PBI-PS, each consisting of three polymer chains with 30 monomers per chain. The structural and thermophysical properties of the polymers, water molecules, and Na+ and Cl− ions were analyzed using the COMPASS forcefield. All simulations were conducted using the BIOVIA Materials Studio 2020 software. By monitoring the variation in the number of water molecules over the simulation time within the saltwater region, the water permeability of the polymer membranes was calculated and subsequently compared. The results indicated that SPBI polymers exhibited higher water permeability compared to PBI polymers. This enhanced permeability can be attributed to the structural and compositional differences between SPBI and PBI polymers, which likely facilitate more efficient water transport through the membrane. Consequently, the adoption of SPBI polymers in the FO process is anticipated to result in significantly improved performance. This improvement could lead to higher water flux rates, better salt rejection, and overall more efficient use of resources in desalination and water purification applications.

Keywords: forward osmosis, molecular dynamics simulation, sulfonated polybenzimidazole, water permeability

Procedia PDF Downloads 27
807 Thermodynamics of Chlorination of Acid-Soluble Titanium Slag in Molten Salt for Preparation of TiCl4

Authors: Li Liang

Abstract:

Chinese titanium iron ore reserves with high calcium and magnesium accounted for more than 90% of the total reserves, and acid-soluble titanium slag which is produced by titanium iron ore always used to produce titanium dioxide through sulphate process. To broad the application range of acid-soluble titanium slag, the feasibility and thermodynamics of chlorinated reaction for preparation TiCl4 by titanium slag chlorination in molten slat were conducted in this paper. The analysis results show that TiCl4 can be obtained by chlorinate the acid-dissolved titanium slag with carbon. Component’s thermodynamics reaction trend is: CaO>MnO>FeO(FeCl2)>MgO>V2O5>Fe2O3>FeO(FeCl3)>TiO2>Al2O3>SiO2 in the standard state. Industrial experimental results are consistent with the thermodynamics analysis, the content of TiCl4 is more than 98% in the production. Fe, Si, V, Al, and other impurity content can satisfy the requirements of production.

Keywords: thermodynamics, acid-soluble titanium slag, preparation of TiCl4, chlorination

Procedia PDF Downloads 595
806 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling

Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather

Abstract:

New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.

Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling

Procedia PDF Downloads 191
805 Optimization of HfO₂ Deposition of Cu Electrode-Based RRAM Device

Authors: Min-Hao Wang, Shih-Chih Chen

Abstract:

Recently, the merits such as simple structure, low power consumption, and compatibility with complementary metal oxide semiconductor (CMOS) process give an advantage of resistive random access memory (RRAM) as a promising candidate for the next generation memory, hafnium dioxide (HfO2) has been widely studied as an oxide layer material, but the use of copper (Cu) as both top and bottom electrodes has rarely been studied. In this study, radio frequency sputtering was used to deposit the intermediate layer HfO₂, and electron beam evaporation was used. For the upper and lower electrodes (cu), using different AR: O ratios, we found that the control of the metal filament will make the filament widely distributed, causing the current to rise to the limit current during Reset. However, if the flow ratio is controlled well, the ON/OFF ratio can reach 104, and the set voltage is controlled below 3v.

Keywords: RRAM, metal filament, HfO₂, Cu electrode

Procedia PDF Downloads 52
804 A New Genus Longicheles (Acari: Mesostigmata: Macrochelidae) for Pakistan Fauna from Punjab, Pakistan

Authors: Muhammad Asif Qayyoum, Bilal Saeed Khan

Abstract:

Macrochelid mites are poorly studied from the planes of Punjab, Pakistan. The study was conducted as a part of PhD thesis research partially funded by the Royal Society of Entomology, UK. The genus Longicheles was first time reported from the Pakistan. Samples were collected on the monthly basis from different districts of Punjab province, Pakistan. The genus Longicheles was frequently found from five districts (Faisalabad, Dera Ghazi Khan, Jhung, Layyah, and Rajanpur) of Punjab province. Taxonomic studies were performed in Acarology Lab., Department of Entomology, University of Agriculture, Faisalabad with slide deposition. Taxonomic work was performed by using Phase contrast microscope and adobe illustrator (drawings) for finishing of picture. The detail descriptions of two (Longicheles mandibularis and Longicheles hortorum) females are given along with diagrams and key.

Keywords: macrochelidae, longicheles, new records, Punjab

Procedia PDF Downloads 409
803 Towards the Rapid Synthesis of High-Quality Monolayer Continuous Film of Graphene on High Surface Free Energy Existing Plasma Modified Cu Foil

Authors: Maddumage Don Sandeepa Lakshad Wimalananda, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Graphene is an extraordinary 2D material that shows superior electrical, optical, and mechanical properties for the applications such as transparent contacts. Further, chemical vapor deposition (CVD) technique facilitates to synthesizing of large-area graphene, including transferability. The abstract is describing the use of high surface free energy (SFE) and nano-scale high-density surface kinks (rough) existing Cu foil for CVD graphene growth, which is an opposite approach to modern use of catalytic surfaces for high-quality graphene growth, but the controllable rough morphological nature opens new era to fast synthesis (less than the 50s with a short annealing process) of graphene as a continuous film over conventional longer process (30 min growth). The experiments were shown that high SFE condition and surface kinks on Cu(100) crystal plane existing Cu catalytic surface facilitated to synthesize graphene with high monolayer and continuous nature because it can influence the adsorption of C species with high concentration and which can be facilitated by faster nucleation and growth of graphene. The fast nucleation and growth are lowering the diffusion of C atoms to Cu-graphene interface, which is resulting in no or negligible formation of bilayer patches. High energy (500W) Ar plasma treatment (inductively Coupled plasma) was facilitated to form rough and high SFE existing (54.92 mJm-2) Cu foil. This surface was used to grow the graphene by using CVD technique at 1000C for 50s. The introduced kink-like high SFE existing point on Cu(100) crystal plane facilitated to faster nucleation of graphene with a high monolayer ratio (I2D/IG is 2.42) compared to another different kind of smooth morphological and low SFE existing Cu surfaces such as Smoother surface, which is prepared by the redeposit of Cu evaporating atoms during the annealing (RRMS is 13.3nm). Even high SFE condition was favorable to synthesize graphene with monolayer and continuous nature; It fails to maintain clean (surface contains amorphous C clusters) and defect-free condition (ID/IG is 0.46) because of high SFE of Cu foil at the graphene growth stage. A post annealing process was used to heal and overcome previously mentioned problems. Different CVD atmospheres such as CH4 and H2 were used, and it was observed that there is a negligible change in graphene nature (number of layers and continuous condition) but it was observed that there is a significant difference in graphene quality because the ID/IG ratio of the graphene was reduced to 0.21 after the post-annealing with H2 gas. Addition to the change of graphene defectiveness the FE-SEM images show there was a reduction of C cluster contamination of the surface. High SFE conditions are favorable to form graphene as a monolayer and continuous film, but it fails to provide defect-free graphene. Further, plasma modified high SFE existing surface can be used to synthesize graphene within 50s, and a post annealing process can be used to reduce the defectiveness.

Keywords: chemical vapor deposition, graphene, morphology, plasma, surface free energy

Procedia PDF Downloads 244
802 Effect of Surface Quality of 3D Printed Impeller on the Performance of a Centrifugal Compressor

Authors: Nader Zirak, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Additive manufacturing is referred to as a method for fabrication of parts with a mechanism of layer by layer. Suitable economic efficiency and the ability to fabrication complex parts have made this method the focus of studies and industry. In recent years many studies focused on the fabrication of impellers, which is referred to as a key component of turbomachinery, through this technique. This study considers the important effect of the final surface quality of the impeller on the performance of the system, investigates the fabricated printed rotors through the fused deposition modeling with different process parameters. In this regard, the surface of each impeller was analyzed through the 3D scanner. The results show the vital role of surface quality on the final performance of the centrifugal compressor.

Keywords: additive manufacturing, impeller, centrifugal compressor, performance

Procedia PDF Downloads 147
801 Blood Flow in Stenosed Arteries: Analytical and Numerical Study

Authors: Shashi Sharma, Uaday Singh, V. K. Katiyar

Abstract:

Blood flow through a stenosed tube, which is of great interest to mechanical engineers as well as medical researchers. If stenosis exists in an artery, normal blood flow is disturbed. The deposition of fatty substances, cholesterol, cellular waste products in the inner lining of an artery results to plaque formation .The present study deals with a mathematical model for blood flow in constricted arteries. Blood is considered as a Newtonian, incompressible, unsteady and laminar fluid flowing in a cylindrical rigid tube along the axial direction. A time varying pressure gradient is applied in the axial direction. An analytical solution is obtained using the numerical inversion method for Laplace Transform for calculating the velocity profile of fluid as well as particles.

Keywords: blood flow, stenosis, Newtonian fluid, medical biology and genetics

Procedia PDF Downloads 516
800 Controlling Excitons Complexes in Two Dimensional MoS₂ Monolayers

Authors: Arslan Usman, Abdul Sattar, Hamid Latif, Afshan Ashfaq, Muhammad Rafique, Martin Koch

Abstract:

Two-dimensional materials have promising applications in optoelectronic and photonics; MoS₂ is the pioneer 2D material in the family of transition metal dichalcogenides. Its optical, optoelectronic, and structural properties are of practical importance along with its exciton dynamics. Exciton, along with exciton complexes, plays a vital role in realizing quantum devices. MoS₂ monolayers were synthesized using chemical vapour deposition (CVD) technique on SiO₂ and hBN substrates. Photoluminescence spectroscopy (PL) was used to identify the monolayer, which also reflects the substrate based peak broadening due to screening effects. In-plane and out of plane characteristic vibrational modes E¹₂g and A₁g, respectively, were detected in a different configuration on the substrate. The B-excitons and trions showed a dominant feature at low temperatures due to electron-phonon coupling effects, whereas their energies are separated by 100 meV.

Keywords: 2D materials, photoluminescence, AFM, excitons

Procedia PDF Downloads 146
799 Measure Determination and Zoning of Oil Pollution (TPH) on ‎Costal Sediments of Bandar Abbas (Hormoz Strait) ‎

Authors: Maryam Ehsanpour, Majid Afkhami ‎

Abstract:

This study investigated the presence of hydrocarbon pollution in industrial waste water sediments found in west coast of Bandar Abass (northern part of Hormoz strait). Therefore, six transects from west of the city were selected. Each transect consists of three stations intervals 100, 600 and 1100 meter from the low tide were sampled in both the summer and winter season (July and January 2009). Physical and chemical parameters of water, concentration of total petroleum hydrocarbons (TPH) and soil tissue deposition were evaluated according to standard procedures of MOOPAM. Average results of dissolved oxygen were 6.42 mg/l, temperature 26.31°C, pH 8.55, EC 54.47 ms/cm and salinity 35.98 g/l respectively. Results indicate that minimum, maximum and average concentration of total petroleum hydrocarbons (TPH) in sediments were, 60.18, 751.83, and 229.21 µg/kg respectively which are less than comparable studies in other parts of Persian Gulf.

Keywords: oil pollution, Bandar Abbas, costal sediments, TPH ‎

Procedia PDF Downloads 718
798 Characterization the Tin Sulfide Thin Films Prepared by Spray Ultrasonic

Authors: A. Attaf A., I. Bouhaf Kharkhachi

Abstract:

Spray ultrasonic deposition technique of tin disulfide (SnS2) thin films know wide application due to their adequate physicochemical properties for microelectronic applications and especially for solar cells. SnS2 film was deposited by spray ultrasonic technique, on pretreated glass substrates at well-determined conditions.The effect of SnS2 concentration on different optical properties of SnS2 Thin films, such us MEB, XRD, and UV spectroscopy visible spectrum was investigated. MEB characterization technique shows that the morphology of this films is uniform, compact and granular. x-ray diffraction study detects the best growth crystallinity in hexagonal structure with preferential plan (001). The results of UV spectroscopy visible spectrum show that films deposited at 0.1 mol/l is large transmittance greater than 25% in the visible region.The band gap energy is 2.54 Ev for molarity 0.1 mol/l.

Keywords: MEB, thin disulfide, thin films, ultrasonic spray, X-Ray diffraction, UV spectroscopy visible

Procedia PDF Downloads 605