Search results for: nanoparticle diameter
1123 Conjugated Chitosan-Carboxymethyl-5-Fluorouracil Nanoparticles for Skin Delivery
Authors: Mazita Mohd Diah, Anton V. Dolzhenko, Tin Wui Wong
Abstract:
Nanoparticles, being small with a large specific surface area, increase solubility, enhance bioavailability, improve controlled release and enable precision targeting of the entrapped compounds. In this study, chitosan as polymeric permeation enhancer was conjugated to a polar pro-drug, carboxymethyl-5-fluorouracil (CMFU) to increase the skin drug permeation. Chitosan-CMFU conjugate was synthesized using chemical conjugation process through succinate linker. It was then transformed into nanoparticles via spray drying method. The conjugation was elucidated using Fourier Transform Infrared and Proton Nuclear Magnetic Resonance techniques. The nanoparticle size, size distribution, zeta potential, drug content, skin permeation and retention profiles were characterized. The conjugation was denoted using 1H NMR by new peaks at signal δ = 4.184 ppm (singlet, 2H for CH2) and 7.676-7.688 ppm (doublet, 1H for C6) attributed to CMFU in chitosan-CMFU NMR spectrum. The nanoparticles had profiles of particle size: 93.97 ±35.11 nm, polydispersity index: 0.40 ± 0.14, zeta potential: +18.25 ±2.95 mV and drug content: 6.20 ± 1.98 % w/w. Almost 80 % w/w CMFU in the form of nanoparticles permeated through the skin in 24 hours and close to 50 % w/w permeation occurred in first 1-2 hours. Without conjugation to chitosan and nanoparticulation, less than 40 % w/w CMFU permeated through the skin in 24 hours. The skin drug retention likewise was higher with chitosan-CMFU nanoparticles (15.34 ± 5.82 % w/w) than CMFU (2.24 ± 0.57 % w/w). CMFU, through conjugation with chitosan permeation enhancer and processed in nanogeometry, had its skin permeation and retention degree promoted.Keywords: carboxymethyl-5-fluorouracil, chitosan, conjugate, skin permeation, skin retention
Procedia PDF Downloads 3651122 Fabrication and Characterization of Dissolvable Microneedle Patches Using Different Compositions and Ratios of Hyaluronic Acid and Zinc Oxide Nanoparticles
Authors: Dada Kolawole Segun
Abstract:
Transdermal drug delivery has gained popularity as a non-invasive method for controlled drug release compared to traditional delivery routes. Dissolvable transdermal patches have emerged as a promising platform for delivering a variety of drugs due to their ease of use. The objective of this research was to create and characterize dissolvable transdermal patches using various compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. A micromolding technique was utilized to fabricate the patches, which were subsequently characterized using scanning electron microscopy, atomic force microscopy, and tensile strength testing. In vitro drug release studies were conducted to evaluate the drug release kinetics of the patches. The study found that the mechanical strength and dissolution properties of the patches were influenced by the hyaluronic acid and zinc oxide nanoparticle ratios used in the fabrication process. Moreover, the patches demonstrated controlled delivery of model drugs through the skin, highlighting their potential for transdermal drug delivery applications. The results suggest that dissolvable transdermal patches can be tailored to meet specific requirements for drug delivery applications using different compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. This development has the potential to improve treatment outcomes and patient compliance in various therapeutic areas.Keywords: transdermal drug delivery, characterization, skin permeation, biodegradable materials
Procedia PDF Downloads 901121 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 1571120 Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires
Authors: Ram Mohan, Mahendran Samykano, Shyam Aravamudhan
Abstract:
Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented.Keywords: uniaxial tensile characterization, nanowires, electrodeposition, stress-strain, nickel
Procedia PDF Downloads 4061119 Single Cell Sorter Driven by Resonance Vibration of Cell Culture Substrate
Authors: Misa Nakao, Yuta Kurashina, Chikahiro Imashiro, Kenjiro Takemura
Abstract:
The Research Goal: With the growing demand for regenerative medicine, an effective mass cell culture process is required. In a repetitive subculture process for proliferating cells, preparing single cell suspension which does not contain any cell aggregates is highly required because cell aggregates often raise various undesirable phenomena, e.g., apoptosis and decrease of cell proliferation. Since cell aggregates often occur in cell suspension during conventional subculture processes, this study proposes a single cell sorter driven by a resonance vibration of a cell culture substrate. The Method and the Result: The single cell sorter is simply composed of a cell culture substrate and a glass pipe vertically placed against the cell culture substrate with a certain gap corresponding to a cell diameter. The cell culture substrate is made of biocompatible stainless steel with a piezoelectric ceramic disk glued to the bottom side. Applying AC voltage to the piezoelectric ceramic disk, an out-of-plane resonance vibration with a single nodal circle of the cell culture substrate can be excited at 5.5 kHz. By doing so, acoustic radiation force is emitted, and then cell suspension containing only single cells is pumped into the pipe and collected. This single cell sorter is effective to collect single cells selectively in spite of its quite simple structure. We collected C2C12 myoblast cell suspension by the single cell sorter with the vibration amplitude of 12 µmp-p and evaluated the ratio of single cells in number against the entire cells in the suspension. Additionally, we cultured the collected cells for 72 hrs and measured the number of cells after the cultivation in order to evaluate their proliferation. As a control sample, we also collected cell suspension by conventional pipetting, and evaluated the ratio of single cells and the number of cells after the 72-hour cultivation. The ratio of single cells in the cell suspension collected by the single cell sorter was 98.2%. This ratio was 9.6% higher than that collected by conventional pipetting (statistically significant). Moreover, the number of cells cultured for 72 hrs after the collection by the single cell sorter yielded statistically more cells than that collected by pipetting, resulting in a 13.6% increase in proliferated cells. These results suggest that the cell suspension collected by the single cell sorter driven by the resonance vibration hardly contains cell aggregates whose diameter is larger than the gap between the cell culture substrate and the pipe. Consequently, the cell suspension collected by the single cell sorter maintains high cell proliferation. Conclusions: In this study, we developed a single cell sorter capable of sorting and pumping single cells by a resonance vibration of a cell culture substrate. The experimental results show the single cell sorter collects single cell suspension which hardly contains cell aggregates. Furthermore, the collected cells show higher proliferation than that of cells collected by conventional pipetting. This means the resonance vibration of the cell culture substrate can benefit us with the increase in efficiency of mass cell culture process for clinical applications.Keywords: acoustic radiation force, cell proliferation, regenerative medicine, resonance vibration, single cell sorter
Procedia PDF Downloads 2631118 Assessment of Solid Insulating Material Using Partial Discharge Characteristics
Authors: Qasim Khan, Furkan Ahmad, Asfar A. Khan, M. Saad Alam, Faiz Ahmad
Abstract:
In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system.Keywords: partial discharges, condition monitoring, insulation defects, degradation and corrosion, PMMA
Procedia PDF Downloads 5171117 The Engineering Design of the Temple of Dendera in the City of Qena, Egypt
Authors: Shady Ahmed Emara
Abstract:
Introductory statement: The temple is characterized by a unique engineering design. This study aimed to explain the means that were used to reach this design. Background of the Study: Temple of Dandara consists of 24 columns with a height of 18m and a diameter of 2m. This paper is about the engineering method for constructing these huge columns. Two experiments were conducted at the temple. The first experiment used AutoCAD to compare the similarity of the columns in terms of dimensions. The second experiment used a laser rangefinder to measure the extent of the match between the heights between the columns. The Major Findings of the Study: (1) The method of constructing the columns was through several divided layers. It is divided into two halves and built opposite each other to maintain the integrity of the columns. (2) The match between the heights of the columns, which reached the error rate between one column and another, is only 1 mm. Concluding Statement: Both experiences will be explained through 2D and 3D.Keywords: ancient, construction, architecture, building
Procedia PDF Downloads 1031116 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters
Authors: Liu Shengnan, Sun Liping, Zhu Jianxun
Abstract:
Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.Keywords: Pelamis, hinge, floating multibody, wave energy
Procedia PDF Downloads 4651115 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater
Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu
Abstract:
The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor
Procedia PDF Downloads 1481114 Synthesis and Evaluation of Heterogeneous Nano-Catalyst: Cr Loaded in to MCM-41
Authors: A. Salemi Golezania, A. Sharifi Fateha
Abstract:
In this study a nano-composite catalyst was synthesized by incorporation of chromium into the framework of MCM-41 as a base catalyst. Mesoporous silica molecular sieves MCM-41 were synthesized under Hydrothermal Continues pH Adjusting Path Way. Then, MCM-41 was impregnated by chromium nitrate aqueous solution for several times under water aspiration. Raw powder was cured by heat treatment in vacuum furnace at 500°C. Phase formation, morphology and gas absorption properties of resulted materials were characterized by XRD, TEM and BET analysis, respectively. The results showed that high quality hexagonal meso structure as a matrix and Cr as a second phase has been formed with a narrow size pore diameter distribution and high surface area in Cr/MCM-41 nano-composite structure. The specific surface and total volume of porosity of the synthesized nanocomposite are obtained 931m^2/gr and 1.12 cm^3/gr, respectively.Keywords: nano-catalyst, MCM-41, Cr/MCM-41, Marine Science and Engineering
Procedia PDF Downloads 3871113 Boundary Layer Flow of a Casson Nanofluid Past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption
Authors: G. Sarojamma, K. Vendabai
Abstract:
An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.Keywords: casson nanofluid, boundary layer flow, internal heat generation/absorption, exponentially stretching cylinder, heat transfer, brownian motion, thermophoresis
Procedia PDF Downloads 3891112 Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed
Abstract:
In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved.Keywords: gas-particle flow, unified gas-kinetic scheme, momentum transfer, shock-induced fluidization
Procedia PDF Downloads 2621111 Surpassing Antibiotic Resistance through Synergistic Effects of Polyethyleneimine-Silver Nanoparticle Complex Coated Mesoporous Silica Trio-Nanoconstructs
Authors: Ranjith Kumar Kankala, Wei-Zhi Lin, Chia-Hung Lee
Abstract:
Antibiotic resistance in bacteria has become an emergency situation clinically. To improve the efficacy of antibiotics in resistant strains, advancement of nanoparticles is inevitable than ever. Herewith, we demonstrate a design by immobilizing tetracycline (TET) in copper substituted mesoporous silica nanoparticles (Cu-MSNs) through a pH-sensitive coordination link, enabling its release in the acidic environment. Subsequently, MSNs are coated with silver nanoparticles stabilized polyethyleneimine (PEI-SNP) to act against drug-resistant (MDR) bacterial strains. Silver ions released from SNP are capable of sensitizing the resistant strains and facilitate the generation of free radicals capable of damaging the cell components. In addition, copper ions in the framework are also capable of generating free radicals through Fenton-like reaction. Furthermore, the nanoparticles are well-characterized physically, and various antibacterial efficacious tests against isolated multidrug resistant bacterial strain were highly commendable. However, this formulation has no significant toxic effect on normal mammalian fibroblast cells accounting its high biocompatibility. These MSN trio-hybrids, i.e., SNP, tetracycline, and copper ions result in synergistic effects, and their advancement could bypass resistance and allow synergism for effective treatment of antibiotic clinically.Keywords: antibiotic resistance, copper, mesoporous silica nanoparticles, Ph-sensitive release, polyethyleneimine, silver, tetracycline
Procedia PDF Downloads 1991110 The Effects of Zinc Oxide Nanoparticles Loaded with Indole-3-Acetic Acid and Indole-3-Butyric Acid on in vitro Rooting of Apple Microcuttings
Authors: Shabnam Alizadeh, Hatice Dumanoglu
Abstract:
Plant tissue culture is a substantial plant propagation technique for mass clonal production throughout the year, regardless of time in fruit species. However, the rooting achievement must be enhanced in the difficult-to-root genotypes. Classical auxin applications in clonal propagation of these genotypes are inadequate to solve the rooting problem. Nanoparticles having different physical and chemical properties from bulk material could enhance the rooting success of controlled release of these substances when loaded with auxin due to their ability to reach the active substance up to the target cells as a carrier system.The purpose of this study is to investigate the effects of zinc oxide nanoparticles loaded with indole-3-acetic acid (IAA-nZnO) and indole-3-butyric acid (IBA-nZnO) on in vitro rooting of microcuttings in a difficult-to-root apple genotype (Malus domestica Borkh.). Rooting treatments consisted of IBA or IAA at concentrations of 0.5, 1.0, 2.0, 3.0 mg/L; nZnO, IAA-nZnO and IBA-nZnO at doses of 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 mg/L were used. All components were added to the Murashige and Skoog (MS) basal medium at strength ½ with 2% sucrose and 0.7% agar before autoclaving. In the study, no rooting occurred in control and nZnO applications. Especially, 1.0 mg/L and 2.0 mg/L IBA-nZnO nanoparticle applications (containing 0.5 mg/L and 0.9 mg/L IBA), respectively with rooting rates of 40.3% and 70.4%, rooting levels of 2.0±0.4 and 2.3±0.4, 2.6±0.7 and 2.5±0.6 average root numbers and 20.4±1.6 mm and 20.2±3.4 mm average root lengths put forward as effective applications.Keywords: Auxin, Malus, nanotechnology, zinc oxide nanoparticles
Procedia PDF Downloads 1441109 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets
Authors: Sajjad Seifoori
Abstract:
Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).Keywords: impact, molecular dynamic, graphene, spring mass
Procedia PDF Downloads 3291108 Research and Design on a Portable Intravehicular Ultrasonic Leak Detector for Manned Spacecraft
Authors: Yan Rongxin, Sun Wei, Li Weidan
Abstract:
Based on the acoustics cascade sound theory, the mechanism of air leak sound producing, transmitting and signal detecting has been analyzed. A formula of the sound power, leak size and air pressure in the spacecraft has been built, and the relationship between leak sound pressure and receiving direction and distance has been studied. The center frequency in millimeter diameter leak is more than 20 kHz. The situation of air leaking from spacecraft to space has been simulated and an experiment of different leak size and testing distance and direction has been done. The sound pressure is in direct proportion to the cosine of the angle of leak to sensor. The portable ultrasonic leak detector has been developed, whose minimal leak rate is 10-1 Pa·m3/s, the testing radius is longer than 20 mm, the mass is less than 1.0 kg, and the electric power is less than 2.2 W.Keywords: leak testing, manned spacecraft, sound transmitting, ultrasonic
Procedia PDF Downloads 3261107 A Pull-Out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites, the Influence of the Processing Temperature
Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay
Abstract:
This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find a molding temperature of 183°C leads to better interface properties. Above or below this temperature the interface strength is reduced.Keywords: composite, hemp, interface, pull-out, processing, polypropylene, temperature
Procedia PDF Downloads 3921106 Growth and Yield Response of Solanum retroflexum to Different Level of Salinity
Authors: Fhatuwani Herman Nndwambi, P. W. Mashela
Abstract:
Salinity is a major constraint limiting crop productivity. It has been predicted that by the year 2050, more than 50% of the arable land will be affected by salinity. Two similar salinity experiments were conducted in two seasons under greenhouse condition. Six levels of salinity plus control (viz; control, 2, 4, 8, 16, 32 and 64 % NaCl and CaCl2 at 3:1 ratio) were applied in a form of irrigation water in a single factor experiment arranged in a complete block design with 20 replications. Plant growth and yield were negatively affected by salinity treatments especially at the high levels of salinity. For example, our results suggest that the 32 and 64% of NaCl and CaCl2 treatment were too much for the plant to withstand as determined by reduced dry shoot mass, stem diameter and plant height in both seasons. On the other hand, stomatal conductance and chlorophyll content increased with an increased level of salinity.Keywords: growth, salinity, season, yield
Procedia PDF Downloads 1661105 Aeration of Fish Pond Aquaculture Using Wind Power
Authors: Fatima Hassan Mohamed Ahmed
Abstract:
This study discusses the possibility techniques of using wind energy to operate the aeration devices which are used in the intensive fish farm for Nile Tilapia. The main objective is to show at what expense this renewable energy source can increase the production. The study was done for the oxygen consumption by 1 kg fishes of tilapia put in 1 m3. The theoretical study shows that the fishes consume around 0.5 gO2/hour when using paddle wheels with average oxygen transfer rate 2.6 kgO2/kW.h comparing this with dissolved oxygen consumed by fishes it was found that 1 kW will aerate 5200 m3 and the same power will aerate 1800 m3 when using air diffuser system with average oxygen transfer rate 0.9 kgO2/kW.h, this power can be supplied by the wind turbine with dimension with a tower 6 m high and diameter 2.7 m.Keywords: aeration, fish pond, wind, power
Procedia PDF Downloads 6381104 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes
Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee
Abstract:
A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation
Procedia PDF Downloads 3621103 Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters
Authors: Mohammed F. Alhaddad
Abstract:
Vortex induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. This phenomenon has been mainly studied to be suppressed to prevent fatigue and instability in offshore platforms. In 2006, some studies were conducted to maximize VIV instead of suppressing it, as these studies claimed that VIV is a potential method of generating energy. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centerline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module.Keywords: energy, generation, generating, vibration, vortex.
Procedia PDF Downloads 611102 Investigating Al₂O₃ Nanofluid Based on Seawater and Effluent Water Mix for Water Injection Application; Sandstone
Authors: Meshal Al-Samhan, Abdullah Al-Marshed
Abstract:
Recently, there has been a tremendous increase in interest in nanotechnology applications and nanomaterials in the oilfield. In the last decade, the global increase in oil production resulted in large amounts of produced water, causing a significant problem for all producing countries and companies. This produced water deserves special attention and a study of its characteristics to understand and determine how it can be treated and later used for suitable applications such as water injection for Enhance Oil Recovery (EOR) without harming the environment. This work aims to investigate the prepared compatible mixed water (seawater and effluent water) response to nanoparticles for EOR water injection. The evaluation of different mix seawater/effluent water ratios (60/40,70/30) for their characteristics prior to nanofluid preparation using Inductive Couple Plasma (ICP) analysis, potential zeta test, and OLI software (the OLI Systems is a recognised leader in aqueous chemistry). This step of the work revealed the suitability of the water mix with a lower effluent-water ratio. Also, OLI predicted that the 60:40 mix needs to be balanced around temperatures of 70 ºC to avoid the mass accumulation of calcium sulfate and strontium sulfate. Later the prepared nanofluid was tested for interfacial tension (IFT) and wettability restoration in the sandstone rock; the Al2O3 nanofluid at 0.06 wt% concentration reduced the IFT by more than 16% with moderate water wet contact angle. The study concluded that the selected nanoparticle Al2O3 had demonstrated excellent performance in decreasing the interfacial tension with respect to the selected water mix type (60/40) at low nanoparticles wt%.Keywords: nano AL2O3, sanstone, nanofluid, IFT, wettability
Procedia PDF Downloads 1081101 Synthesis of Ni/Mesopore Silica-Alumina Catalyst for Hydrocracking of Pyrolyzed α-Cellulose
Authors: Wega Trisunaryanti, Hesty Kusumastuti, Iip Izul Falah, Muhammad Fajar Marsuki, Rahmad Nuryanto
Abstract:
Synthesis of Ni supported on mesopore silica-alumina (MSA) for hydrocracking of pyrolyzed α-cellulose had been carried out. The silica and alumina were extracted from Sidoarjo mud. Gelatin from catfish bone was used as a template for the mesopore design. The MSA was synthesized by using hydrothermal method at 100 °C for 24 h and calcined at 550 °C for 4 h then characterized by using X-Ray Diffraction Spectrometer (XRD) and Nitrogen Gas Sorption Analyzer (GAS). The Ni metal was loaded to the MSA by wet impregnation method. The catalytic activity in the hydrocracking reaction of pyrolyzed α-cellulose was carried out at 450 °C for 2 h. The MSA synthesized in this work is an amorphous material with specific surface area, total pore volume, and average pore diameter of 212.29 m²/g, 1.29 cm³/g, and 20.05 nm, respectively. The Ni/MSA catalyst produced 73.02 wt.% of liquid product in hydrocracking of pyrolyzed α-cellulose.Keywords: catalyst, gelatin, hydrocracking, mesopore silica-alumina, α-cellulose
Procedia PDF Downloads 1631100 Comparative Analysis of Water-Based Alumina Nanoparticles with Water-Based Cupric Nanoparticles Past an Exponentially Accelerated Vertical Radiative Riga Plate with Heat Transfer
Authors: Kanayo Kenneth Asogwa
Abstract:
The influence of the flow of nanoparticles in nanofluids across a vertical surface is significant, and its application in medical sciences, engineering, pharmaceutical, and food industries is enormous & widely published. However, the comparative examination of alumina nanoparticles with cupric nanoparticles past a rapid progressive Riga plate remains unknown. Thus, this report investigates water-based alumina and cupric nanoparticles passing through an exponentially accelerated Riga plate. Nanofluids containing copper (II) oxide (CuO) and aluminum oxide (Al2O3) nanoparticles are considered. The Laplace transform technique is used to solve the partial differential equations guiding the flow. The effect of various factors on skin friction coefficient, Nusselt number, velocity and temperature profiles is investigated and reported in tabular and graphical form. The upsurge of Modified Hartmann number and radiative impact improves copper (II) oxide nanofluid compared to aluminum oxide nanofluid due to Lorentz force and since CuO is a better heat conductor. At the same time, heat absorption and reactive species favor a slight decline in Alumina nanofluid than Cupric nanofluid in the thermal and velocity fields. The higher density of Cupric nanofluid is enhanced by increasing nanoparticle volume fraction over Alumina nanofluid with a decline in velocity distribution.Keywords: alumina, cupric, nanoparticles, water-based
Procedia PDF Downloads 2021099 ZnO / TiO2 Nanoparticles for Degradation of Cyanide Ion
Authors: Masoumeh Tabatabaee, Zahra Shahryarzadeh, Masoud R. Shishebor
Abstract:
Advanced oxidation process (AOPs) is alternative method for the complete degradation many organic pollutants. When a photocatalyst absorbs radiation whose energy hν > Eg an ē from its filled valance band (VB) is promoted to its conduction band (CB) and valance band holes h+ are formed. Electron would reduce any available species, including O2, water and hydroxide ion to form hydroxyl radicals. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. TiO2 can only absorb a small portion of solar spectrum in the UV region and many methods such as dye sensitization, doping of other metals and using TiO2 with another semiconductor have been used to improve the photocatalytic activity of TiO2 under solar irradiation. Studies have shown that the use of metal oxides or sulfide such as WO3, MoO3, SiO2, MgO, ZnO, and CdS with TiO2 can significantly enhance the photocatalytic activity of TiO2. Due to similarity of photodegradation mechanism of ZnO with TiO2, it is a suitable semiconductor using with TiO2 and recently nanosized bicomponent TiO2-ZnO photocatalysts were prepared and used for degradation of some pollutants. In this study, Nano-sized ZnO/TiO2 composite was synthesized. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the structure and morphology of it. The effect of photocatalytic activity of prepared ZnO/TiO2 on the degradation of cyanide ion under UV was investigated. The effect of various parameters such as ZnO/TiO2 concentration, amount of photocatalyst, amount of H2O2, initial dye or cyanide ion concentration, pH and irradiation time on were investigated. Results show that more than 95% of 4 mgL-1 cyanide ion degraded after 60-min reaction time and under UV irradiation.Keywords: photodegradation, ZnO/TiO2, nanoparticle, cyanide ion
Procedia PDF Downloads 3951098 Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds
Authors: J. E. Mendes, L. Abrunhosa, J. A. Teixeira, E. R. de Camargo, C. P. de Souza, J. D. C. Pessoa
Abstract:
Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.Keywords: antifungal activity, Phomopsis sp., seeds, silver nanoparticles, soybean
Procedia PDF Downloads 4601097 Designing a Low Speed Wind Tunnel for Investigating Effects of Blockage Ratio on Heat Transfer of a Non-Circular Tube
Authors: Arash Mirabdolah Lavasani, Taher Maarefdoost
Abstract:
Effect of blockage ratio on heat transfer from non-circular tube is studied experimentally. For doing this experiment a suction type low speed wind tunnel with test section dimension of 14×14×40 and velocity in rage of 7-20 m/s was designed. The blockage ratios varied between 1.5 to 7 and Reynolds number based on equivalent diameter varies in range of 7.5×103 to 17.5×103. The results show that by increasing blockage ratio from 1.5 to 7, drag coefficient of the cam shaped tube decreased about 55 percent. By increasing Reynolds number, Nusselt number of the cam shaped tube increases about 40 to 48 percent in all ranges of blockage ratios.Keywords: wind tunnel, non-circular tube, blockage ratio, experimental heat transfer, cross-flow
Procedia PDF Downloads 3481096 Regulating Nanocarrier and Mononuclear Phagocyte System Interactions through Esomeprazole-Based Preconditioning Strategy
Authors: Zakia Belhadj, Bing He, Hua Zhang, Xueqing Wang, Wenbing Dai, Qiang Zhang
Abstract:
Mononuclear phagocyte system (MPS) forms an abominable obstacle hampering the tumor delivery efficiency of nanoparticles. Passively targeted nanocarriers have received clinical approval over the past 20 years. However, none of the actively targeted nanocarriers have entered clinical trials. Thus it is important to endue effective targeting ability to actively targeted approaches by overcoming biological barriers to nanoparticle drug delivery. Here, it presents that an Esomeprazole-based preconditioning strategy for regulating nanocarrier-MPS interaction to substantially prolong circulation time and enhance tumor targeting of nanoparticles. In vitro, the clinically approved proton pump inhibitor Esomeprazole “ESO” was demonstrated to reduce interactions between macrophages and subsequently injected targeted vesicles by interfering with their lysosomal trafficking. Of note, in vivo studies demonstrated that ESO pretreatment greatly decreased the liver and spleen uptake of c(RGDm7)-modified vesicles, highly enhanced their tumor accumulation, thereby provided superior therapeutic efficacy of c(RGDm7)-modified vesicles co-loaded with Doxorubicin (DOX) and Gefitinib (GE). This MPS-preconditioning strategy using ESO provides deeper insights into regulating nanoparticles interaction with the phagocytic system and enhancing their cancer cells' accessibility for anticancer therapy.Keywords: esomeprazole (ESO), mononuclear phagocyte system (MPS), preconditioning strategy, targeted lipid vesicles
Procedia PDF Downloads 1761095 Study the Effect of Liquefaction on Buried Pipelines during Earthquakes
Authors: Mohsen Hababalahi, Morteza Bastami
Abstract:
Buried pipeline damage correlations are critical part of loss estimation procedures applied to lifelines for future earthquakes. The vulnerability of buried pipelines against earthquake and liquefaction has been observed during some of previous earthquakes and there are a lot of comprehensive reports about this event. One of the main reasons for impairment of buried pipelines during earthquake is liquefaction. Necessary conditions for this phenomenon are loose sandy soil, saturation of soil layer and earthquake intensity. Because of this fact that pipelines structure are very different from other structures (being long and having light mass) by paying attention to the results of previous earthquakes and compare them with other structures, it is obvious that the danger of liquefaction for buried pipelines is not high risked, unless effective parameters like earthquake intensity and non-dense soil and other factors be high. Recent liquefaction researches for buried pipeline include experimental and theoretical ones as well as damage investigations during actual earthquakes. The damage investigations have revealed that a damage ratio of pipelines (Number/km ) has much larger values in liquefied grounds compared with one in shaking grounds without liquefaction according to damage statistics during past severe earthquakes, and that damages of joints and pipelines connected with manholes were remarkable. The purpose of this research is numerical study of buried pipelines under the effect of liquefaction by case study of the 2013 Dashti (Iran) earthquake. Water supply and electrical distribution systems of this township interrupted during earthquake and water transmission pipelines were damaged severely due to occurrence of liquefaction. The model consists of a polyethylene pipeline with 100 meters length and 0.8 meter diameter which is covered by light sandy soil and the depth of burial is 2.5 meters from surface. Since finite element method is used relatively successfully in order to solve geotechnical problems, we used this method for numerical analysis. For evaluating this case, some information like geotechnical information, classification of earthquakes levels, determining the effective parameters in probability of liquefaction, three dimensional numerical finite element modeling of interaction between soil and pipelines are necessary. The results of this study on buried pipelines indicate that the effect of liquefaction is function of pipe diameter, type of soil, and peak ground acceleration. There is a clear increase in percentage of damage with increasing the liquefaction severity. The results indicate that although in this form of the analysis, the damage is always associated to a certain pipe material, but the nominally defined “failures” include by failures of particular components (joints, connections, fire hydrant details, crossovers, laterals) rather than material failures. At the end, there are some retrofit suggestions in order to decrease the risk of liquefaction on buried pipelines.Keywords: liquefaction, buried pipelines, lifelines, earthquake, finite element method
Procedia PDF Downloads 5131094 Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel
Authors: Selami Şahin
Abstract:
In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle.Keywords: Free-space optical communication, optical downlink channel, atmospheric turbulence, wireless optical communication
Procedia PDF Downloads 401