Search results for: metal sheet defect
2532 Assessment of Some Heavy Metals (Manganese, Copper, Nickel and Zinc) in Muscle and Liver of the African Catfish (Clarias gariepinus) in Ilushi River, Nigeria
Authors: Joshua I. Izegaegbe, Femi F. Oloye, Catherine E. Nasiru
Abstract:
This study determined the level of manganese, zinc, copper, and nickel in the liver and muscle of the African Catfish, Clarias gariepinus from Ilushi River, Edo State, Nigeria with a view to determining the extent of contamination. Heavy metal determination of digested fish samples was done using the atomic absorption spectrophotometric method. The results show that the muscles and livers were contaminated to varying levels with the presence of some non-metallic elements. The heavy metal load revealed that zinc had the highest mean concentration of 0.217±0.008µg/g in liver and 0.130±0.006µg/g in muscle, while copper recorded the least concentration in liver 0.063±0.004µg/g and 0.027±0.003µg/gin muscle. The distribution of the heavy metals in the muscles and livers of Clarias gariepinus showed significant variations and the results also revealed that the concentration of heavy metals (Zn, Cu,Ni and Mn) found in the liver was higher than those found in the muscle. This indicates that the liver is a better accumulator of heavy metal in Clarias gariepinus than the muscles. On comparison with WHO/FAO/FEPA/USFDA standards, the study shows that the concentrations of heavy metals in liver and muscle were within permissible limits safe for human consumption.Keywords: clarias gariepinus, heavy metals, liver, muscle
Procedia PDF Downloads 2182531 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study
Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung
Abstract:
Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification
Procedia PDF Downloads 3062530 Effect of Shot Peening on the Mechanical Properties for Welded Joints of Aluminium Alloy 6061-T6
Authors: Muna Khethier Abbass, Khairia Salman Hussan, Huda Mohummed AbdudAlaziz
Abstract:
This work aims to study the effect of shot peening on the mechanical properties of welded joints which performed by two different welding processes: Tungsten inert gas (TIG) welding and friction stir welding (FSW) processes of aluminum alloy 6061 T6. Arc welding process (TIG) was carried out on the sheet with dimensions of (100x50x6 mm) to obtain many welded joints with using electrode type ER4043 (AlSi5) as a filler metal and argon as shielding gas. While the friction stir welding process was carried out using CNC milling machine with a tool of rotational speed (1000 rpm) and welding speed of (20 mm/min) to obtain the same butt welded joints. The welded pieces were tested by X-ray radiography to detect the internal defects and faulty welded pieces were excluded. Tensile test specimens were prepared from welded joints and base alloy in the dimensions according to ASTM17500 and then subjected to shot peening process using steel ball of diameter 0.9 mm and for 15 min. All specimens were subjected to Vickers hardness test and micro structure examination to study the effect of welding process (TIG and FSW) on the micro structure of the weld zones. Results showed that a general decay of mechanical properties of TIG and FSW welded joints comparing with base alloy while the FSW welded joint gives better mechanical properties than that of TIG welded joint. This is due to the micro structure changes during the welding process. It has been found that the surface hardening by shot peening improved the mechanical properties of both welded joints, this is due to the compressive residual stress generation in the weld zones which was measured using X-Ray diffraction (XRD) inspection.Keywords: friction stir welding, TIG welding, mechanical properties, shot peening
Procedia PDF Downloads 3392529 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment
Authors: Nabil Al-Zaqri
Abstract:
Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production
Procedia PDF Downloads 1412528 Discovery of Two-dimensional Hexagonal MBene HfBO
Authors: Nanxi Miao, Junjie Wang
Abstract:
The discovery of 2D materials with distinct compositions and properties has been a research aim since the report of graphene. One of the latest members of the 2D material family is MXene, which is produced from the topochemical deintercalation of the A layer from a laminate MAX phase. Recently, analogous 2D MBenes (transitional metal borides) have been predicted by theoretical calculations as excellent alternatives in applications such as metal-ion batteries, magnetic devices, and catalysts. However, the practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of in from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.Keywords: 2D materials, DFT calculations, high-throughput screening, lithium-ion batteries
Procedia PDF Downloads 732527 Spatial Distribution of Heavy Metals in Khark Island-Iran Using Geographic Information System
Authors: Abbas Hani, Maryam Jassasizadeh
Abstract:
The concentrations of Cd, Pb, and Ni were determined from 40 soil samples collected in surface soils of Khark Island. Geostatistic methods and GIS were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that level of mentioned heavy metal was lower than the standard level. Then the data obtained from the soil analyzing were studied for the purposes of normal distribution. The best way of interior finding for cadmium and nickel was ordinary kriging and the best way of interpolation of lead was inverse distance weighted. The result of this study help us to understand heavy metals distribution and make decision for remediation of soil pollution.Keywords: geostatistics, ordinary kriging, heavy metals, GIS, Khark
Procedia PDF Downloads 1672526 Utilization Reactive Dilutes to Improve the Properties of Epoxy Resin as Anticorrosion Coating
Authors: El-Sayed Negim, Ainakulova D. T., Puteri S. M., Khaldun M. Azzam, Bekbayeva L. K., Arpit Goyal, Ganjian E.
Abstract:
Anticorrosion coatings protect metal surfaces from environmental factors including moisture, oxygen, and gases that caused corrosion to the metal. Various types of anticorrosion coatings are available, with different properties and application methods. Many researchers have been developing methods to prevent corrosion, and epoxy polymers are one of the wide methods due to their excellent adhesion, chemical resistance, and durability. In this study, synthesis reactive dilute based on glycidyl methacrylate (GMA) with each of 2-ethylhexyl acrylate (2-EHA) and butyl acrylate (BuA) to improve the performance of epoxy resin and anticorrosion coating. The copolymers were synthesized with composition ratio (5/5) by bulk polymerization technique using benzoyl peroxide as a catalyst and temperature at 85 oC for 2 hours and at 90 oC for 30 minutes to complete the polymerization process. The obtained copolymers were characterized by FTIR, viscosity and thixotropic index. The effect of copolymers as reactive dilute on the physical and mechanical properties of epoxy resin was investigated. Metal plates coated by the modified epoxy resins with different contents of copolymers were tested using alkali and salt test methods, and the copolymer based on GMA and BUA showed the best protection efficiency due to the barrier effect of the polymer layer.Keywords: epoxy, coating, dilute, corrosion, reactive
Procedia PDF Downloads 522525 Synthesis of Biologically Active Heterocyclic Compounds via C-H Bond Activation
Authors: Neeraj Kumar Mishra, In Su Kim
Abstract:
The isoindoline, indazole and indole heterocycles are ubiquitous structural motif found in heterocyclic compounds as they exhibit biological and medicinal applications. For example, isoindoline motif is present in molecules that act as endothelin-A receptor antagonists and dipeptidyl peptidase inhibitors. Moreover, isoindoline derivatives are very crucial constituents in the field of materials science as attractive candidates for organic light-emitting devices. However, compounds containing the indazole motif are known to exhibit to a variety of biological activities, such as estrogen receptor, HIV protease inhibition and anti-tumor activity. The prevalence of indazoles and indoles has led to the development of many useful methods for their preparation. Thus, isoindoline, indazole and indole heterocycles can be new candidates for the next generation of pharmaceuticals. Therefore, the development of highly efficient strategies for the formation of these heterocyclic architectures is an area of great interest in organic synthesis. The past years, transition-metal-catalyzed C−H activation followed by annulation reaction has been frequently used as a powerful tool to construct various heterocycles. Herein, we describe our recent achievements about the transition-metal-catalyzed tandem cyclization reactions of N-benzyltriflamides, 1,2-disubstituted arylhydrazines, acetanilides, etc. via C−H bond activation to access the corresponding bioactive heterocylic scaffolds.Keywords: biologically active, C-H activation, heterocyclic compounds, transition-metal catalysts
Procedia PDF Downloads 3092524 Synthesis of Flexible Mn1-x-y(CexLay)O2-δ Ultrathin-Film Device for Highly-Stable Pseudocapacitance from end-of-life Ni-MH batteries
Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Sefimofarah, Veena Sahajwalla
Abstract:
The present work details a three-stage strategy based on selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries leading to high-yield fabrication of defect-rich Mn1-x-y(CeₓLaᵧ)O2-δ film. In step one, major impurities (Fe and Al) were removed from a REE-rich solution. In step two, the resulting solution with trace content of Mn was further purified through electrodeposition which resulted in the synthesis of a non-stoichiometric Mn₋₁₋ₓ₋ᵧ(CeₓLaₓᵧ)O2-δ ultra-thin film, with controllable thicknesses (5-650 nm) and transmittance (~29-100%)in which Ce4+/3+ and La3+ ions were dissolved in MnO2-x lattice. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1-x-y(CexLay)O2-δ film with 86% transmittance exhibited an outstanding areal capacitance of 3.4 mF•cm-2, mainly attributed to the intercalation/de-intercalation of anionic O2- charge carriers through the atomic tunnels of the stratified Mn1-x-y(CexLay)O2-δ crystallites. Furthermore, the Mn1-x-y(CexLay)O2-δ exhibited excellent capacitance retention of ~90% after 16,000 cycles. Such stability was shown to be associated with intervalence charge transfers occurring among interstitial Ce/La cations and Mn oxidation states within the Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ structure. The energy and power densities of the transparent flexible Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ full-cell pseudocapacitor device with a solid-state electrolyte was measured to be 0.088 µWh.cm-2 and 843 µW.cm-2, respectively. These values showed insignificant changes under vigorous twisting and bending to 45-180˚, confirming these materials are intriguing alternatives for size-sensitive energy storage devices. In step three, the remaining solution purified further, that led to the formation of REOs (La, Ce, and Nd) nanospheres with ~40-50 nm diameter.Keywords: spent Ni-MH batteries, green energy, flexible pseudocapacitor, rare earth elements
Procedia PDF Downloads 1342523 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation
Authors: D. Amaranatha Reddy
Abstract:
Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen
Procedia PDF Downloads 1332522 Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization
Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa
Abstract:
The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.Keywords: biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc
Procedia PDF Downloads 4262521 Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori
Authors: Muhammad Dildar Gogi, Muhammad Arshad, Muhammad Ahsan Khan, M. Sufian, Ahmad Nawaz, Mubashir Iqbal, Muhammad Junaid Nisar, Waleed Afzal Naveed
Abstract:
Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality.Keywords: heavy-metals, larval-instars, lethal-concentration, mortality, silkworm
Procedia PDF Downloads 2192520 Bioprospecting for Indigenous Ruderal Plants with Potentials for Phytoremediation of Soil Heavy Metals in the Southern Guinea Savanna of North Western Nigeria
Authors: Sunday Paul Bako, Augustine Uwanekwu Ezealor, Yahuza Tanimu
Abstract:
In a study to evaluate the response of indigenous ruderal plants to the metal deposition regime imposed by anthropogenic modification in the Southern Guinea Savanna of north Western Nigeria during the dry and wet seasons, herbaceous plants and samples of soils were collected in three 5m by 5m quadrats laid around the environs of the Kaduna Refinery and Petrochemical Company and the banks of River Kaduna. Heavy metal concentration (Cd, Ni, Cr, Cu, Fe, Mn and Zn) in soil and plant samples was determined using Energy Dispersive X-ray Fluorescence. Concentrations of heavy metals in soils were generally observed to be higher during the wet season in both locations although the differences were not statistically significant (P > 0.05). Concentrations of Cd, Zn, Cr, Cu and Ni in all the plants observed were found to be below levels described as phytotoxic to plants. However, above ‘normal’ concentrations of Cr was observed in most of the plant species sampled. The concentrations of Cr, Cu, Ni and Zn in soils around the KRPC and RKB were found to be above the acceptable limits. Although no hyper accumulator plant species was encountered in this study, twenty (20) plant species were identified to have high bioconcentration (BCF > 1.0) of Cd and Cu, which indicated tolerance of these plants to excessive or phytotoxic concentrations of these metals. In addition, they generally produce high above ground biomass, due to rapid vegetative growth. These are likely species for phytoextraction. Elevated concentration of metals in both soil and plant materials may cause a decrease in biodiversity due to direct toxicity. There are also risks to humans and other animals due to bioaccumulation across the food chain. There are further possibilities of further evaluating and genetically improving metal tolerance traits in some of these plant species in relation to their potential use in phytoremediation programmes in metal polluted sites.Keywords: bioprospecting, phytoremediation, heavy metals, Nigeria
Procedia PDF Downloads 2842519 Some Metal Levels in Muscle Tissue of Seven Fish Species from the Suğla and Beyşehir Lakes, Turkey
Authors: Haluk Özparlak, Murad Aydın Şanda, Gülşin Arslan
Abstract:
Phoxinellus anatolicus, Carassius gibelio, Sander lucioperca, Vimba vimba tenella, Capoeta capoeta, Tinca tinca from Suğla Lake (Turkey) and Phoxinellus anatolicus, Scardinius erythrophthalmus, Tinca tinca from Beyşehir Lake (Turkey) are economically important fish species and these fish have been consumed as food by local people. P. anatolicus is also endangered and endemic species from Turkey. In this study, concentrations of Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn were determined in muscle tissue of these fish by using atomic absorption spectrophotometer. Levels of metals in the muscle tissue of all the fish specimens were compared with results of previous studies, the tolerance levels of national and international guidelines and the levels of Provisional Tolerable Weekly Intake (PTWI) limits set by FAO/WHO. Concentrations of Cd, Cr, Ni and Pb in the muscle tissue of all the fish specimens from Suğla and Beyşehir Lakes exceeded the tolerance levels of national and international guidelines. However, concentrations of Cd, Fe, Pb and Zn were below PTWI limits. Therefore, in terms of these metal levels, consumption of fresh filet of examined seven fish species (weekly up to about 300 g/person) doesn’t seem to be objectionable for human health.Keywords: Beyşehir Lake, fish, metal levels, Suğla Lake
Procedia PDF Downloads 3342518 Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods
Authors: Inseok Yeo, Tae-Ho Song
Abstract:
To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metal- barrier-added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For the double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for the service life of more than 20 years.Keywords: vacuum insulation panels, service life, double enveloping, metal-barrier-added enveloping, edge conduction
Procedia PDF Downloads 4332517 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool
Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman
Abstract:
Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering
Procedia PDF Downloads 4262516 Assessment of Heavy Metal Contamination for the Sustainable Management of Vulnerable Mangrove Ecosystem, the Sundarbans
Authors: S. Begum, T. Biswas, M. A. Islam
Abstract:
The present research investigates the distribution and contamination of heavy metals in core sediments collected from three locations of the Sundarbans mangrove forest. In this research, quality of the analysis is evaluated by analyzing certified reference materials IAEA-SL-1 (lake sediment), IAEA-Soil-7, and NIST-1633b (coal fly ash). Total concentrations of 28 heavy metals (Na, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Ga, As, Sb, Cs, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Hf, Ta, Th, and U) have determined in core sediments of the Sundarbans mangrove by neutron activation analysis (NAA) technique. When compared with upper continental crustal (UCC) values, it is observed that mean concentrations of K, Ti, Zn, Cs, La, Ce, Sm, Hf, and Th show elevated values in the research area is high. In this research, the assessments of metal contamination levels using different environmental contamination indices (EF, Igeo, CF) indicate that Ti, Sb, Cs, REEs, and Th have minor enrichment of the sediments of the Sundarbans. The modified degree of contamination (mCd) of studied samples of the Sundarbans ecosystem show low contamination. The pollution load index (PLI) values for the cores suggested that sampling points are moderately polluted. The possible sources of the deterioration of the sediment quality can be attributed to the different chemical carrying cargo accidents, port activities, ship breaking, agricultural and aquaculture run-off of the area. Pearson correlation matrix (PCM) established relationships among elements. The PCM indicates that most of the metal's distributions have been controlled by the same factors such as Fe-oxy-hydroxides and clay minerals, and also they have a similar origin. The poor correlations of Ca with most of the elements in the sediment cores indicate that calcium carbonate has a less significant role in this mangrove sediment. Finally, the data from this research will be used as a benchmark for future research and help to quantify levels of metal pollutions, as well as to manage future ecological risks of the vulnerable mangrove ecosystem, the Sundarbans.Keywords: contamination, core sediment, trace element, sundarbans, vulnerable
Procedia PDF Downloads 1222515 Enrichment and Flux of Heavy Metals along the Coastal Sediments of Pakistan
Authors: Asmat Siddiqui, Noor Us Saher
Abstract:
Heavy metal contamination in the marine environment is a global issue, and in past decades, this problem has intensified due to an increase in urbanization and industrialization, especially in developing countries. Marine sediments act as a preliminary indicator of heavy metal contamination in the coastal and estuarine environment, which has adverse effects on biota as well as in the marine system. The aim of the current study was to evaluate the contamination status, enrichment, and flux of heavy metals in two monitoring years from coastal sediments of Pakistan. A total of 74 sediment samples were collected from seven coastal areas of Pakistan in two monitoring years, 2001-03 (MY-I) and 2011-13 (MY-II). The geochemical properties (grain size analysis, organic contents and eight heavy metals, i.e. Fe, Zn, Cu, Cr, Ni, Co, Pb, and Cd) of all sediment samples were analyzed. A significant increase in Fe, Ni and Cr concentrations detected between the years, whereas no significant differences were exhibited in Cu, Zn, Co, Pb and Cd concentrations. The extremely high enrichment (>50) of Cu, Zn, Pb and Cd were scrutinized in both monitoring years. The annual deposition flux of heavy metals ranged from 0.63 to 66.44 and 0.78 to 68.27 tons per year in MY-I and MY-II, respectively, with the lowest flux evaluated for Cd and highest for Zn in both monitoring years. A significant increase (p <0.05) was observed in the burial flux of Cr and Ni during the last decade in coastal sediments. The use of geo-indicators is helpful to assess the contamination analysis for management and conservation of the marine environment.Keywords: coastal contamination, enrichment factor, geo-indicator, heavy metal flux
Procedia PDF Downloads 3792514 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System
Authors: K. Kamal
Abstract:
Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units
Procedia PDF Downloads 1722513 Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing
Authors: Mariam Badmus, Bothina Manasreh
Abstract:
Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications.Keywords: concentration, doping, magnetization, monolayer
Procedia PDF Downloads 112512 Identifying Issues of Corporate Governance and the Effect on Organizational Performance
Authors: Abiodun Oluwaseun Ibude
Abstract:
Every now and then we hear of companies closing down their operations due to unethical practices like an overstatement of company’s balance sheet, concealing company’s debt, embezzlement of company’s fund, declaring false profit and so on. This has led to the liquidation of companies and the loss of investments of shareholders as well as the interest of other stakeholders. As a result of these ugly trends, there is need to put in place a formidable mechanism that will ensure that business activities are conducted in a healthy manner. It should also promote good ethics as well as ensure that the interest of stakeholders and the objectives of any organization is achieved within the confines of the law; wherein law exists to provide criminal penalties for falsification of documents and for conducting other irregularities. Based on the foregoing, it becomes imperative to ensure that steps are taken to stop this menace and face the challenges ahead. This calls for the practice of good governance. The purpose of this study is to identify various components of corporate governance and determine the impact of it on the performance of established organizations. A survey method with the use of questionnaire was applied in collecting data useful for this study which were later analyzed using correlation co-efficiency statistical tools in generating finding, making a conclusion, and necessary recommendation. From the research conducted, it was discovered that there are systems within organizations apart from regulatory agencies that ensure effective control of activities, promote accountability, and operational efficiency. However, some members of organizations fail to explore the usage of corporate governance and impact negatively of an organization’s performance. In conclusion, good corporate governance will not be achieved unless there is openness, honesty, transparency, accountability, and fairness.Keywords: corporate governance, formidable mechanism, company’s balance sheet, stakeholders
Procedia PDF Downloads 1152511 A Proposed Treatment Protocol for the Management of Pars Interarticularis Pathology in Children and Adolescents
Authors: Paul Licina, Emma M. Johnston, David Lisle, Mark Young, Chris Brady
Abstract:
Background: Lumbar pars pathology is a common cause of pain in the growing spine. It can be seen in young athletes participating in at-risk sports and can affect sporting performance and long-term health due to its resistance to traditional management. There is a current lack of consensus of classification and treatment for pars injuries. Previous systems used CT to stage pars defects but could not assess early stress reactions. A modified classification is proposed that considers findings on MRI, significantly improving early treatment guidance. The treatment protocol is designed for patients aged 5 to 19 years. Method: Clinical screening identifies patients with a low, medium, or high index of suspicion for lumbar pars injury using patient age, sport participation and pain characteristics. MRI of the at-risk cohort enables augmentation of existing CT-based classification while avoiding ionising radiation. Patients are classified into five categories based on MRI findings. A type 0 lesion (stress reaction) is present when CT is normal and MRI shows high signal change (HSC) in the pars/pedicle on T2 images. A type 1 lesion represents the ‘early defect’ CT classification. The group previously referred to as a 'progressive stage' defect on CT can be split into 2A and 2B categories. 2As have HSC on MRI, whereas 2Bs do not. This distinction is important with regard to healing potential. Type 3 lesions are terminal stage defects on CT, characterised by pseudarthrosis. MRI shows no HSC. Results: Stress reactions (type 0) and acute fractures (1 and 2a) can heal and are treated in a custom-made hard brace for 12 weeks. It is initially worn 23 hours per day. At three weeks, patients commence basic core rehabilitation. At six weeks, in the absence of pain, the brace is removed for sleeping. Exercises are progressed to positions of daily living. Patients with continued pain remain braced 23 hours per day without exercise progression until becoming symptom-free. At nine weeks, patients commence supervised exercises out of the brace for 30 minutes each day. This allows them to re-learn muscular control without rigid support of the brace. At 12 weeks, bracing ceases and MRI is repeated. For patients with near or complete resolution of bony oedema and healing of any cortical defect, rehabilitation is focused on strength and conditioning and sport-specific exercise for the full return to activity. The length of this final stage is approximately nine weeks but depends on factors such as development and level of sports participation. If significant HSC remains on MRI, CT scan is considered to definitively assess cortical defect healing. For these patients, return to high-risk sports is delayed for up to three months. Chronic defects (2b and 3) cannot heal and are not braced, and rehabilitation follows traditional protocols. Conclusion: Appropriate clinical screening and imaging with MRI can identify pars pathology early. In those with potential for healing, we propose hard bracing and appropriate rehabilitation as part of a multidisciplinary management protocol. The validity of this protocol will be tested in future studies.Keywords: adolescents, MRI classification, pars interticularis, treatment protocol
Procedia PDF Downloads 1532510 Synthesis of Highly Stable Pseudocapacitors From Secondary Resources
Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Mofarah
Abstract:
Fabrication of the state-of-the-art portable pseudocapacitors with the desired transparency, mechanical flexibility, capacitance, and durability is challenging. In most cases, the fabrication of such devices requires critical elements which are either under the crisis of depletion or their extraction from virgin mineral ores have sever environmental impacts. This urges the use of secondary resources instead of virgin resources in fabrication of advanced devices. In this research, ultrathin films of defect-rich Mn1−x−y(CexLay)O2−δ with controllable thicknesses in the range between 5 nm to 627 nm and transmittance (≈29–100%) have been fabricated via an electrochemical chronoamperometric deposition technique using an aqueous precursor derived during the selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries. Intercalation/de-intercalation of anionic O2− through the atomic tunnels of the stratified Mn1−x−y(CexLay)O2−δ crystallites was found to be responsible for outstanding areal capacitance of 3.4 mF cm−2 of films with 86% transmittance. The intervalence charge transfer among interstitial Ce/La cations and Mn oxidation states within the Mn1−x−y(CexLay)O2−δ structure resulted in excellent capacitance retention of ≈90% after 16 000 cycles. The synthesised transparent flexible Mn1−x−y(CexLay)O2−δ full-cell pseudocapacitor device possessed the energy and power densities of 0.088 μWh cm⁻² and 843 µW cm⁻², respectively. These values show insignificant changes under vigorous twisting and bending to 45–180° confirming these value-added materials are intriguing alternatives for size-sensitive energy storage devices. This research confirms the feasibility of utilisation of secondary waste resources for the fabrication of high-quality pseudocapacitors with engineered defects with the desired flexibility, transparency, and cycling stability suitable for size-sensitive portable electronic devices.Keywords: pseudocapacitors, energy storage devices, flexible and transparent, sustainability
Procedia PDF Downloads 872509 Polymerization: An Alternative Technology for Heavy Metal Removal
Authors: M. S. Mahmoud
Abstract:
In this paper, the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution are reported on. Batch equilibrium studies were carried out to evaluate the adsorption capacity and process parameters such as pH, adsorbent dosages, initial metal ion concentrations, stirring rates and contact times. It was observed that the optimum pH for maximum copper ions adsorption was at pH 5.0. For all contact times, an increase in copper ions concentration resulted in decrease in the percent of copper ions removal. Langmuir and Freundlich's isothermal models were used to describe the experimental adsorption. Adsorbent was characterization using Fourier transform-infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM).Keywords: adsorption, alginate polymer, isothermal models, equilibrium
Procedia PDF Downloads 4482508 Anticancer Study of Copper and Zinc Complexes with Doxorubicin
Authors: Grzegorz Swiderski, Agata Jablonska-Trypuc, Natalia Popow, Renata Swislocka, Wlodzimierz Lewandowski
Abstract:
Doxorubicin belongs to the group of anthracycline antitumor antibiotics. Because of the wide spectrum of actions, it is one of the most widely used anthracycline antibiotics, including the treatment of breast, ovary, bladder, lung cancers as well as neuroblastoma, lymphoma, leukemia and myeloid leukemia. Antitumor activity of doxorubicin is based on the same mechanisms as for most anthracyclines. Like the metal ions affect the nucleic acids on many biological processes, so the environment of the metal chelates of antibiotics can have a significant effect on the pharmacological properties of drugs. Complexation of anthracyclines with metal ions may contribute to the production of less toxic compounds. In the framework of this study, the composition of complexes obtained in aqueous solutions of doxorubicin with metal ions (Cu2+ and Zn2+). Complexation was analyzed by spectrophotometric titration in aqueous solution at pH 7.0. The pH was adjusted with 0.02M Tris-HCl buffer. The composition of the complexes found was Cu: doxorubicin (1: 2) and a Zn: doxorubicin (1: 1). The effect of Dox, Dox-Cu and Dox-Zn was examined in MCF-7 breast cancer cell line, which were obtained from American Type Culture Collection (ATCC). The compounds were added to the cultured cells for a final concentration in the range of 0,01µM to 0,5µM. The number of MCF-7 cells with division into living and dead, was determined by direct counts of cells with the use of trypan blue dye using LUNA Logos Biosystems cell counter. ApoTox-Glo Triplex Assay (Promega, Madison, Wisconsin, USA) was used according to the manufacturer’s instructions to measure the MCF-7 cells’ viability, cytotoxicity and apoptosis. We observed a decrease in cells proliferation in a dose-dependent manner. An increase in cytotoxicity and decrease in viability in the ApoTox Triplex assay was also showed for all tested compounds. Apoptosis, showed as caspase 3/7 activation, was observed only in Dox treatment. In Dox-Zn and Dox-Cu caspase 3/7 activation was not observed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02 352.Keywords: anticancer properties, anthracycline antibiotic, doxorubicine, metal complexes
Procedia PDF Downloads 2802507 Acute Cartilage Defects of the Knee Treated With Chondral Restoration Procedures and Patellofemoral Stabilisation
Authors: John Scanlon, Antony Raymond, Randeep Aujla, Peter D’Alessandro, Satyen Gohil
Abstract:
Background: The incidence of significant acute chondral injuries with patella dislocation is around 10-15%. It is accepted that chondral procedures should only be performed in the presence of joint stability Methods:Patients were identified from surgeon/hospital logs. Patient demographics, lesion size and location, surgical procedure, patient reported outcome measures, post-operative MR imaging, and complications were recorded. PROMs and patient satisfaction was obtained. Results:20 knees (18 patients) were included. Mean age was 18.6 years (range; 11-39), and the mean follow-up was 16.6 months (range; 2-70). The defect locations were the lateral femoral condyle (9/20; 45%), patella (9/20; 45%), medial femoral condyle (1/20; 5%) and the trochlea (1/20; 5%). The mean defect size was 2.6cm2. Twelve knees were treated with cartilage fixation, 5 with microfracture, and 3 with OATS. At follow up, the overall mean Lysholm score was 77.4 (± 17.1), with no chondral regenerative procedure being statistically superior. There was no difference in Lysholm scores between those patients having acute medial patellofemoral ligament reconstruction versus medial soft tissue plication (p=0.59). Five (25%) knees required re-operation (one arthroscopic arthrolysis; one patella chondroplasty; two removal of loose bodies; one implant adjustment). Overall, 90% responded as being satisfied with surgery. Conclusion: Our aggressive pathway to identify and treat acute cartilage defects with early operative intervention and patella stabilisation has shown high rates of satisfaction and Lysholm scores. The full range of chondral restoration options should be considered by surgeons managing these patients.Keywords: patella dislocation, chondral restoration, knee, patella stabilisation
Procedia PDF Downloads 1282506 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films
Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh
Abstract:
According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.Keywords: memristor, quantum dot, resistive switching, thin film
Procedia PDF Downloads 1222505 Spontaneous Reformation of Dehiscent Frontal Sinus Wall after Endoscopic Removal of Mucocele
Authors: Tan Dexian Arthur, James Wei Ming Kwek, Ian Loh, Lee Tee Sin
Abstract:
Statement of the Problem: Mucoceles most commonly affect the frontal sinus, which results from chronic obstruction of the sinus ostium or cystic dilatation of mucous glands with ductal obstruction. They are known to cause bony erosion of the sinus walls, which can lead to large defects. These defects were typically managed by obliteration or cranialization of the frontal sinus. Although short term outcomes of conservative management of significant posterior table defects from fractures are promising, there have been no studies on the long-term outcomes of large dehiscences in the posterior wall of the frontal sinus. Methodology & Findings : Computed Tomography (CT) Paranasal Sinuses images were analyzed and found complete spontaneous osteogenesis of a large dehiscent frontal sinus posterior wall, secondary to a large mucocele, 9 years from functional endoscopic sinus surgery with the defect managed conservatively. Conclusion & Significance: The dura is well known for its osteogenic properties. Prior studies have showed that dura could induce osteogenesis in cutaneous tissue in the absence of other central nervous system structures. It was also demonstrated that osteogenesis and chondrogenesis were possible in zygomatic fractures by transplanting neonatal dura grafts to the bony defects in rats. Extrapolating from these studies, the authors postulate that the presence of dura beneath the bony deformity of the posterior frontal sinus wall had likely initiated the osteogenesis and restored the bony defect in the patient. In our literature review, we did not find any reports of spontaneous osteogenesis of large frontal sinus defects. While our experience is incidental, it reinforces the osteogenetic potential of an intact dura and further highlights that selected large defects of the posterior wall of the frontal sinus can be conservatively managed.Keywords: paranasal sinus mucocele, mucocele, osteogenesis, dehiscence
Procedia PDF Downloads 642504 Toxic Heavy Metal Accumulation by Algerian Malva sylvestris L. Depending on Location Variation
Authors: Souhila Terfi, Fatma Hassaine-Sadi
Abstract:
In the present study, wet digestion with HCl and HNO3 mixture was used to extract the heavy metals (copper (Cu), chromium (Cr), zinc (Zn), lead (Pb) and cadmium (Cd)) from the leaves, the stems and the roots of Malva sylvestris L., which were subsequently analyzed by AAS. The samples (soil and parts of species) were collected from different sites: the industrial area (IA) (Rouiba), the rubbish dump area (RDA) (Boudouaou), the residential area (RA) with large open fields and construction activities (Blida), the Montaigne area (MA) (Chrea) and the high plateau area (HPA) (Berouaguia). The study showed differences in metal concentrations according to the analysed parts and the different sampling locations. In the contaminated site of the industrial area (IA), high content of the toxic heavy metals (Cd: 3.18 µg/g DW and Pb: 34.48 µg/g DW) were found in the leaves of Malva sylvestris L. This finding suggests that the consumers of this species could be exposed to a risk associated with this higher level of these toxic metals. It was found that Malva sylvestris L. is rich by Zn and Cu in some sites, which are considered to be the essential elements for the human health. The obtained results with the control site (Montaigne area) suggest that this species can be applicable in both the health and food, feasible alternatives as medicinal plant without any risk.Keywords: Malva sylvestris L., toxic heavy metal, medicinal plant, impact on human health
Procedia PDF Downloads 3592503 High-pressure Crystallographic Characterization of f-block Element Complexes
Authors: Nicholas B. Beck, Thomas E. Albrecht-Schönzart
Abstract:
High-pressure results in decreases in the bond lengths of metal-ligand bonds, which has proven to be incredibly informative in uncovering differences in bonding between lanthanide and actinide complexes. The degree of f-electron contribution to the metal ligand bonds has been observed to increase under pressure by a far greater degree in the actinides than the lanthanides, as revealed by spectroscopic studies. However, the actual changes in bond lengths have yet to be quantified, although computationally predicted. By using high-pressure crystallographic techniques, crystal structures of lanthanide complexes have been obtained at pressures up to 5 GPa for both hard and soft-donor ligands. These studies have revealed some unpredicted changes in the coordination environment as well as provided experimental support to computational resultsKeywords: crystallography, high-pressure, lanthanide, materials
Procedia PDF Downloads 105