Search results for: least squares regression
2740 Hospital Malnutrition and its Impact on 30-day Mortality in Hospitalized General Medicine Patients in a Tertiary Hospital in South India
Authors: Vineet Agrawal, Deepanjali S., Medha R., Subitha L.
Abstract:
Background. Hospital malnutrition is a highly prevalent issue and is known to increase the morbidity, mortality, length of hospital stay, and cost of care. In India, studies on hospital malnutrition have been restricted to ICU, post-surgical, and cancer patients. We designed this study to assess the impact of hospital malnutrition on 30-day post-discharge and in-hospital mortality in patients admitted in the general medicine department, irrespective of diagnosis. Methodology. All patients aged above 18 years admitted in the medicine wards, excluding medico-legal cases, were enrolled in the study. Nutritional assessment was done within 72 h of admission, using Subjective Global Assessment (SGA), which classifies patients into three categories: Severely malnourished, Mildly/moderately malnourished, and Normal/well-nourished. Anthropometric measurements like Body Mass Index (BMI), Triceps skin-fold thickness (TSF), and Mid-upper arm circumference (MUAC) were also performed. Patients were followed-up during hospital stay and 30 days after discharge through telephonic interview, and their final diagnosis, comorbidities, and cause of death were noted. Multivariate logistic regression and cox regression model were used to determine if the nutritional status at admission independently impacted mortality at one month. Results. The prevalence of malnourishment by SGA in our study was 67.3% among 395 hospitalized patients, of which 155 patients (39.2%) were moderately malnourished, and 111 (28.1%) were severely malnourished. Of 395 patients, 61 patients (15.4%) expired, of which 30 died in the hospital, and 31 died within 1 month of discharge from hospital. On univariate analysis, malnourished patients had significantly higher morality (24.3% in 111 Cat C patients) than well-nourished patients (10.1% in 129 Cat A patients), with OR 9.17, p-value 0.007. On multivariate logistic regression, age and higher Charlson Comorbidity Index (CCI) were independently associated with mortality. Higher CCI indicates higher burden of comorbidities on admission, and the CCI in the expired patient group (mean=4.38) was significantly higher than that of the alive cohort (mean=2.85). Though malnutrition significantly contributed to higher mortality on univariate analysis, it was not an independent predictor of outcome on multivariate logistic regression. Length of hospitalisation was also longer in the malnourished group (mean= 9.4 d) compared to the well-nourished group (mean= 8.03 d) with a trend towards significance (p=0.061). None of the anthropometric measurements like BMI, MUAC, or TSF showed any association with mortality or length of hospitalisation. Inference. The results of our study highlight the issue of hospital malnutrition in medicine wards and reiterate that malnutrition contributes significantly to patient outcomes. We found that SGA performs better than anthropometric measurements in assessing under-nutrition. We are of the opinion that the heterogeneity of the study population by diagnosis was probably the primary reason why malnutrition by SGA was not found to be an independent risk factor for mortality. Strategies to identify high-risk patients at admission and treat malnutrition in the hospital and post-discharge are needed.Keywords: hospitalization outcome, length of hospital stay, mortality, malnutrition, subjective global assessment (SGA)
Procedia PDF Downloads 1482739 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria
Authors: Justin Orimisan Ijigbade
Abstract:
The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.Keywords: climate variability, honeybees production, humidity, rainfall and temperature
Procedia PDF Downloads 2712738 Effect of Exercise on Sexual Behavior and Semen Quality of Sahiwal Bulls
Authors: Abdelrasoul, Khalid Ahmed Elrabie
Abstract:
The study was conducted on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to determine the effect of exercise on the sexual behavior and semen quality. Fourteen Sahiwal bulls were classified into two groups of seven each. Group-1, bulls were exercised by walking in a bull exerciser once a week one hour before semen collection, whereas bulls in group-2 were exercised daily. Sexual behavior and semen quality traits studied were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-2 showed significantly (p < 0.01) higher value in RT (sec), DMT (sec), TTTM (sec), ES, PS, ITS, LS, semen volume, semen color density and mass activity.Keywords: exercise, Sahiwal bulls, semen quality, sexual behavior
Procedia PDF Downloads 3262737 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements
Authors: Zhidong Zhang, Amanda Resendez
Abstract:
This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis
Procedia PDF Downloads 1302736 Study of Pre-Handwriting Factors Necessary for Successful Handwriting in Children
Authors: Lalitchandra J. Shah, Katarzyna Bialek, Melinda L. Clarke, Jessica L. Jansson
Abstract:
Handwriting is essential to academic success; however, the current literature is limited in the identification of pre-handwriting skills. The purpose of this study was to identify the pre-handwriting skills, which occupational therapy practitioners deem important to handwriting success, as well as those which aid in intervention planning. The online survey instrument consisted of 33 questions that assessed various skills related to the development of handwriting, as well as captured demographic information. Both occupational therapists and occupational therapy assistants were included in the survey study. The survey found that the respondents were in agreement that purposeful scribbling, the ability of a child to copy (vertical/horizontal lines, circle, squares, and triangles), imitating an oblique cross, cognitive skills (attention, praxis, self-regulation, sequencing), grasp patterns, hand dominance, in hand manipulation skills (shift, translation, rotation), bilateral integration, stabilization of paper, crossing midline, and visual perception were important indicators of handwriting readiness. The results of the survey support existing research regarding the skills necessary for the successful development of handwriting in children.Keywords: development, handwriting, occupational therapy, visual perceptual skills
Procedia PDF Downloads 3492735 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor
Authors: Pranav Gulati, Isha Sharma
Abstract:
Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring
Procedia PDF Downloads 2752734 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times
Authors: Nagham Ismail, Djamel Ouahrani
Abstract:
Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather
Procedia PDF Downloads 722733 The Comparative Analysis of International Financial Reporting Standart Adoption through Earnings Response Coefficient and Conservatism Principle: Case Study in Jakarta Islamic Index 2010 – 2014
Authors: Dwi Wijiastutik, Tarjo, Yuni Rimawati
Abstract:
The purpose of this empirical study is to analyse how to the market reaction and the conservative degree changes on the adoption of International Financial Reporting Standart (IFRS) through Jakarta Islamic Index. The study also has given others additional analysis on the profitability, capital structure and size company toward IFRS adoption. The data collection methods used in this study reveals as secondary data and deep analysis to the company’s annual report and daily price stock at yahoo finance. We analyse 40 companies listed on Jakarta Islamic Index from 2010 to 2014. The result of the study concluded that IFRS has given a different on the depth analysis to the two of variance analysis: Moderated Regression Analysis and Wilcoxon Signed Rank to test developed hypotheses. Our result on the regression analysis shows that market response and conservatism principle is not significantly after IFRS Adoption in Jakarta Islamic Index. Furthermore, in addition, analysis on profitability, capital structure, and company size show that significantly after IFRS adoption. The findings of our study help investor by showing the impact of IFRS for making decided investment.Keywords: IFRS, earnings response coefficient, conservatism principle
Procedia PDF Downloads 2692732 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1082731 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia
Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo
Abstract:
Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.Keywords: climate variability, crop income, household, rainfall, temperature
Procedia PDF Downloads 3752730 BOFSC: A Blockchain Based Decentralized Framework to Ensure the Transparency of Organic Food Supply Chain
Authors: Mifta Ul Jannat, Raju Ahmed, Al Mamun, Jannatul Ferdaus, Ritu Costa, Milon Biswas
Abstract:
Blockchain is an internet-based invention that is coveted in the permanent, scumbled record for its capacity to openly accept, record, and distribute transactions. In a traditional supply chain, there are no trustworthy participants for an organic product. Yet blockchain engineering may provide confidence, transparency, and traceability. Blockchain varies in how companies get real, checked, and lasting information from their supply chain and lock in customers. In an arrangement of cryptographic squares, Blockchain digitizes each connection by sparing it. No one person may alter the documents, and any alteration within the agreement is clear to all. The coming to the record is tamper proof and unchanging, offering a complete history of the object’s life cycle and minimizing opening for extorting. The primary aim of this analysis is to identify the underlying problem that the customer faces. In this post, we will minimize the allocation of fraud data through the ’Smart Contract’ and include a certificate of quality assurance.Keywords: blockchain technology, food supply chain, Ethereum, smart contract, quality assurance, trustability, security, transparency
Procedia PDF Downloads 1522729 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses
Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev
Abstract:
The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion
Procedia PDF Downloads 2932728 Modelling the Effect of Physical Environment Factors on Child Pedestrian Severity Collisions in Malaysia: A Multinomial Logistic Regression Analysis
Authors: Muhamad N. Borhan, Nur S. Darus, Siti Z. Ishak, Rozmi Ismail, Siti F. M. Razali
Abstract:
Children are at the greater risk to be involved in road traffic collisions due to the complex interaction of various elements in our transportation system. It encompasses interactions between the elements of children and driver behavior along with physical and social environment factors. The present study examined the effect between the collisions severity and physical environment factors on child pedestrian collisions. The severity of collisions is categorized into four injury outcomes: fatal, serious injury, slight injury, and damage. The sample size comprised of 2487 cases of child pedestrian-vehicle collisions in which children aged 7 to 12 years old was involved in Malaysia for the years 2006-2015. A multinomial logistic regression was applied to establish the effect between severity levels and physical environment factors. The results showed that eight contributing factors influence the probability of an injury road surface material, traffic system, road marking, control type, lighting condition, type of location, land use and road surface condition. Understanding the effect of physical environment factors may contribute to the improvement of physical environment design and decrease the collision involvement.Keywords: child pedestrian, collisions, primary school, road injuries
Procedia PDF Downloads 1622727 Poverty Dynamics in Thailand: Evidence from Household Panel Data
Authors: Nattabhorn Leamcharaskul
Abstract:
This study aims to examine determining factors of the dynamics of poverty in Thailand by using panel data of 3,567 households in 2007-2017. Four techniques of estimation are employed to analyze the situation of poverty across households and time periods: the multinomial logit model, the sequential logit model, the quantile regression model, and the difference in difference model. Households are categorized based on their experiences into 5 groups, namely chronically poor, falling into poverty, re-entering into poverty, exiting from poverty and never poor households. Estimation results emphasize the effects of demographic and socioeconomic factors as well as unexpected events on the economic status of a household. It is found that remittances have positive impact on household’s economic status in that they are likely to lower the probability of falling into poverty or trapping in poverty while they tend to increase the probability of exiting from poverty. In addition, not only receiving a secondary source of household income can raise the probability of being a never poor household, but it also significantly increases household income per capita of the chronically poor and falling into poverty households. Public work programs are recommended as an important tool to relieve household financial burden and uncertainty and thus consequently increase a chance for households to escape from poverty.Keywords: difference in difference, dynamic, multinomial logit model, panel data, poverty, quantile regression, remittance, sequential logit model, Thailand, transfer
Procedia PDF Downloads 1122726 Deposit Characteristics of Jakarta, Indonesia: A Stratigraphy Study of Jakarta Subsurface
Authors: Girlly Marchlina Listyono, Abdurrokhim Abdurrokhim, Emi Sukiyah, Pulung Arya Pranantya
Abstract:
Jakarta Area is composed by deposit which has various lithology characteristics. Based on its lithology types, colors, textures, mineral dan organic content from 22 wells scattered on Jakarta, lithofacies analysis and intra-wells data correlation can be done. From the analysis, it can be interpretated that Jakarta deposit deposited in marine, transition and terrestrial depositional environments. Terrestrial deposit characterized by domination of relatively coarse clastics and content of remaining roots, woods, plants, high content of quartz, lithic fragment, calcareous and oxidated appearace. The thickness of terrestrial deposit is thickening to south. Transitional deposit characterized by fine to medium clastics with dark color, high content of organic matter, various thickness in any ways. Marine deposit characterized by finer clastics, contain remain of shells, fosil, coral, limestone fragments, glauconites, calcareous. Marine deposit relatively thickening to north. Those lateral variety caused by tectonic, subsidence and stratigraphic condition. Deposition of Jakarta deposit from the data research was started on marine depositional environment which surrounded by the event of cycle of regression and transgression then ended with regression which ongoing until form shore line in north Jakarta nowadays.Keywords: deposit, Indonesia, Jakarta, sediment, stratigraphy
Procedia PDF Downloads 2532725 Bounds on the Laplacian Vertex PI Energy
Authors: Ezgi Kaya, A. Dilek Maden
Abstract:
A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index
Procedia PDF Downloads 2442724 Statistical Analysis Approach for the e-Glassy Mortar And Radiation Shielding Behaviors Using Anova
Authors: Abadou Yacine, Faid Hayette
Abstract:
Significant investigations were performed on the use and impact on physical properties along with the mechanical strength of the recycled and reused E-glass waste powder. However, it has been modelled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. To be involved in this field, an investigation has been done with the substitution of dune sand for recycled E-glass waste and constant water-cement ratios. The linear relationship between the dune sand mortar and E-glass mortar mix % contributes to the model's reliability. The experimental data was exposed to regression analysis using JMP Statistics software. The regression model with one predictor presented the general form of the equation for the prediction of the five properties' characteristics of dune sand mortar from the substitution ratio of E-waste glass and curing age. The results illustrate that curing a long-term process produced an E-glass waste mortar specimen with the highest compressive strength of 68 MPa in the laboratory environment. Anova analysis indicated that the curing at long-term has the utmost importance on the sorptivity level and ultrasonic pulse velocity loss. Furthermore, the E-glass waste powder percentage has the utmost importance on the compressive strength and improvement in dynamic elasticity modulus. Besides, a significant enhancement of radiation-shielding applications.Keywords: ANOVA analysis, E-glass waste, durability and sustainability, radiation-shielding
Procedia PDF Downloads 572723 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 1622722 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors
Authors: Navid Kaboudi, Ali Shayanfar
Abstract:
Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.Keywords: logistic regression, breastfeeding, descriptors, penetration
Procedia PDF Downloads 692721 Charting Sentiments with Naive Bayes and Logistic Regression
Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri
Abstract:
The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.Keywords: machine learning, sentiment analysis, visualisation, python
Procedia PDF Downloads 542720 Modelling and Optimisation of Floating Drum Biogas Reactor
Authors: L. Rakesh, T. Y. Heblekar
Abstract:
This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.Keywords: biogas, floating drum reactor, neural network model, optimization
Procedia PDF Downloads 1422719 Solids and Nutrient Loads Exported by Preserved and Impacted Low-Order Streams: A Comparison among Water Bodies in Different Latitudes in Brazil
Authors: Nicolas R. Finkler, Wesley A. Saltarelli, Taison A. Bortolin, Vania E. Schneider, Davi G. F. Cunha
Abstract:
Estimating the relative contribution of nonpoint or point sources of pollution in low-orders streams is an important tool for the water resources management. The location of headwaters in areas with anthropogenic impacts from urbanization and agriculture is a common scenario in developing countries. This condition can lead to conflicts among different water users and compromise ecosystem services. Water pollution also contributes to exporting organic loads to downstream areas, including higher order rivers. The purpose of this research is to preliminarily assess nutrients and solids loads exported by water bodies located in watersheds with different types of land uses in São Carlos - SP (Latitude. -22.0087; Longitude. -47.8909) and Caxias do Sul - RS (Latitude. -29.1634, Longitude. -51.1796), Brazil, using regression analysis. The variables analyzed in this study were Total Kjeldahl Nitrogen (TKN), Nitrate (NO3-), Total Phosphorus (TP) and Total Suspended Solids (TSS). Data were obtained in October and December 2015 for São Carlos (SC) and in November 2012 and March 2013 for Caxias do Sul (CXS). Such periods had similar weather patterns regarding precipitation and temperature. Altogether, 11 sites were divided into two groups, some classified as more pristine (SC1, SC4, SC5, SC6 and CXS2), with predominance of native forest; and others considered as impacted (SC2, SC3, CXS1, CXS3, CXS4 and CXS5), presenting larger urban and/or agricultural areas. Previous linear regression was applied for data on flow and drainage area of each site (R² = 0.9741), suggesting that the loads to be assessed had a significant relationship with the drainage areas. Thereafter, regression analysis was conducted between the drainage areas and the total loads for the two land use groups. The R² values were 0.070, 0.830, 0.752 e 0.455 respectively for SST, TKN, NO3- and TP loads in the more preserved areas, suggesting that the loads generated by runoff are significant in these locations. However, the respective R² values for sites located in impacted areas were respectively 0.488, 0.054, 0.519 e 0.059 for SST, TKN, NO3- and P loads, indicating a less important relationship between total loads and runoff as compared to the previous scenario. This study suggests three possible conclusions that will be further explored in the full-text article, with more sampling sites and periods: a) In preserved areas, nonpoint sources of pollution are more significant in determining water quality in relation to the studied variables; b) The nutrient (TKN and P) loads in impacted areas may be associated with point sources such as domestic wastewater discharges with inadequate treatment levels; and c) The presence of NO3- in impacted areas can be associated to the runoff, particularly in agricultural areas, where the application of fertilizers is common at certain times of the year.Keywords: land use, linear regression, point and non-point pollution sources, streams, water resources management
Procedia PDF Downloads 3032718 Healthy Lifestyle and Risky Behaviors amongst Students of Physical Education High Schools
Authors: Amin Amani, Masomeh Reihany Shirvan, Mahla Nabizadeh Mashizi, Mohadese Khoshtinat, Mohammad Elyas Ansarinia
Abstract:
The purpose of this study is the relationship between a healthy lifestyle and risky behavior in physical education students of Bojnourd schools. The study sample consisted of teenagers studying in second and third grade of Bojnourd's high schools. According to level sampling, 604 students studying in the second grade, and 600 students studying in third grade were tested from physical education schools in Bojnourd. For sample selection, populations were divided into 4 area including north, East, West and South. Then according to the number of students of each area, sample size of each level was determined. Two questionnaires were used to collect data in this study which were consisted of three parts: The demographic data, Iranian teenagers' risk taking (IARS) and prevention methods with emphasize on the importance of family role were examined. The Central and dispersion indices, such as standard deviation, multiple variance analysis, and multivariate regression analysis were used. Results showed that the observed F is significant (P ≤ 0.01) and 21% of variance related to risky behavior is explained by the lack of awareness. Given the significance of the regression, the coefficients of risky behavior in teenagers in prediction equation showed that each of teenagers' risky behavior can have an impact on healthy lifestyle.Keywords: healthy lifestyle, high-risk behavior, students, physical education
Procedia PDF Downloads 1872717 Investigation of Pollution and the Physical and Chemical Condition of Polour River, East of Tehran, Iran
Authors: Azita Behbahaninia
Abstract:
This research has been carried out to determine the water quality and physico-chemical properties Polour River, one of the most branch of Haraz River. Polour River was studied for a period of one year Samples were taken from different stations along the main branch of River polour. In water samples determined pH, DO, SO4, Cl, PO4, NO3, EC, BOD, COD, Temprature, color and number of Caliform per liter. ArcGIS was used for the zoning of phosphate concentration in the polour River basin. The results indicated that the river is polluted in polour village station, because of discharge domestic wastewater and also river is polluted in Ziar village station, because of agricultural wastewater and water is contaminated in aquaculture station, because of fish ponds wastewater. Statistical analysis shows that between independent traits and coliform regression relationship is significant at the 1% level. Coefficient explanation index indicated independent traits control 80% coliform and 20 % is for unknown parameters. The causality analysis showed Temperature (0.6) has the most positive and direct effect on coliform and sulfate has direct and negative effect on coliform. The results of causality analysis and the results of the regression analysis are matched and other forms direct and indirect effects were negligible and ignorable. Kruskal-Wallis test showed, there is different between sampling stations and studied characters. Between stations for temperature, DO, COD, EC, sulfate and coliform is at 1 % and for phosphate 5 % level of significance.Keywords: coliform, GIS, pollution, phosphate, river
Procedia PDF Downloads 4662716 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria
Authors: Jamila Garba Audu, Shehu Usman Hassan
Abstract:
The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance
Procedia PDF Downloads 2432715 Accelerated Evaluation of Structural Reliability under Tsunami Loading
Authors: Sai Hung Cheung, Zhe Shao
Abstract:
It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.Keywords: response surface, stochastic simulation, structural reliability tsunami, risk
Procedia PDF Downloads 6732714 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus
Procedia PDF Downloads 1842713 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 602712 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 742711 Effect of Serum Electrolytes on a QTc Interval and Mortality in Patients admitted to Coronary Care Unit
Authors: Thoetchai Peeraphatdit, Peter A. Brady, Suraj Kapa, Samuel J. Asirvatham, Niyada Naksuk
Abstract:
Background: Serum electrolyte abnormalities are a common cause of an acquired prolonged QT syndrome, especially, in the coronary care unit (CCU) setting. Optimal electrolyte ranges among the CCU patients have not been sufficiently investigated. Methods: We identified 8,498 consecutive CCU patients who were admitted to the CCU at Mayo Clinic, Rochester, the USA, from 2004 through 2013. Association between first serum electrolytes and baseline corrected QT intervals (QTc), as well as in-hospital mortality, was tested using multivariate linear regression and logistic regression, respectively. Serum potassium 4.0- < 4.5 mEq/L, ionized calcium (iCa) 4.6-4.8 mg/dL, and magnesium 2.0- < 2.2 mg/dL were used as the reference levels. Results: There was a modest level-dependent relationship between hypokalemia ( < 4.0 mEq/L), hypocalcemia ( < 4.4 mg/dL), and a prolonged QTc interval; serum magnesium did not affect the QTc interval. Association between the serum electrolytes and in-hospital mortality included a U-shaped relationship for serum potassium (adjusted odds ratio (OR) 1.53 and OR 1.91for serum potassium 4.5- < 5.0 and ≥ 5.0 mEq/L, respectively) and an inverted J-shaped relationship for iCa (adjusted OR 2.79 and OR 2.03 for calcium < 4.4 and 4.4- < 4.6 mg/dL, respectively). For serum magnesium, the mortality was greater only among patients with levels ≥ 2.4 mg/dL (adjusted OR 1.40), compared to the reference level. Findings were similar in sensitivity analyses examining the association between mean serum electrolytes and mean QTc intervals, as well as in-hospital mortality. Conclusions: Serum potassium 4.0- < 4.5 mEq/L, iCa ≥ 4.6 mg/dL, and magnesium < 2.4 mg/dL had a neutral effect on QTc intervals and were associated with the lowest in-hospital mortality among the CCU patients.Keywords: calcium, electrocardiography, long-QT syndrome, magnesium, mortality, potassium
Procedia PDF Downloads 393