Search results for: disease prediction
5164 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis
Authors: Srinaath Anbu Durai, Wang Zhaoxia
Abstract:
Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks
Procedia PDF Downloads 1165163 Suggested Role for Neutrophil Extracellular Traps Formation in Ewing Sarcoma Immune Microenvironment
Authors: Rachel Shukrun, Szilvia Baron, Victoria Fidel, Anna Shusterman, Osnat Sher, Netanya Kollender, Dror Levin, Yair Peled, Yair Gortzak, Yoav Ben-Shahar, Revital Caspi, Sagi Gordon, Michal Manisterski, Ronit Elhasid
Abstract:
Ewing sarcoma (EWS) is a highly aggressive cancer with a survival rate of 70–80% for patients with localized disease and under 30% for those with metastatic disease. Tumor-infiltrating neutrophils (TIN) can generate extracellular net-like DNA structures known as neutrophil extracellular traps (NETs). However, little is known about the presence and prognostic significance of tumor-infiltrating NETs in EWS. Herein, we investigated 46 patients diagnosed with EWS and treated in the Tel Aviv Medical Center between 2010 and 2021. TINs and NETs were identified in diagnostic biopsies of EWS by immunofluorescent. In addition, NETs were investigated in neutrophils isolated from peripheral blood samples of EWS patients at diagnosis and following neoadjuvant chemotherapy. The relationships between the presence of TINs and NETs, pathological and clinical features, and outcomes were analyzed. Our results demonstrate that TIN and NETs at diagnosis were higher in EWS patients with metastatic disease compared to those with local disease. High NETs formation at diagnosis predicted poor response to neo-adjuvant chemotherapy, relapse, and death from disease (P < .05). NETs formation in peripheral blood samples at diagnosis was significantly elevated among patients with EWS compared to pediatric controls and decreased significantly following neoadjuvant chemotherapy. In conclusion, NETs formation seems to have a role in the EWS immune microenvironment. Their presence can refine risk stratification, predict chemotherapy resistance and survival, and serve as a therapeutic target in patients with EWS.Keywords: Ewing sarcoma, tumor microenvironment, neutrophil, neutrophil extracellular traps (NETs), prognosis
Procedia PDF Downloads 645162 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series
Procedia PDF Downloads 2445161 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis
Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda
Abstract:
Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology
Procedia PDF Downloads 2755160 Functional Profiling of a Circular RNA from the Huntingtin (HTT) Gene
Authors: Laura Gantley, Vanessa M. Conn, Stuart Webb, Kirsty Kirk, Marta Gabryelska, Duncan Holds, Brett W. Stringer, Simon J. Conn
Abstract:
Trinucleotide repeat disorders comprise ~20 severe, inherited human neuromuscular and neurodegenerative disorders, which are a result of an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington’s disease, results from the expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Non-coding RNAs have been implicated in the initiation and progression of many diseases; thus, we focus on one circular RNA (circRNA) molecule arising from non-canonical splicing (back splicing) of HTT pre-mRNA. This circRNA and its mouse orthologue were transgenically overexpressed in human cells (SHSY-5Y and HEK293T) and mouse cells (Mb1), respectively. High-content imaging and flow cytometry demonstrated the overexpression of this circRNA reduces cell proliferation, reduces nuclear size independent of cellular size, and alters cell cycle progression. Analysis of protein by western blot and immunofluorescence demonstrated no change to HTT protein levels but altered nuclear-cytoplasmic distribution without impacting the expansion of the HTT repeat region. As these phenotypic and genotypic changes are found in Huntington’s disease patients, these results may suggest that this circRNA may play a functional role in the progression of Huntington’s disease.Keywords: cell biology, circular RNAs, Huntington’s disease, molecular biology, neurodegenerative disorders
Procedia PDF Downloads 995159 Prediction of the Behavior of 304L Stainless Steel under Uniaxial and Biaxial Cyclic Loading
Authors: Aboussalih Amira, Zarza Tahar, Fedaoui Kamel, Hammoudi Saleh
Abstract:
This work focuses on the simulation of the prediction of the behaviour of austenitic stainless steel (SS) 304L under complex loading in stress and imposed strain. The Chaboche model is a cable to describe the response of the material by the combination of two isotropic and nonlinear kinematic work hardening, the model is implemented in the ZébuLon computer code. First, we represent the evolution of the axial stress as a function of the plastic strain through hysteresis loops revealing a hardening behaviour caused by the increase in stress by stress in the direction of tension/compression. In a second step, the study of the ratcheting phenomenon takes a key place in this work by the appearance of the average stress. In addition to the solicitation of the material in the biaxial direction in traction / torsion.Keywords: damage, 304L, Ratcheting, plastic strain
Procedia PDF Downloads 945158 Prediction of Conducted EMI Noise in a Converter
Abstract:
Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique.Keywords: EMI, electromagnetic interference, SMPS, switch-mode power supply, common mode, CM, differential mode, DM, noise
Procedia PDF Downloads 12085157 Neuroprotective Effects of Rosmarinic Acid in the MPTP Mouse Model of Parkinson's Disease
Authors: Huamin Xu, Wenting Jia, Hong Jiang, Junxia Xie
Abstract:
Rosmarinic acid (RA) is a natural acid that is found in a variety of herbs, such as rosemary and has multiple biological activities such as antioxidative, anti-inflammatory and antiviral activities. In this study, we investigated the neuroprotective effects of RA on dopaminergic system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model of Parkinson’s disease (PD). The mice received oral administration of RA before MPTP injection. Results showed that the tyrosine hydroxylase expression in SN reduced and the levels of dopamine and its metabolites in the striatum decreased in MPTP intoxicated PD mice. Pretreatment with RA significantly inhibited these changes. Further studies demonstrated that MPTP treatment increased the iron content, which was counteracted by pre-treatment with RA. In addition, RA could restore the decrease of superoxide dismutase (SOD) induced by MPTP. This study provides evidence that RA could suppress MPTP-induced degeneration of the nigrostriatal dopaminergic system by regulating iron content and the expression of SOD. Thus, RA might be clinically evaluated for the prevention of neurodegenerative diseases.Keywords: rosmarinic acid, Parkinson's disease, MPTP, dopaminergic system
Procedia PDF Downloads 2045156 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 1215155 Multi-Sectoral Prioritization of Zoonotic Diseases in Uganda, 2017: The Perspective of One Health Experts
Authors: Musa Sekamatte
Abstract:
Background: Zoonotic diseases continue to be a public health burden in countries around the world. Uganda is especially vulnerable due to its location, biodiversity, and population. Given these concerns, the Ugandan government in collaboration with the Global Health Security Agenda conducted a zoonotic disease prioritization workshop to identify zoonotic diseases of concern to multiple Ugandan ministries. Materials and Methods: The One Health Zoonotic Disease Prioritization tool, developed by the U.S. Centers for Disease Control and Prevention (CDC), was used for prioritization of zoonotic diseases in Uganda. Workshop participants included voting members representing human, animal, and environmental health ministries as well as key partners who observed the workshop. Over 100 articles describing characteristics of these zoonotic diseases were reviewed for the workshop. During the workshop, criteria for prioritization were selected, and questions and weights relevant to each criterion were determined. Next steps for multi-sectoral engagement for the prioritized zoonoses were then discussed. Results: 48 zoonotic diseases were considered during the workshop. Criteria selected to prioritize zoonotic diseases in order of importance were (1) severity of disease in humans in Uganda, (2) availability of effective control strategies, (3) potential to cause an epidemic or pandemic in humans or animals, (4) social and economic impacts, and (5) bioterrorism potential. Seven zoonotic diseases were identified as priorities for Uganda: anthrax, zoonotic influenza viruses, viral hemorrhagic fevers, brucellosis, African trypanosomiasis, plague, and rabies. Discussion: One Health approaches and multi-sectoral collaborations are crucial in the surveillance, prevention, and control strategies for zoonotic diseases. Uganda used such an approach to identify zoonotic diseases of national concern. Identifying these priority diseases enables the National One Health Platform and the Zoonotic Disease Coordinating Office to address the diseases in the future.Keywords: national one health platform, zoonotic diseases, multi-sectoral, severity
Procedia PDF Downloads 1945154 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 1115153 The Use of Venous Glucose, Serum Lactate and Base Deficit as Biochemical Predictors of Mortality in Polytraumatized Patients: Acomparative with Trauma and Injury Severity Score and Acute Physiology and Chronic Health Evalution IV
Authors: Osama Moustafa Zayed
Abstract:
Aim of the work: To evaluate the effectiveness of venous glucose, levels of serum lactate and base deficit in polytraumatized patients as simple parameters to predict the mortality in these patients. Compared to the predictive value of Trauma and injury severity (TRISS) and Acute Physiology And Chronic Health Evaluation IV (APACHE IV). Introduction: Trauma is a serious global health problem, accounting for approximately one in 10 deaths worldwide. Trauma accounts for 5 million deaths per year. Prediction of mortality in trauma patients is an important part of trauma care. Several trauma scores have been devised to predict injury severity and risk of mortality. The trauma and injury severity score (TRISS) was most common used. Regardless of the accuracy of trauma scores, is based on an anatomical description of every injury and cannot be assigned to the patients until a full diagnostic procedure has been performed. So we hypothesized that alterations in admission glucose, lactate levels and base deficit would be an early and easy rapid predictor of mortality. Patient and Method: a comparative cross-sectional study. 282 Polytraumatized patients attended to the Emergency Department(ED) of the Suez Canal university Hospital constituted. The period from 1/1/2012 to 1/4/2013 was included. Results: We found that the best cut off value of TRISS probability of survival score for prediction of mortality among poly-traumatized patients is = 90, with 77% sensitivity and 89% specificity using area under the ROC curve (0.89) at (95%CI). APACHE IV demonstrated 67% sensitivity and 95% specificity at 95% CI at cut off point 99. The best cutoff value of Random Blood Sugar (RBS) for prediction of mortality was>140 mg/dl, with 89%, sensitivity, 49% specificity. The best cut off value of base deficit for prediction of mortality was less than -5.6 with 64% sensitivity, 93% specificity. The best cutoff point of lactate for prediction of mortality was > 2.6 mmol/L with 92%, sensitivity, 42% specificity. Conclusion: According to our results from all evaluated predictors of mortality (laboratory and scores) and mortality based on the estimated cutoff values using ROC curves analysis, the highest risk of mortality was found using a cutoff value of 90 in TRISS score while with laboratory parameters the highest risk of mortality was with serum lactate > 2.6 . Although that all of the three parameter are accurate in predicting mortality in poly-traumatized patients and near with each other, as in serum lactate the area under the curve 0.82, in BD 0.79 and 0.77 in RBS.Keywords: APACHE IV, emergency department, polytraumatized patients, serum lactate
Procedia PDF Downloads 2945152 Disease Control of Rice Blast Caused by Pyricularia Oryzae Cavara Using Novel Chitosan-based Agronanofungicides
Authors: Abdulaziz Bashir Kutawa, Khairulmazmi Ahmad, Mohd Zobir Hussein, Asgar Ali, Mohd Aswad Abdul Wahab, Amara Rafi, Mahesh Tiran Gunasena, Muhammad Ziaur Rahman, Md. Imam Hossain, Syazwan Afif Mohd Zobir
Abstract:
Rice is a cereal crop and belongs to the family Poaceae, it was domesticated in southern China and North-Eastern India around 8000 years ago, and it’s the staple nourishment for over half of the total world’s population. Rice production worldwide is affected by different abiotic and biotic stresses. Diseases are important challenges for the production of rice, among all the diseases in rice plants, the most severe and common disease is the rice blast. Worldwide, it is one of the most damaging diseases affecting rice cultivation, the disease is caused by the non-obligate filamentous ascomycete fungus called Magnaporthe grisae or Pyricularia oryzae Cav. Nanotechnology is a new idea to improve agriculture by combating the diseases of plants, as nanoparticles were found to possess an inhibitory effect on different species of fungi. This work aimed to develop and determine the efficacy of agronanofungicides, and commercial fungicides (in-vitro and in-vivo). The agronanofungicides were developed using ionic gelation methods. In-vitro antifungal activity of the synthesized agronanofungicides was evaluated against P. oryzae using the poisoned medium technique. The potato dextrose agar (PDA) was amended in several concentrations; 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35 ppm for the agronanofungicides. Medium with the only solvent served as a control. Mycelial growth was recorded every day, and the percentage inhibition of radial growth (PIRG) was also calculated. Based on the results of the zone of inhibition, the chitosan-hexaconazole agronanofungicide (2g/mL) was the most effective fungicide to inhibit the growth of the fungus with 100% inhibition at 0.2, 0.25, 0.30, and 0.35 ppm, respectively. The least were found to be propiconazole and basamid fungicides with 100% inhibition only at 100 ppm. In terms of the glasshouse results, the chitosan-hexaconazole-dazomet agronanofungicide (CHDEN) treatment (2.5g/L) was found to be the most effective fungicide to reduce the intensity of the disease with a disease severity index (DSI) of 19.80%, protection index (PI) of 82.26%, lesion length of 1.63cm, disease reduction (DR) of 80.20%, and AUDPC (390.60 Unit2). The least effective fungicide was found to be ANV with a disease severity index (45.60%), protection index (45.24%), lesion length (3.83 cm), disease reduction (54.40%), and AUDPC (1205.75 Unit2). The negative control did not show any symptoms during the glasshouse assay, while the untreated control treatment exhibited severe symptoms of the disease with a DSI value of 64.38%, lesion length of 5.20 cm, and AUDPC value of 2201.85 Unit2, respectively. The treatments of agronanofungicides have enhanced the yield significantly with CHDEN having 239.00 while the healthy control had 113.67 for the number of grains per panicle. The use of CHEN and CHDEN will help immensely in reducing the severity of rice blast in the fields, and this will increase the yield and profit of the farmers that produced rice.Keywords: chitosan, dazomet, disease severity, efficacy, and blast disease
Procedia PDF Downloads 875151 Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids
Authors: Caroline E. Mendes, Alberto C. Badino
Abstract:
Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa were obtained using the dynamic pressure-step method, while was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.Keywords: bubble column, internal loop airlift, gas hold-up, kLa
Procedia PDF Downloads 2745150 Breast Cancer as a Response to Distress in Women with or without a History of Precancerous Breast Disease
Authors: Viacheslav Sushko, Viktor Sushko
Abstract:
Pre-cancerous breast diseases are pathological changes that precede the appearance of adenocarcinoma. The most common benign breast disease is mastopathy. We examined the life and disease history of 114 women aged 58-69 who were diagnosed with adenocarcinoma of the breast at different stages of development. They filled out the Reeder Scale to determine the level of stress. The results of the study revealed that 62 of them had mastopathy at the age of 30-45 years old. These women refused surgical treatment for mastopathy. Five to six years before their diagnosis of adenocarcinoma of the mammary gland, 84 women had experienced severe stress (death of a beloved close relative, torture accompanied by rape, prolonged stay in extreme conditions (under bombardment and bombardment). In the assessment of data from completed Reeder scales, 114 women had a high level of mental stress, with a score from 1-1.72. The 84 women who suffered from severe stress showed overeating or a significant decrease in food intake, insomnia, apathy, increased irritability and restlessness, loss of interest in sexual relationships, forgetfulness, difficulty in performing routine work, prolonged uncontrollable headaches, unexplained fatigue, heart pain, reduced capacity for work. In conclusion, it is important to provide psychotherapy for breast cancer patients as the diagnosis, and the different stages of treatment are very stressful. It is also advisable to see a psychiatrist at an early stage and prevent distress and treat precancerous breast disease.Keywords: breast cancer, distress, mastopathy, severe stress
Procedia PDF Downloads 1355149 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast
Procedia PDF Downloads 845148 Evaluation of the Pain of Patients with Chronic Renal Disease in Hemodialysis
Authors: Fabiana Souza Orlandi, Izabel Cristina Chavez Gomes, Barbara Isabela De Paula Morais, Ana Carolina Ottaviani
Abstract:
Chronic Kidney Disease (CKD) is considered a public health problem. Patients who present CKD in their more advanced stages usually present several biopsychosocial changes, which may include pain. Pain can be considered subjective and personal, and its perception is characterized as a multidimensional experience. The objective of this study was to evaluate the level and descriptors of pain of adults and elderly patients with chronic kidney disease, through the Multidimensional Pain Evaluation Scale (EMADOR). This is a descriptive cross-sectional study with a quantitative approach. The sample consisted of 100 subjects with CKD in hemodialysis treatment at a Renal Replacement Therapy Service in the interior of the state of São Paulo. Data were collected through an individual interview, using a Sociodemographic Characterization and Multidimensional Pain Evaluation Scale (EMADOR). All ethical precepts were respected. The majority of the respondents were men (61.0%), white (56.0%) and with a high school education (34.0%). Regarding the pain of the individuals, 89 patients reported pain, with Chronic Pain predominating (50.0%, n = 50), followed by Acute Pain (39.0%, n = 39). Of the subjects who presented acute pain most of the 89.0% described the pain felt as unbearable, and of those who presented chronic pain, 35.0% described the pain felt as painful, unbearable and uncomfortable. It was concluded that there was a significant presence of pain, being the chronic pain dominant in the studied population. Faced with such factors, the present study motivates researches in this population, in order to establish interventions with the objective of improving the quality of life of these individuals.Keywords: pain, chronic kidney disease, dialysis, evaluation
Procedia PDF Downloads 4525147 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 1785146 Assessing the Lifestyle Factors, Nutritional and Socioeconomic Status Associated with Peptic Ulcer Disease: A Cross-Sectional Study among Patients at the Tema General Hospital of Ghana
Authors: Marina Aferiba Tandoh, Elsie Odei
Abstract:
Peptic Ulcer Disease (PUD) is amongst the commonest gastrointestinal problems that require emergency treatment in order to preserve life. The prevalence of PUD is increasing within the Ghanaian population, deepening the need to identify factors that are associated with its occurrence. This cross-sectional study assessed the nutritional status, socioeconomic and lifestyle factors associated with PUD among patients attending the Out-Patient Department of the Tema General Hospital of Ghana. A food frequency questionnaire and a three-day, 24-hour recall were used to assess the dietary intakes of study participants. A standardized questionnaire was used to obtain information on the participants’ socio-demographic characteristics, lifestyle as well as medical history. The data was analyzed using SPSS version 22. The mean age of study participants was 32.8±15.41years. Females were significantly higher (61.4%) than males (38.6%) (p < 0.001). All participants had received some form of education, with tertiary education being the highest (52.6%). The majority of them managed their condition with medications only (86%), while 10.5% managed it with a combination of medications and diet. The rest were either by dietary counseling only (1.8%), or surgery only (1.8%). or herbal medicines (29.3%), which were made from home (7.2%) or bought from a medical store (10.8%). Most of the participants experienced a recurrence of the disease (42.1%). For those who had ever experienced recurrences of the disease, it happened when they ate acidic foods (1.8%), ate bigger portions (1.8%), starved themselves (1.8%), or were stressed (1.8%). Others also had triggers when they took certain medications (1.8%) or ate too much pepper (1.8%). About 49% of the participants were either overweight or obese with a recurrence of PUD (p>0.05). Obese patients had the highest rate of PUD recurrences (41%). Drinking alcohol was significantly associated with the recurrence of PUD (χ2= 5.243, p=0.026). Other lifestyles, such as weed smoking, fasting, and use of herbal medicine and NSAIDs did not have any significant association with the disease recurrence. There was no significant correlation between the various dietary patterns and anthropometric parameters except dietary pattern one (salty snacks, regular soft drinks, milk, sweetened yogurt, ice cream, and cooked vegetables), which had a positive correlation with weight (p=0.002) and BMI (p=0.038). PUD patients should target weight reduction actions and reduce alcohol intake as measures to control the recurrence of the disease. Nutrition Education among this population must be promoted to minimize the recurrence of PUD.Keywords: Dietary patterns, lifestyle factors, nutritional status, peptic ulcer disease
Procedia PDF Downloads 815145 Clinical Signs of River Blindness and the Efficacy of Ivermectin Therapy in Idogun, Ondo State-Nigeria
Authors: Afolabi O.J, Simon-Oke I.A., Oniya M.O., Okaka C.E.
Abstract:
River blindness is a skin, and an eye disease caused by Onchocerca volvulus and vectored by a female hematophagous blackfly. The study aims to evaluate the distribution of the clinical signs of river blindness and the efficacy of ivermectin in the treatment of river blindness in Idogun. Observational studies in epidemiology that involve the use of a structured questionnaire to obtain useful epidemiological information from the respondents, physical assessment via palpation from head to ankle was used to assess clinical signs from the respondents and skin snip test was used to evaluate the prevalence of the disease. The efficacy of the drug was evaluated and expressed in percentages. One hundred and ninety-two (192) out of the 384 respondents examined, showed various signs of river blindness. However, it was only 108 (28.1%) respondents with the clinical signs that demonstrated Onchocerca volvulus microfilariae in their skin snips. The clinical signs observed among the respondents include skin depigmentation such as dermatitis, leopard skin, papules, pruritus and self-inflicted injury, while ocular symptoms include cataract, ocular lesion and partial blindness. Among these clinical signs, papules, and pruritus were the most dominant in the community. The prevalence of the clinical signs was observed to vary significantly among the age groups and gender (P<0.05). The efficacy of the drug after 6 and 12 months of treatments shows that the drug is more effective at age groups 10-50 years than the age groups 51-90 years. Ivermectin is observed to be efficacious in the treatment of the disease. However, to achieve eradication of the disease, the drug may be administered at 0.15mg/kg twice a year.Keywords: riverblindness, clinical signs, ivermectin, Idogun
Procedia PDF Downloads 1595144 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections
Authors: Ravneil Nand
Abstract:
Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse
Procedia PDF Downloads 3355143 Vitamin D Levels of Patients with Rheumatoid Arthritis in Kosova
Authors: Mjellma Rexhepi, Blerta Rexhepi Kelmendi, Blana Krasniqi, Shaip Krasniqi
Abstract:
Rheumatoid arthritis is a chronic disease that causes inflammation of the joints which can be so severe that can cause not only deformities but also impairment of function that limits movement. This also contributes to the pain that accompanies this disease. This remains a problematic and challenging disease of modern medicine because treatment is still symptomatic. The main purpose of drug treatment is to reduce the activity of the disease, achieve remission, avoid disability and death. The etiology of the disease is idiopathic, but can also be linked to genetic, nongenetic factors such as hormonal, environmental or infectious. Current scientific evidence shows that vitamin D plays an important role in immune regulation mechanisms. Lack of this vitamin has been linked to loss of immune tolerance and the appearance of autoimmune processes, including rheumatoid arthritis. The purpose of the work was to define Vitamin D in patients hospitalized with rheumatoid arthritis in University Clinical Center of Kosova, as a basis of their connection with lifestyle and physical inactivity. The sample for the work was selected from patients with criteria met for rheumatoid arthritis who were hospitalized at the tertiary level of health care in Kosova. During the work have been investigated 100 consecutive patients fulfilling diagnostic criteria for rheumatoid arthritis, whereas in addition to the general characteristics are also determined the values of vitamin D at the beginning of hospitalization. The average age of the sample analyzed was 50.9±5.7 years old, with an average duration of rheumatoid arthritis disease 7.8±3.4 years. At the beginning of hospitalization, before treatment was initiated, the average value of vitamin D was 15.86±3.43, which according to current reference values is classified into the category of insufficient values. Correlating the duration of the disease, from the time of diagnosis to the day of hospitalization, on one side and the level of vitamin D on the other side, the negative correlation of a lower degree derived (r =-0.1). Physical activity affects the concentration of vitamin D in the blood through increased metabolism of fat and the release of vitamin D and its metabolites from adipose tissue. To now it is evident that physical activity is also accompanied by higher levels of vitamin D. In patients with rheumatoid arthritis, vitamin D levels were low compared to normal. Future works should be oriented toward investigating in detail the bone structure, quality of life and pain in patients with rheumatoid arthritis. More detailed scientific projects, with larger numbers of participants, should be designed for the future to clarify more possible mechanisms as factors related to this phenomenon such as inactivity, lifestyle and the duration of the disease, as well as the importance of keeping vitamin D values at normal limits.Keywords: hospitalization, lifestyle, rheumatoid arthritis, vitamin D
Procedia PDF Downloads 135142 Numerical Prediction of Entropy Generation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
The concept of second law is assumed to be important to optimize the energy losses in heat exchangers. The present study is devoted to the numerical prediction of entropy generation due to heat transfer and friction in a double tube heat exchanger partly or fully filled with a porous medium. The goal of this work is to find the optimal conditions that allow minimizing entropy generation. For this purpose, numerical modeling based on the control volume method is used to describe the flow and heat transfer phenomena in the fluid and the porous medium. Effects of the porous layer thickness, its permeability, and the effective thermal conductivity have been investigated. Unexpectedly, the fully porous heat exchanger yields a lower entropy generation than the partly porous case or the fluid case even if the friction increases the entropy generation.Keywords: heat exchangers, porous medium, second law approach, turbulent flow
Procedia PDF Downloads 3005141 Investigation of the Excitotoxicity Pathways in Neuroblastoma Cells
Authors: Merve Colak, Gizem Donmez Yalcin
Abstract:
Glutamate has many neurological functions in the central nervous system and is found at high concentrations in the brain. Increased levels of glutamate in the neuronal space are toxic, causing neuron damage and death. This is called glutamate-induced excitotoxicity. Excitotoxicity is among the causes of many neurological diseases such as trauma, cerebral ischemia, epilepsy, Parkinson's Disease, Alzheimer's Disease. Since neuroblastoma cells are known to be excitotoxic, we propose that excitotoxicity can be studied in neuroblastoma cells. Excitotoxicity can be induced using kainic acid in neuroblastoma cells. Measuring the secretion of glutamate, excitotoxicity can be analyzed in neuroblastoma cells.Keywords: glutamate, excitotoxicity, kainic acid, Sirt4
Procedia PDF Downloads 1585140 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka
Authors: Sakshi Dhumale, Madhushree C., Amba Shetty
Abstract:
The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability
Procedia PDF Downloads 585139 Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples
Authors: Abu Harera Nadeem, Kingsley Donkor
Abstract:
Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea.Keywords: ICP-MS, green tea, black tea, microwave-assisted acid digestion, ultrasound-assisted extraction
Procedia PDF Downloads 1235138 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 1085137 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 4205136 Autoimmune Diseases Associated to Autoimmune Hepatitis: A Retrospective Study of 24 Tunisian Patients
Authors: Soumaya Mrabet, Imen Akkari, Amira Atig, Elhem Ben Jazia
Abstract:
Introduction: Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease of unknown cause. Concomitant autoimmune disorders have been described in 30–50% of patients with AIH. The aim of our study is to determine the prevalence and the type of autoimmune disorders associated with AIH. Material and Methods: It is a retrospective study over a period of 16 years (2000-2015) including all patients followed for AIH. The diagnosis of AHI was based on the criteria of the revised International AIH group scoring system (IAIHG). Results: Twenty-for patients (21 women and 3 men) followed for AIH were collected. The mean age was 39 years (17-65 years). Among these patients, 11 patients(45.8%) had at least one autoimmune disease associated to AIH. These diseases were Hashimoto's thyroiditis (n = 5), Gougerot Sjogren syndrome (n=5), Primary biliary cirrhosis (n=2), Primitive sclerosant Cholangitis (n=1), Addison disease (n = 1) and systemic sclerosis (n=1). Patients were treated with corticosteroids alone or with azathioprine associated to the specific treatment of associated diseases with complete remission of AIH in 90% of cases and clinical improvement of other diseases. Conclusion: In our study, the prevalence of autoimmune diseases in AIH patients was 45.8%. These diseases were dominated by autoimmune thyroiditis and Gougerot Sjogren syndrome. The investigation of autoimmune diseases in autoimmune hepatitis must be systematic because of their frequency and the importance of adequate management.Keywords: autoimmune diseases, autoimmune hepatitis, autoimmune thyroiditis, gougerot sjogren syndrome
Procedia PDF Downloads 2625135 Prediction of Childbearing Orientations According to Couples' Sexual Review Component
Authors: Razieh Rezaeekalantari
Abstract:
Objective: The purpose of this study was to investigate the prediction of parenting orientations in terms of the components of couples' sexual review. Methods: This was a descriptive correlational research method. The population consisted of 500 couples referring to Sari Health Center. Two hundred and fifteen (215) people were selected randomly by using Krejcie-Morgan-sample-size-table. For data collection, the childbearing orientations scale and the Multidimensional Sexual Self-Concept Questionnaire were used. Result: For data analysis, the mean and standard deviation were used and to analyze the research hypothesis regression correlation and inferential statistics were used. Conclusion: The findings indicate that there is not a significant relationship between the tendency to childbearing and the predictive value of sexual review (r = 0.84) with significant level (sig = 219.19) (P < 0.05). So, with 95% confidence, we conclude that there is not a meaningful relationship between sexual orientation and tendency to child-rearing.Keywords: couples referring, health center, sexual review component, parenting orientations
Procedia PDF Downloads 219